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CUBIC SPLINE SOLUTION OF FRACTIONAL BAGLEY-TORVIK
EQUATION

W. K. ZAHRA AND S. M. ELKHOLY

Abstract. Fractional calculus is a natural extension of the integer order
calculus and recently, a large number of applied problems have been formu-
lated on fractional di¤erential equations. Analytical solution of many applica-
tions, where the fractional di¤erential equations appear, cannot be established.
Therefore, cubic polynomial spline function is considered to �nd approximate
solution for fractional boundary value problems (FBPs). Convergence analysis
of the method is considered. Some illustrative examples are presented and the
obtained results reveal that the proposed technique is very e¤ective, convenient
and quite accurate to such considered problems.

1. Introduction

In the last few decades, many phenomena in science and engineering are described
within the framework of the theory of fractional di¤erential equations. Bound-
ary value problems of fractional order occur in the description of many physical
processes of stochastic transport, the investigation of liquid �ltration in a strongly
porous medium, cellular systems, di¤usion wave, control theory, signal processing
and oil industries, [9]. In particular, the 1/2-order derivative or 3/2-order derivative
describe the frequency-dependent damping materials quite satisfactorily, and the
Bagley-Torvik equation with 1/2-order derivative or 3/2-order derivative describes
motion of real physical systems, an immersed plate in a Newtonian �uid and a
gas in a �uid, respectively. For details we may refer to ([1]-[5],[15],[17]-[18],[23]-
[26]). It is these successful applications of fractional-order derivatives that draw
the researchers attention to fractional calculus such as in [33], the authors con-
sidered the numerical solution of the fractional boundary value problem (FBVP)
D��y

00
(x)+p(x)y = g(x); 0 � � < 1; x 2 [a; b]; with Dirichlet boundary conditions

using quadratic polynomial spline, also in [34] the authors used cubic polynomial
spline function based method in combined with shooting method to �nd approx-
imate solution of second order FBVP with Dirichlet boundary conditions, (see
[6]-[8],[12]-[13],[15]-[16],[19]-[22],[27]-[29]).
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In this paper, we consider the numerical solution of the following Bagley-Torvik
equation:

y
00
(x) + (�D� + �)y = f(x); m� 1 � � < m; x 2 [a; b] (1)

Subject to boundary conditions:

y(a)�A1 = y(b)�A2 = 0 (2)

where Ai(i = 1; 2); �; � are real constants and m = 1 or 2 . The function f(x) is
continuous on the interval [a; b] and the operator D� represents the Caputo frac-
tional derivative. When � = 0 , Equation (1) is reduced to the classical second
order boundary value problem.
The main objective of this work is to use cubic polynomial spline function to es-
tablish a new numerical method for the FBVP (1-2). This approach has its own
advantage that it not only provides continuous approximations to y(x) , but also
y(j)(x); j = 1; 2 for at every point of the range of integration ([25],[30]-[32]).
This paper is organized as follows: In section 2, we introduce some de�nitions and
theorem necessary to our work. Derivation of our method is established in section
3. Convergence analysis of the new method is presented in section 4. In section 5,
we apply our method to singular boundary value problem of fractional order. In
section 6, numerical results are included to show the applications and advantages
of our method.

2. Preliminaries

In this section, de�nitions of fractional derivative and integral, used in our work,
will be presented. There are di¤erent de�nitions for fractional derivatives, the most
commonly used ones are the Riemann-Liouville and the Caputo derivatives. Let
f(x) be a function de�ned on (a; b), then
De�nition 1 [16] The Riemann-Liouville fractional derivative

RD�f(x) =
1

�(m� �)
dm

dxm

xZ
0

(x� t)m���1f(t)dt; � > 0;m� 1 < � < m

where � is the gamma function.
De�nition 2 [16]The Riemann-Liouville fractional integral

D��
a f(x) =

1

�(�)

xZ
a

(x� t)��1f(t)dt; � > 0

De�nition 3 [10] The Caputo fractional derivative

D�f(x) =
1

�(m� �)

xZ
0

(x� s)m���1f (m)(s)ds; � > 0;m� 1 < � < m

The relation between the Riemann�Liouville operator and Caputo operator is given
by

D�f(x) =R D�[f(x)�
m�1X
k=0

1

k!
(x� a)kf (k)(a)]; � > 0;m� 1 < � < m
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De�nition 4 [16] The Grünwald de�nition for fractional derivative is:

GD�y(x) = lim
N!1

1

h�

NX
k=0

g�;ky(x� kh) (3)

where the Grünwald weights are:

g�;k =
�(k � �)

�(��)�(k + 1) (4)

3. Consistency relations

In order to develop the spline approximation for the fractional di¤erential equa-
tion (1-2) we introduce a �nite set of grid points xi by dividing the interval [a; b]
into equal n� parts.

xi = a+ ih; x0 = a; xn = b; h =
b� a
n

; i = 0; 1; 2; :::; n (5)

Let y(x) be the exact solution of (1) and Si be an approximation to yi = y(xi)
obtained by the spline function Qi(x) passing through the points (xi; Si ) and
(xi+1; Si+1 ) then in each subinterval the cubic polynomial spline segment Qi(x)
has the form

Qi(x) = ai (x� xi)3 + bi (x� xi)2 + ci (x� xi) + di; i = 0; 1; 2; :::; n� 1 (6)

where ai; bi; ci and di are constants to be determined. Following ([30]-[33]), we get
the following recurrence relations

Si+1 � 2Si + Si�1 =
h2

6
(Mi+1 + 4Mi +Mi�1); i = 0; 1; 2; :::; n� 1 (7)

where
Mi = fi � �Si � �D�S(x)jx=xi ; i = 0; 1; 2; :::; n (8)

where fi = f(xi)
Lemma 1 Let y 2 C6[a; b] then the local truncation errors ti; i = 1; 2; :::; n � 1
associated with the scheme (8) is:

ti =
�1
12
h4y

(4)
i +O(h6); i = 0; 1; 2; :::; n� 1 (9)

Proof : see [33].
In order to obtain a complete numerical solution for Eq.(1-2), we use the Grünwald
de�nition (3-4) of the fractional derivative for discretizing the fractional term
D�S(x)j

x=xi
i = 0; 1; 2; :::; n mentioned in Eq.(8).

Note that the normalized weights (4) depend only on the fractional order � and
the index k . We have that:

g�;0 = 1; g�;1 = �� and g�;k =
(��)(��+ 1):::(��+ k � 1)

k!
;8k � 2: (10)

It is well known that

(1 + z)p =
1X
k=0

�
p

k

�
zk; 8 jzj � 1; p > 0 (11)

where �
p

k

�
=
(�1)k�(k � p)
�(�p)�(k + 1) (12)
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Then for z = �1, we have
1X
k=0

�(k � �)
�(��)�(k + 1) = 0 (13)

Then from the above we can approximate the fractional term D�S(x)j
x=xi

i =

0; 1; 2; :::; n by:

D�S(x)jx=xi �=
1

h�

iX
k=0

g�;k S(xi � kh); i = 0; 1; 2; :::; n (14)

4. Convergence analysis

Let Y = (yi); S = (si); C = (ci); T = (ti) and E = (ei) = Y � S be
(n� 1)-dimensional column vectors. Then, we can write the system given by (10)
as follows:

NS = h2BM + C (15)

where the matrices N;B and the vector C are given below

N =

2666666666666664

�3 1
1 �2 1

1 �2 1
:

:
:

1 �2 1
1 �2 1

1 �3

3777777777777775

B =

2666666666666664

4 1
1 4 1
1 4 1

:
:
:

1 4 1
1 4 1
1 4

3777777777777775
; C =

266664
�A1 + h2

6 M0

:
:
:

�A2 + h2

6 Mn

377775

From Eqs.(11) and (3.14), the vector M can be written as:

M = F � �S � �h��(GS +G0) (16)

Where the vectors F;G0 and the matrix G are given below respectively:

F = ( f1 f2 : : : fn�2 fn�1 )
t (17)

G0 = A1( g�;1 g�;2 : : : g�;n�2 g�;n�1 )
t (18)
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and G =

266666666664

g�;0
g�;1 g�;0
g�;2 g�;1 g�;0
: :
: :
: :

g�;n�3 g�;n�4 g�;1 g�;0
g�;n�2 g�;n�3 g�;2 g�;1 g�;0

377777777775
where g�;i; i = 0; 1; 2; :::; n are the Grünwald weights.
Substituting from Eq.(16) into Eq.(15) we get:

(N + �h2B + �h2��BG)S = h2B(F � �h��G0) + C

and
(N + �h2B + �h2��BG)Y = h2B(F � �h��G0) + C + T

Then the error equation can be written as

(N + �h2B + �h2��BG)E = T (19)

In the following we need the following lemma.
Lemma 2 [14] If M is square matrix of order n and kMk < 1 , then (1 +M)�1

exists and


(1 +M)�1

 < 1=(1� kMk).

Lemma 3 The matrix (N + �h2B + �h2��BG) given by (19) is nonsingular, pro-
vided that

 (�+ 2�mh��) < 1 (20)

Proof: Rewrite the error equation (19) , we get

E = (I + �h2N�1B + �h2��N�1BG)�1N�1T

Using Lemma 2, we have

kEk �


N�1

 kTk

1� �h2 kN�1k kBk � �h2�� kN�1k kBk kGk (21)

Provided that

�h2


N�1

 kBk � �h2�� 

N�1

 kBk kGk < 1 (22)

It was shown that [14]

N�1

 = h�2

8
((b� a)2 + h2) =  h�2;  =

((b� a)2 + h2)
8

: (23)

kBk = 1; (24)

We have that kGk =
Pn�2

i=0 jg�;ij
From Eq.(21) we can conclude that

(1) When 0 < � < 1, we have g�;0 = 1 and g�;i < 0 8i and i 6= 0. Then, we

get that
1X
k=1

�(k � �)
�(��) �(k + 1) = �1 which leads to kGk � 2.

(2) When 1 < � < 2, we have g�;1 = �� and g�;i > 0 8i and i 6= 1. Then, we

get that
1X
k=0
k 6=1

�(k � �)
�(��) �(k + 1) = � which leads to kGk � 2�.
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Then from the above we can �nish to

kGk � 2m; 8 (m� 1) < � < m: (25)

From equation (12)we have

kTk = 1

12
h4M4 (26)

where

M4 = max
a�x�b

���y(4)(x)��� (27)

Substituting from Eqns. (23-26) into Eq. (22) completes the proof of the lemma.
As a consequence of Lemma 3, the discrete boundary value problem Eq.(15) has a
unique solution if  (�+ 2�h��) < 1.
Then

kEk �


N�1

 kTk

1� �h2 kN�1k kBk � �h2�� kN�1k kBk kGk
�= O(h2): (28)

As a result of the above lemma we can write the following theorem
Theorem 3 Let y(x)be the exact solution of the continuous boundary value prob-
lem (1-2) and let y(xi); i = 1; 2; :::; n� 1 , satisfy the discrete boundary value prob-
lem (15). Further, ifei = y(xi) � Si , then kEk �= O (h2) second order convergent
method, which is given by Eq. (28), neglecting all errors due to round o¤.

5. Singular Boundary value problem of fractional order

The approach introduced in section 3 can also be used to �nd the solution of the
following singular fractional di¤erential equation

"y00(x) + �D�y + �y = f(x); " << 1; 0 � � < 1; x 2 [a; b]; (29)

with boundary conditions given by Eq.(2)
The consistency relations (10) hold but in this case we have

Mi =
1

"
(fi � �Si � �D� S(x)j x=xi) ; i = 0; 1; 2; :::; n; (30)

6. Numerical examples
We will consider some numerical examples demonstrating the solution using cubic
spline methods illustrated above. All calculations are implemented with MATLAB
7.
Example 6.1
Consider the fractional boundary value problem:

y00(x) + 0:5D�y(x) + y(x) = 3 + x2(
x��

�(3� �) + 1); (31)

y(0) = 1 ; y(1) = 2: (32)

The exact solution of Eq.(31) is

y(x) = x2 + 1: (33)

The numerical solutions using cubic spline are represented in Table 6.1 in case of
n = 8 and � = 0:5, while the error and the order of convergence for various values
of � = 0,� = 0:3 and � = 0:5 are represented in Table 6.2.
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Table 6.1: exact, approximate and absolute error
x Exact Solution Approximate Solution Error
0 1 1 0

0:125 1:015625 1:020078 4:19E � 3
0:250 1:062500 1:065554 2:52E � 3
0:375 1:140630 1:141389 4:90E � 5
0:500 1:250000 1:247476 3:59E � 3
0:625 1:390630 1:383746 8:16E � 3
0:750 1:562500 1:550150 1:37E � 2
0:875 1:765630 1:750225 1:68E � 2
1 2 2 0

Table 6.2: maximum absolute error and order of convergence (O.C.)
h � = 0 � = 0:3 � = 0:5

Error O:C: Error O:C: Error O:C:
1=8 7:39E � 3 8:60E � 3 1:68E � 2
1=16 2:09E � 3 1:82 2:25E � 3 1:93 4:35E � 3 1:95
1=32 5:61E � 4 1:90 6:27E � 4 1:84 1:18E � 3 1:88
1=46 1:47E � 4 1:93 1:68E � 4 1:90 3:27E � 4 1:85
1=128 3:85E � 5 1:93 4:42E � 5 1:92 9:13E � 5 1:84

Example 6.2
Consider the boundary value problem:

y00(x) + �D�y(x) + �y(x) = f(x); (34)

y(0) = y(1) = 0: (35)
where f(x) = 4x2(5x� 3) + �x4��( 120

�(6��)x�
24

�(5��) ) + �x
4(x� 1) :

The exact solution of Eq.(34) is y(x) = x4(x� 1):
The numerical solution for� = 0:5 ; � = 1, n=8 and � = 0:3 is represented in Table
6.3. Also, the error and the order of convergence for various values of � = 0,� = 0:3
and � = 0:5 are represented in Table 6.4.

Table 6.3: exact, approximate and absolute error
x Exact Solution Approximate Solution Error
0 0 0 0

0:125 �0:0002140 �0:00221 2:00E � 3
0:250 �0:0029297 �0:00701 4:08E � 3
0:375 �0:0123596 �0:01819 5:83E � 3
0:500 �0:0312500 �0:03810 6:85E � 3
0:625 �0:0572200 �0:06403 6:81E � 3
0:750 �0:0791000 �0:08467 5:57E � 3
0:875 �0:0732730 �0:07654 3:26E � 3
1 0 0 0
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Table 6.4:maximum absolute error and order of convergence
h � = 0 � = 0:3 � = 0:5

Error O:C: Error O:C: Error O:C:
1=8 7:33E � 3 6:85E � 3 6:39E � 3
1=16 2:09E � 3 1:81 1:93E � 3 1:83 1:73E � 3 1:89
1=32 5:34E � 4 1:97 5:38E � 4 1:84 4:95E � 4 1:81
1=46 1:44E � 4 1:89 1:52E � 4 1:82 1:37E � 4 1:85
1=128 4:02E � 5 1:84 4:23E � 5 1:83 3:69E � 5 1:89

Example 6.3
Consider the singular fractional boundary value problem [26]

"y00(x) +D�y =
x1��

�(2� �) ; " << 1; 1 � � < 2; x 2 [a; b]; (36)

y(0) = y(1) = 0 (37)
In [26], the authors used the Laplace transform properties and they deduced that
the exact solution of (36) is given by:

y(x) = C1x
��1E��1;�(�x��1=")�

x�+1

"
E��1;�+2(�x��1="); C1 =

E��1;�+2(�1=")
"E��1;�(�1=")

The numerical solution for � = 1:25; h =
1

16
and " = 10�1 is represented in Fig.6.1.

This example had been solved also for � = 1:25 and " = 10�2 , " = 10�3 , " = 10�4

and " = 10�5 and the results are represented in Fig. 6.2. Also, exact solution

and approximate solution for various values of step size h =
1

8
;
1

16
and h =

1

32
are

presented in Fig.6.3. and the error corresponding to each approximate solution in
Fig.6.4.

Fig. 6.1, the numerical solution of example 6.3 for � = 1:25 and " = 10�1:
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Fig. 6.2, the numerical solution of Example 6.3 for � = 1:25 and
(a) " = 10�1, (b) " = 10�2, (c) " = 10�3;(d) " = 10�4;(e) " = 10�5

Fig. 6.3, Exact and approximate solutions of Example 6.3 with variable step size.
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Fig. 6.4, The error corresponding to each approximate solution. .

6. Conclusion

In this paper, we used cubic polynomial spline based method to present an
approximate solution for a class of boundary value problem of fractional order sub-
ject to Dirichlet boundary conditions. Our approach depends on approximating the
fractional term using the Grünwald de�nition of the fractional derivative. This ap-
proach was used also to �nd the solution of singular fractional di¤erential equation.
Convergence analysis of the method was presented. Some numerical examples were
included to illustrate the practical usefulness of the proposed methods.

References

[1] Agrawal O. P. and Kumar P., Comparison of �ve schemes for fractional di¤erential equations,
J. Sabatier et al. (eds.), Advances in Fractional Calculus: Theoretical Developments and App.
in Phy. and Eng. (2007) 43�60.

[2] Baleanu D. and Muslih S. I., On fractional variational principles, J. Sabatier et al. (eds.),
Advances in Fractional Calculus: Theoretical Developments and App. in Phy. and Eng. (2007)
115 �126.

[3] Bonilla B., Rivero M., and Trujillo J.J., Linear di¤erential equations of fractional order, J.
Sabatier et al. (eds.), Advances in Fractional Calculus: Theoretical Developments and App.
in Phy. and Eng. (2007) 77-91.

[4] Chen W., Sun H., Zhang X. and Korosak D, Anomalous di¤usion modeling by fractal and
fractional derivatives, Comp. Math. App., 59(2010) 1754-1758.

[5] Chen W., Ye L. and Sun H., Fractional di¤usion equation by the Kansa method, Comp.
Math. App., 59(2010) 1614-1620.

[6] Diethelm K., Walz G., Numerical solution of fractional order di¤erential equations by extrap-
olation, Numer. Algorithms 16 (1997) 231�253.

[7] Diethelm K., FORD N. J., Numerical solution of the Bagley Torvik equation, BIT 42 (2002)
490�507.



240 W. K. ZAHRA AND S. M. ELKHOLY. EJMAA-2013/1(2)

[8] Duan Junsheng D., Jianye A. and Mingyu X., Solution of system of fractional di¤erential
equations by Adomian decomposition method, App. Math. Chinese Univ. Ser. B. 22(2007)
17-12.

[9] Fitt A.D., Goodwin A.R.H., Ronaldson K.A. and Wakeham W.A., A fractional di¤erential
equation for a MEMS viscometer used in the oil industry, J. Comput. Appl. Math, 229 (2009)
373�381.

[10] Fix G.J. and Roop J.P., Least squares �nite element solution of a fractional order two-point
boundary value problem, Comp. Math. App., 48(2004) 1017-1033.

[11] Galeone L. and Garrappa R., Fractional Adams�Moulton methods, Math. Comp. simulation
79 (2008) 1358�1367.

[12] Garrappa R., On some explicit Adams multistep methods for fractional di¤erential equations,
J. Comput. Appl. Math., 229(2009)392-399

[13] Ghorbani A., Toward a new analytical method for solving nonlinear fractional di¤erential
equations, Comput. Methods Appl. Mech. Engrg., 197 (2008) 4173�4179.

[14] Henrici P., Discrete variable methods in ordinary di¤erential equations, John Wiley, NewYork,
1962.

[15] Jiang C. X., Carletta J.E., and Hartley T.T., Implementation of fractional order operators
on �eld programmable gate arrays, J. Sabatier et al. (eds.), Advances in Fractional Calculus:
Theoretical Developments and App. in Phy. and Eng. (2007) 333�346.

[16] Kilbas A. A., Srivastava H. M. and Trujillo J.J., Theory of application of fractional di¤erential
equations, �rst ed., Belarus, 2006.

[17] Lakshmikantham V. and Vatsala A.S., Basic theory of fractional di¤erential equations, Nonl.
Anal. 69 (2008) 2677�2682.

[18] Miller K.S., Ross B., An Introduction to the Fractional Calculus and Di¤erential Equations,
John Wiley, New York, 1993.

[19] Momani S., Noor M. N.,Numerical methods for fourth-order fractional integro-di¤erential
equations, App. Math. and Comp., 182 (2006) 754�760.

[20] Momani S., Odibat Z., Numerical comparison of methods for solving linear di¤erential equa-
tions of fractional order, Chaos, Solitons and Fractals, 31(2007)1248�1255.

[21] Momani S., Odibat Z., A novel method for nonlinear fractional partial di¤erential equations:
Combination of DTM and generalized Taylor�s formula, J. Comput. Appl. Math., 220 (2008)
85 �95.

[22] Nasuno H., Shimizu N., and Fukunaga M., Fractional derivative consideration on nonlinear
viscoelastic statical and dynamical behavior under large pre-displacement, J. Sabatier et al.
(eds.), Advances in Fractional Calculus: Theoretical Developments and App. in Phy. and
Eng. (2007) , 363�376.

[23] Ouahab A., Some results for fractional boundary value problem of di¤erential inclusions,
Nonl. Anal., 69 (2008) 3877�3896.

[24] Podlubny I., Fractional di¤erential equation, Academic Press, San Diego, 1999.
[25] Ramadan M.A, Lashien I.F., Zahra W.K., Polynomial and nonpolynomial spline approaches

to the numerical solution of second order boundary value problems, Appl. Math. Comp., 184(
2007) 476�484.

[26] Roop J. P., Numerical approximation of a one-dimensional space fractional advection�
dispersion equation with boundary layer, Comp. Math.with App. 56 (2008) 1808�1819.

[27] Su X., Zhang S., Solution to boundary value problem for nonlinear di¤erential equations of
fractional order, Electron. J. Di¤erential Equations, 26 (2009) 1�15.

[28] Taukenova F. I., Shkhanukov�La�shev M. Kh., Di¤erence methods for solving boundary
value problems for fractional di¤erential equations, Compu. Math. Math. Phy., 46 (2006)
1785�1795.

[29] Xinwei S., Boundary value problem for a coupled system of nonlinear fractional, App. Math.
Lett., 22 (2009) 64�69.

[30] Zahra W.K. ,�A theoretical and numerical treatment for a class of boundary value problems
using spline methods�, Ph.D. Thesis, Faculty of Engineering, Tanta University, Egypt, 2008.

[31] Zahra W.K., Exponential spline solutions for a class of two point boundary value problems
over a semi-in�nite range, Numer Algor 52,561�573,2009.

[32] Zahra W.K., Finite-di¤erence technique based on exponential splines for the solution of ob-
stacle problems, International Journal of Computer Mathematics, 88:14, 3046-3060, 2011.



EJMAA-2013/1(2) CUBIC SPLINE SOLUTION 241

[33] Zahra W. K. and Elkholy S. M., Quadratic spline solution for boundary value problem of
fractional order, Numer Algor,59:373-391,2012.

[34] Zahra W. K. and Elkholy S. M., The use of cubic splines in the numerical solution of fractional
di¤erential equations, International Journal of Mathematics and Mathematical Sciences, vol.
2012, Article ID 638026, 16 pages, 2012. doi:10.1155/2012/638026.

W. K. Zahra, Department of Engineering Physics and Mathematics, Faculty of En-
gineering, Tanta Univ., Tanta, Egypt

E-mail address : waheed_zahra@yahoo.com , wzahra@f-eng.tanta.edu.eg

S. M. Elkholy, Department of Engineering Physics and Mathematics, Faculty of En-
gineering, Kafr El Sheikh Univ., Kafr El Sheikh, Egypt.

E-mail address : samahelkholy77@yahoo.com


	1. Introduction
	2. Preliminaries
	3. Consistency relations
	4. Convergence analysis
	5. Singular Boundary value problem of fractional order
	6. Conclusion
	References

