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HIGHER ORDER BINARY OPTIONS AND MULTIPLE-EXPIRY

EXOTICS

HYONG-CHOL O, MUN-CHOL KIM

Abstract. In this paper we extend Buchen’s method to develop a new tech-

nique for pricing of some exotic options with several expiry dates (more than 3

expiry dates) using a concept of higher order binary option. At first we intro-
duce the concept of higher order binary option and then provide the pricing

formulae of n-th order binaries using PDE method. After that, we apply them
to get the pricing of some multiple-expiry exotic options such as Bermudan

option, multi time extendable option, multiple shout option and etc. Here,

when calculating the price of concrete multiple-expiry exotic options, we do
not try to get the formal solution to corresponding initial-boundary problem

of the Black-Scholes equation, but explain how to express the expiry payoffs

of the exotic options as a combination of the payoffs of some class of higher
order binary options. Once the expiry payoffs are expressed as a linear com-

bination of the payoffs of some class of higher order binary options, in order

to avoid arbitrage, the exotic option prices are obtained by static replication
with respect to this family of higher order binaries.

1. Introduction

European and American options are referred to as vanilla options. Vanilla op-
tions have a single future expiry payoff that corresponds to buying or selling the
underlying asset for a fixed amount called the strike price. European options can
only be exercised at the expiry date, whereas American options may be exercised
at any time before and at the expiry date. The various needs of risk manage-
ment in financial markets give rise to many exotic (not ordinary) options with
various payoff structures, and thus a lot of exotic options continue to be popular
in the over-the counter market. Among them, there exists a class of exotic options
whose payoff structure involves several fixed future dates, here we write them by
T0 < T1 < · · · < TN . Usually, at the first expiry date T0 , the option holder receives
a contract related with dates T1, · · · , TN . Options belonging to this class are called
multiple-expiry exotic options. Bermudan options or several times extendable op-
tions are good examples.
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In this paper we extend Buchen’s method [2] to develop a new technique for pric-
ing of multiple expiry exotic options in terms of a portfolio of higher order binary
options. An up (or down) binary option is the option that on its expiry date deliv-
ers an agreed payoff if the price of the underlying asset is above (or bellow) a fixed
exercise price and zero otherwise. Binary options whose agreed payoff is an asset
are referred as first order asset binaries and binary options whose agreed payoff is
cash are referred as first order bond binaries [2]. In this paper, the binary options
whose agreed payoff is a (n − 1)-th order binary are called n-th order binaries by
induction.

The basic idea of expressing the payoffs of complex options in terms of binary
options can be seen in previous publications. Rubinstein and Reiner [7] considered
the relationship of barrier options and binaries. Ingersoll [3] extended the idea by
expressing complex derivatives in terms of ”event-driven” binaries. Event ε-driven
binary option pays one unit of underlying asset if and only if the event ε occurs,
otherwise it pays nothing.

Buchen [2] developed a theoretical framework for pricing dual-expiry options in
terms of a portfolio of elementary binary options. He introduced the concepts of
first and second order binary options and provided the pricing formula for them
using expectation method. And then he applied them to pricing some dual expiry
exotic options including compound option, chooser option, one time extendable
option, one time shout option, American call option with one time dividend and
partial barrier options.

The purpose of this paper is to extend the Buchen’s procedure to the case of
multiple-expiry options (more than 3 expiry dates). To do that, here, at first we
introduced the concept of higher order binary options and then provided the pric-
ing formula of n-th order binaries using PDE method. After that, we applied them
to pricing of some multiple-expiry exotic options such as Bermudan options, multi
time extendable options, multiple shout options and etc.

As Buchen [2] mentioned, historically, dual expiry exotics as well as multiple-
expiry option prices have been derived individually by various authors. This paper
has demonstrated that multiple-expiry options can be priced in a unified framework
by expressing each as a portfolio of higher order binaries.

The focus of this paper is on explaining the basic pricing method in terms of
static replication with higher order binaries, and so issues such as the financial mo-
tivation for trading multiple-expiry exotics, computation and simulation will not
be considered here in detail and the explanation about another authors’ results on
concrete multiple-expiry exotics such as Bermudan option, extendable option and
shout option will refer to [6, 9, 10].

2. Higher Order Binary Options

Consider an underlying asset (for example, a stock) whose price x satisfies Ito
stochastic differential equation. Let r, q and σ be respectively risk free rate, dividend
rate and volatility. Then to avoid arbitrage, the price of V (x, t) of any derivative
on the stock with expiry date T and expiry payoff f(x) must satisfy the following
(1)-(2).

∂V

∂t
+
σ2

2
x2
∂2V

∂x2
+ (r − q)x∂V

∂x
− rV = 0, 0 ≤ t < T, 0 < x <∞ (1)

V (x, T ) = f(x) (2)
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This price V (x, t) is called a standard option with expiry payoff f(x) [2].

Proposition 1[5] Assume that there exist non negative constants M and α such
that |f(x)| ≤Mxα ln x, x > 0. Then the price of standard option, that is, the solu-
tion of (1) and (2) is provided as follows:

V (x, t;T ) = e−r(T−t)
∫ ∞
0

1

σ
√

2π(T − t)
1

z
e
−

[ln x
z
+(r−q−σ2

2
)(T−t)]2

2σ2(T−t) f(z)dz

= xe−q(T−t)
∫ ∞
0

1

σ
√

2π(T − t)
1

z2
e
−

[ln x
z
+(r−q+σ

2

2
)(T−t)]2

2σ2(T−t) f(z)dz . (3)

Remark. It is well known that the change of variable y = lnx transforms (1) to
a parabolic PDE with constant coefficients which can be easily transformed into a
heat equation. (For example, see [4].) From the theory of heat equations we can
know that the singular integral on the left side of (3) and its t and x derivatives
always exist under the above condition on f , which can be easily seen in references
such as [8] on PDE or equations of mathematical physics, and we can easily check
that (3) satisfies (1) and (2).

An up binary option of exercise price ξ on the standard option with expiry
payoff f(x) is a contract with expiry payoff f(x) if x > ξ and zero otherwise. A
down binary option pays f(x) if x < ξ and zero otherwise. Let s be the sign
”+” or ”−”. In what follows we use the sign ”+” and ”−” as sign indicators for up
and down binaries, respectively. Then the expiry payoff functions for up and down
binaries can be written in the form

V sξ (x, T ) = f(x) · 1(sx > sξ).

From this there holds the following parity relation between the standard option
price and the corresponding up and down binaries:

V +
ξ (x, t) + V −ξ (x, t) = V (x, t), t < T.

If f(x) = x, the standard option simply pays one unit of the asset at expiry
date T , and the price of the standard option is A(x, t;T ) = xe−q(T−t) for all t < T .
And the corresponding binaries are the very asset-or-nothing binaries, here their
prices are denoted by Asξ(x, t;T ). Then from the above mentioned parity relation,
we have

A+
ξ (x, t;T ) +A−ξ (x, t;T ) = A(x, t;T ) = x · e−q(T−t), t < T.

If f(x) = 1, the standard option simply pays one unit of cash at expiry date T ,
and the price of the standard option is B(x, t;T ) = e−r(T−t) for all t < T . And
the corresponding binaries are the very cash-or-nothing binaries (or bond binaries),
here their prices are denoted by Bsξ(x, t;T ). From the parity relation, we have

B+
ξ (x, t;T ) +B−ξ (x, t;T ) = B(x, t;T ) = e−r(T−t), t < T.

The concept of Q-option plays a very useful role in the pricing of dual expiry
options and, in particular, simplifying the notation of the price formula. (See
[2].) Consider a standard contract that pays f(x) = s(x − K) at expiry date
T ; this is a kind of forward contract, where the holder must buy if s = + (or
sell if s = −) one unit of underlying asset for K units of cash. Since f(x) =
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s[A(x, T ;T )−K ·B(x, T ;T )], the price Q(x, t;T,K) of this contract at time t < T
is given by

Q(x, t;T,K) = s[A(x, t;T )−K ·B(x, t;T )] = s[x · e−q(T−t) −K · e−r(T−t)].
The binary option that pays f(x) = s(x−K) ·1(sx > sξ) at expiry date T is called
a first order Q-option , their prices denoted by Qsξ(x, t;T,K). If ξ = K, then

QsK(x, t;T,K) is is the very ordinary European (call if s = +, or put if s = −)
option. So Qsξ(x, t;T,K) is called a generalized European option. These options are
more general in the sense that their exercise price ξ is different from their strike
price K. The price of first order Q-options are given as follows:

Qsξ(x, t;T,K) = s[Asξ(x, t;T )−K ·Bsξ(x, t;T )]. (4)

The asset or nothing binary, bond binary and the first order Q-option are called
the first order binaries.[2]

Proposition 2[2, 4]. The prices of asset and bond binary options are provided
as follows:

Asξ(x, t;T ) = x · e−q(T−t)N(sd), Bsξ(x, t;T ) = e−r(T−t)N(sd′). (5)

Here N(x) is the accumulated normal distribution function

N(x) = (
√

2π)−1
∫ x

−∞
e−

y2

2 dy,

and d, d′ are respectively given as follows:

d =
ln x

z + (r − q + σ2

2 )(T − t)
σ
√
T − t

, d′ = d− σ
√
T − t.

Definition 1. An n-th order binary option is a binary contract with expiry
date T0 on an underlying (n− 1)-th order binary option. Specifically, the payoff at
time T0 has the following form

V (x, T0) = F
s1···sn−1

ξ1···ξn−1
(x, T0;T1, · · · , Tn−1) · 1(s0x > s0ξ0). (6)

Here F
s1···sn−1

ξ1···ξn−1
(x, T0;T1, · · · , Tn−1) is the price of the underlying (n − 1)-th order

binary option with expiry time T1, · · · , Tn−1 at the time T0 and either F = A if
the underlying binary is asset binary, F = B for the underlying bond binary or
F = Q for the underlying Q-option; and s0, · · · , sn−1 are up-down indicators (+ or
−) at times T0, · · · , Tn−1 respectively. ξ0, · · · , ξn−1 are their corresponding exercise
prices.

The prices of these n-th order binary options at time t < T0 are denoted by
F
s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1).

Then from the definition we have

Q
s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1,K) = sn−1[A

s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1)

−K ·Bs0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1)]. (7)

Note that the strike price K in the higher order Q-binary is effective only at last
time Tn−1. From the parity relation, we have

F
+s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1) + F

−s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1) =
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= F
s1···sn−1

ξ1···ξn−1
(x, t;T1, · · · , Tn−1).

If the pricing formulae of the higher order asset binary A
s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1,

· · · , Tn−1) and the higher order bond binary B
s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1) are

provided, then the price of the higher order Q-binary is easily provided by (7).
Black-Scholes expressions for higher order binary options involve multidimen-

sional normal distribution function N(x0, x1, · · · , xn−1;P ), here P−1 is the corre-
lation matrix, that is:

N(x0, x1, · · · , xn−1;P ) =

∫ x0

−∞
· · ·

∫ xn−1

−∞

1

(
√

2π)n

√
detP e−

1
2y

TPydy. (8)

Here yT = (y0, y1, · · · , yn−1).
Let define the matrixA = (aij)i,j=0,1,··· ,n−1 related to the expiry dates T0, T1, · · · ,

Tn−1 as follows:

a00 = (T1 − t)/(T1 − T0),

an−1,n−1 = (Tn−1 − t)/(Tn−1 − Tn−2),

aii = (Ti − t)/(Ti − Ti−1) + (Ti − t)/(Ti+1 − Ti), 1 ≤ i ≤ n− 2,

ai,i+1 = ai+1,i = −
√

(Ti − t)(Ti+1 − t)/(Ti+1 − Ti), 0 ≤ i ≤ n− 2,

and another elements are all zero. Then we have correlation matrix and deter-
minant:

A−1 = (rij); rij =
√

(Ti − t)/(Tj − t), rji = rij , i ≤ j,

detA =
T1 − t
T1 − T0

· T2 − t
T2 − T1

· · · · · Tn−1 − t
Tn−1 − Tn−2

.

Let si = + or − (that is, sign indicators and i = 0, 1, · · · , n− 1) and define a new
matrix by

As0s1···sn−1 = (si · sj · aij)n−1i,j=0.

Then we have

detAs0s1···sn−1
= detA.

Theorem 1 The price of n-th order asset binary and bond binary are provided
as follows :

A
s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1) =

= x · e−q(Tn−1−t)N(s0d0, s1d1, · · · , sn−1dn−1;As0s1···sn−1
), (9)

B
s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1) =

= e−r(Tn−1−t)N(s0d
′
0, s1d

′
1, · · · , sn−1d′n−1;As0s1···sn−1

). (10)

Here

di =
ln x

ξi
+ (r − q + σ2

2 )(Ti − t)
σ
√
Ti − t

, d′i = di − σ
√
Ti − t, i = 0, 1, · · · , n− 1.
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Proof: The cases of n = 1 and n = 2 were proved by Buchen in [2] using
probability theory and can be easily proved using the formula (3) too. In the case
of n > 2 we will give a sketch of the proof by induction.

We assume that theorem 1 holds in the case of n − 1. From the definition 1,
A
s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1) satisfies (1) and

V (x, T0) = A
s1···sn−1

ξ1···ξn−1
(x, T0;T1, · · · , Tn−1) · 1(s0x > s0ξ0).

Therefore by the formula (3), If we let

G(z) =
1

σ
√

2π(T0 − t)
1

z2
e
−

[ln x
z
+(r−q+σ

2

2
)(T0−t)]2

2σ2(T0−t) ,

then A
s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1) is provided as follows:

A
s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1) =

= x · e−q(T0−t)
∫∞
0
G(z)A

s1···sn−1

ξ1···ξn−1
(z, T0;T1, · · · , Tn−1) · 1(s0z > s0ξ0)dz.

Here A
s1···sn−1

ξ1···ξn−1
(z, T0;T1, · · · , Tn−1) is the price of the underlying (n − 1)-th or-

der asset binary option. By induction-assumption, the formula (9) holds for
A
s1···sn−1

ξ1···ξn−1
(z, T0;T1, · · · , Tn−1). Thus we have

A
s1···sn−1

ξ1···ξn−1
(z, T0;T1, · · · , Tn−1) =

= z · e−q(Tn−1−T0)N(s1d1, · · · , sn−1dn−1;As1···sn−1).

Substitute this equality into the above singular integral representation and calcu-
late the integral, then we have (9) for the case of n > 2. The proof for (10) is
similar. (Proof End)

The formulae (7), (9) and (10) give the following price of higher order Q-
option :

Q
s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1,K) =

= sn−1[x · e−q(Tn−1−t)N(s0d0, s1d1, · · · , sn−1dn−1;As0s1···sn−1
)−

−Kė−r(Tn−1−t)N(s0d
′
0, s1d

′
1, · · · , sn−1d′n−1;As0s1···sn−1)]. (11)

3. Applications to Multiple-Expiry Exotics

In this section, we applied the results of previous section to the pricing of some
multiple expiry exotics.

The Static Replication Theorem If the payoff of an option at expiry time T0
is a linear combination of prices at time T0 of higher order binaries, then its price
at all time t < T0 is the combination of the corresponding prices at time t of the
higher order binaries.
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The static replication theorem can be proved from the uniqueness of solution
to the initial value problem of Black-Scholes equation. And we need one lemma
that guarantees the monotonousness of the option price on the underlying asset
price and provides some estimates about the gradient of the price on the underly-
ing asset price.

Lemma 1 Assume that f(x) is piecewise differentiable. If V (x, t) is the so-
lution of (1) and (2), then we have

min
x

∂f

∂x
· e−q(T−t) ≤ ∂V

∂x
(x, t) ≤ max

x

∂f

∂x
· e−q(T−t).

In particular, if E = {z : ∂f∂x (z) < maxx
∂f
∂x}, F = {z : ∂f∂x (z) > minx

∂f
∂x}, |E| > 0

and |F | > 0, then

min
x

∂f

∂x
· e−q(T−t) < ∂V

∂x
(x, t) < max

x

∂f

∂x
· e−q(T−t), t < T.

Using the formula (3) and the assumption of lemma 1, we can easily prove the
required results.

3.1. Bermudan Options. The Bermudan option is one type of nonstandard Amer-
ican options and early exercise is restricted to certain dates during the life of the
option. For example, let t1 < t2 < · · · < tn = T be the dates of early exercise for
put option with strike price K. Let t0 = 0. Let denote the option price on the
interval (ti−1, ti] by Vi−1(x, t), where i = 1, · · · , n. Then [4]

Vi−1(x, ti) = max(Vi(x, ti), (K − x)+), i = 1, · · · , n− 1. (12)

(See figure 1.)

Figure 1.

For fixed i = 1, · · · , n− 1, we consider the following equation:

Vi(x, ti) = (K − x)+. (13)

If Vi(x, ti) is monotonously decreasing on x, 0 < Vi(x, ti) < K and −1 < ∂Vi(x,ti)
∂x ,

then the equation (13) has a unique root ai such that 0 < ai < K. (See figure 2.)

Lemma 2 Fix i ∈ {1, · · · , n − 1}. Assume that Vi(x, ti) is monotonously de-

creasing on x, 0 < Vi(x, ti) < K and −1 < ∂Vi(x,ti)
∂x . Let ai be the unique root of

the equation (13). Then for any t ∈ [ti−1, ti), we have

Vi−1(x, t) = (Vi)
+
ai(x, t; ti) +Q−ai(x, t; ti,K)

and −1 ≤ ∂Vi−1

∂x ≤ 0. In particular, if ti−1 ≤ t < ti, then −1 < ∂Vi−1(x,t)
∂x < 0. Here

(Vi)
+
ai(x, t; ti) is the solution of Black-Scholes equation (1) satisfying the condition

V (x, ti) = Vi(x, ti) · 1(x > ai).
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Figure 2.

Proof. From the assumption, we can rewrite (12) as follows. (See figure 2.)

Vi−1(x, ti) = Vi(x, ti) · 1(x > ai) + (K − x) · 1(x < ai).

Thus from the definition of the binary option, we have

Vi−1(x, t) = (Vi)
+
ai(x, t; ti) +Q−ai(x, t; ti,K), t ∈ (ti−1, ti].

From the assumption we have 0 < ai < K and thus using lemma 1, we have the

conclusion on ∂Vi−1

∂x . (Proof End)

Using this lemma, we can easily calculate the price of Bermudan put options.
Since the payoff at time tn is (K − x)+ and we can’t early exercise after the time
tn−1, so the option on the interval (tn−1, tn] becomes an ordinary European put
option, and thus its price Vn−1(x, t) in the interval [tn−1, tn) is given by

Vn−1(x, t) = Q−K(x, t; tn,K), t ∈ [tn−1, tn)

and Vn−1(x, tn−1) satisfies 0 < Vn−1(x, tn−1) < K and −1 < ∂Vn−1

∂x (x, tn−1) <
0. By the static replication theorem and lemma 2, our option price at time t ∈
[tn−2, tn−1) is given by

Vn−2(x, t) = Q + −
an−1K

(x, t; tn−1, tn,K) +Q −an−1
(x, t; tn−1,K), t ∈ [tn−2, tn−1).

and −1 < ∂Vn−2

∂x < 0. Repeating the similar considerations, we can get the following
formulae:

Vi−1(x, t) = Q+··· + −
ai···an−1K

(x, t; ti, · · · , tn,K) +Q+··· + −
ai···an−2an−1

(x, t; ti, · · · , tn−1,K)+

+ · · ·+Q+ −
aiai+1

(x, t; ti, ti+1,K) +Q−ai(x, t; ti,K), t ∈ [ti−1, ti), i ∈ {1, · · · , n}. (14)

In particular, V0 gives the price of Bermudan put option at time t = 0.

V0(x, t) = Q+··· + −
a1···an−1K

(x, t; t1, · · · , tn,K) +Q+··· + −
a1···an−2an−1

(x, t; t1, · · · , tn−1,K)+

+ · · ·+Q+ −
a1a2 (x, t; t1, t2,K) +Q−a1(x, t; t1,K), t ∈ [0, t1).
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3.2. Multiple Extendable Options. Extendable options were first studied and
analyzed in detail by Longstaff [6]. Here we consider the holder extendable options
in his sense. The holder n-times extendable call (or put) option has the right at
some certain dates Ti to exercise a standard European call (or put) option of strike
price Ki or to extend the expiry date to time Ti+1(> Ti) and change the strike price
from Ki to Ki+1(i = 0, 1, · · · , n − 1) for a premium Ci. Here we consider n-times
extendable call option.

Let denote the option price on the interval [Ti−1, Ti) by Vi(x, t), where i =
0, 1, · · · , n and T−1 = 0. Then from the definition of extendable option, we have

Vi(x, Ti) = max(Vi+1(x, Ti)− Ci, (x−Ki)
+), i = 0, · · · , n− 1. (15)

First, let consider the price Vn(x, t) in the last interval (Tn−1, Tn]. In this interval
we can no longer extend our option contract and thus our option is just an ordinary
European call with the expiry date Tn and strike price Kn. Therefore

Vn(x, t) = Q+
Kn

(x, t;Tn,K), t ∈ [Tn−1, Tn).

And it satisfies 0 < ∂Vn(x,Tn−1)
∂x < 1 by lemma 1.

Now consider the price Vn−1(x, t) in the interval (Tn−2, Tn−1]. Then by (15) we
have

Vn−1(x, Tn−1) = max(Q+
Kn

(x, Tn−1;Tn,Kn)− Cn−1, (x−Kn−1)+).

From the property of Q+
Kn

(x, Tn−1;Tn,Kn) , the following two equations on x have
unique roots an−1 and bn−1, respectively.

Q+
Kn

(x, Tn−1;Tn,Kn)− Cn−1 = 0, Q+
Kn

(x, Tn−1;Tn,Kn)− Cn−1 = (x−Kn−1)+

(16)
And it is quite natural that we assume that an−1 < Kn−1 < bn−1. (Otherwise the
extension of Tn−1 to Tn would not occur as Buchen [2] mentioned. See figure 3.
Similarly, in put we assume that an−1 > Kn−1 > bn−1.)

Figure 3.

Then we can rewrite Vn−1(x, Tn−1) as follows:

Vn−1(x, Tn−1) = [Q+
Kn

(x, Tn−1;Tn,Kn)− Cn−1] · 1(an−1 < x < bn−1)

+(x−Kn−1) · 1(x > bn−1) =

= Q+
Kn

(x, Tn−1;Tn,Kn) ·1(x > an−1)−Q+
Kn

(x, Tn−1;Tn,Kn) ·1(x > bn−1)
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−Cn−1 · 1(x > an−1) + (x−Kn−1 + Cn−1) · 1(x > bn−1)

Thus using the Static Replication Theorem, we have

Vn−1(x, t) = [Q + +
an−1Kn

(x, t;Tn−1, Tn,Kn)−Q + +
bn−1Kn

(x, t;Tn−1, Tn,Kn)

−Cn−1 ·B +
an−1

(x, t;Tn−1) +Q +
bn−1

(x, t;Tn−1,Kn−1 −Cn−1), t ∈ [Tn−2, Tn−1).

And Vn−1(x, Tn−1) is a monotone increasing function of x with a positive incli-
nation less than 1 in x ∈ (an−1, bn−1). (See figure 3.) By lemma 1, we have

0 <
∂Vn−1(x, t)

∂x
< 1, t ∈ [Tn−2, Tn−1).

By similar consideration and induction, we can prove that the formula of price
Vi(x, t) of our option in the time interval [Ti−1, Ti) is provided by∑
(ji···jn−1)∈{ai,bi}×···×{an−1,bn−1}

s(ji) · · · s(jn−1) ·Q+··· + +
ji···jn−1Kn

(x, t;Ti, · · · , Tn,Kn)+

n−1∑
k=i

∑
(ji···jk−1)∈{ai,bi}×···×{ak−1,bk−1}

s(ji) · · · s(jk−1)·Q+··· + +
ji···jk−1bk

(x, t;Ti, · · · , Tk,Kk−Ck)

+

n−1∑
k=i

Ck
∑

(ji···jk−1)∈{ai,bi}×···×{ak−1,bk−1}

s(ji) · · · s(jk−1)·B+··· + +
ji···jk−1ak

(x, t;Ti, · · · , Tk).

(17)
Here s(j) is the a or b indicator, that is,

s(jm) =

{
1, jm = am,

−1, jm = bm.

In particular V0 gives the price of n-times extendable call option in the time
interval [0, T0).

3.3. Multiple Shout Options. Shout options (Thomas [10]) are exotic options
that allow the holder to lock in a payoff at times prior to the final expiry date. If the
shout times would be selected randomly according to the holder’s mind, the pricing
of shout option will be quite challenging, but if the shout times are pre-determined,
then it would be simpler ([2]). In a fixed time multiple shout call option with expiry
date T and strike price K, their payoff can be locked in at some predetermined
times T0 < · · · < Tn−1(< T ). So at the final expiry date T = Tn, its payoff is given
as follows:

V (x, T ) = max(x0 −K, · · · , xn−1 −K,x−K, 0), (18)

where xi (i = 0, · · · , n − 1) are the underlying asset price x(Ti) at the shout time
Ti.
For simplicity, here we consider the case n = 2. Then the expiry payoff (18) is
given by

V (x, T2) = max(x0 −K,x1 −K,x−K, 0), (19)



EJMAA-2013/1(2) HIGHER ORDER BINARY OPTIONS 257

Note that in the last interval (T1, T2] both of the underlying asset prices x0 =
x(T0) and x1 = x(T1) are known constants and in the interval (T0, T1] the underlying
asset price x0 = x(T0) is a known constant.

The case of x0 < K. We can rewrite (19) as

V (x, T2) = max(x1 −K,x−K, 0)

and this is the terminal payoff of one-shout option in the time interval (T0, T2] and
thus by the method of [2], for T0 ≤ t < T1 we have

V (x, t) = Q−+KK(x, t;T1, T2,K) + e−r(T2−T1)Q+
K(x, t;T1,K) + g(T1, T2)A+

K(x, t;T1).

Here

g(T1, T2) = e−q(T2−T1)N(d+(T1, T2))− e−r(T2−T1)N(d−(T1, T2)),

d±(T1, T2) = [(r − q)/σ ± σ/2]
√
T2 − T1. (20)

In particular x0 = x at the time t = T0, we have

V (x, T0) = Q−+KK(x, T0;T1, T2,K) + e−r(T2−T1)Q+
K(x, T0;T1,K)+

+ g(T1, T2)A+
K(x, T0;T1), x < K. (21)

The case of x0 > K. If x0 ≤ x1, then we can rewrite (19) as follows:

V (x, T2) = max(x1 −K,x−K, 0) = (x1 −K) + (x− x1)+.

Thus in the time interval [T1, T2) we have

V (x, t) = (x1 −K) · e−r(T2−t) +Q+
x1

(x, t;T2, x1).

In particular, x1 = x at the time t = T1 and

V (x, T1) = (x−K) · e−r(T2−T1) +Q+
x (x, T1;T2, x), x ≥ x0.

Here by (4) and (5) we have

Q+
x (x, T1;T2, x) = x · g(T1, T2),

where g(T1, T2) is as in (20). Thus

V (x, T1) = x · [e−r(T2−T1) + g(T1, T2)]−K · e−r(T2−T1), x ≥ x0. (22)

If x0 > x1, then we can rewrite (19) as follows:

V (x, T2) = max(x0 −K,x−K, 0) = (x0 −K) + (x− x0)+.

Thus in the time interval [T1, T2) we have

V (x, t) = (x0 −K) · e−r(T2−t) +Q+
x0

(x, t;T2, x0).

In particular, at the time t = T1

V (x, T1) = (x0 −K) · e−r(T2−T1) +Q+
x0

(x, T1;T2, x0), x < x0. (23)

Combining (22) with (23) to get

V (x, T1) = [e−r(T2−T1) + g(T1, T2)] · x · 1(x > x0)− e−r(T2−T1) ·K · 1(x > x0)

+(x0 −K) · e−r(T2−T1) · 1(x < x0) +Q+
x0

(x, T1;T2, x0) · 1(x < x0).

Note that in the interval (T0, T1] the underlying asset price x0 = x(T0) is a known
constant. Then using the Static Replication Theorem, for t ∈ [T0, T1), we have

V (x, t) = [e−r(T2−T1) + g(T1, T2)] ·A+
x0

(x, t;T1)−K · e−r(T2−T1) ·B+
x0

(x, t;T1)+

+(x0 −K) · e−r(T2−T1) ·B−x0
(x, t;T1) +Q−+x0x0

(x, t;T1, T2, x0)
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= [e−r(T2−T1) + g(T1, T2)] ·A+
x0

(x, t;T1)−K · e−r(T2−t)+

+x0 · e−r(T2−T1) ·B−x0
(x, t;T1) +Q−+x0x0

(x, t;T1, T2, x0).

In particular, x0 = x at the time t = T0 and

V (x, T0) = [e−r(T2−T1) + g(T1, T2)] ·A+
x (x, T0;T1)−K · e−r(T2−T0)

+x · e−r(T2−T1) ·B−x (x, T0;T1) +Q−+x x(x, T0;T1, T2, x).

Here by (4) and (5), we have

A+
x (x, T0;T1) = xe−q(T1−T0)N(d+(T0, T1)),

B−x0
(x, T0;T1) = e−r(T1−T0)N(d−(T0, T1)),

Q−+x x(x, T0;T1, T2, x) = g1(T0, T1, T2) · x,

where d±(T0, T1) is as in (20) and

g1(T0, T1, T2) = e−q(T2−T0) ·N2(−d+(T0, T1), d+(T0, T2);A−+)−

− e−r(T2−T0) ·N2(−d−(T0, T1), d−(T0, T2);A−+). (24)

Thus we have

V (x, T0) = G(T0, T1, T2) · x−K · e−r(T2−T0), x > K. (25)

Here

G(T0, T1, T2) = [e−r(T2−T1) + g(T1, T2)] · e−q(T1−T0) ·N(d+(T0, T1))+

+ e−r(T2−T0) ·N(−d−(T0, T1)) + g1(T0, T1, T2). (26)

Putting the two expressions (21) and (25) of V (x, T0) together, we have

V (x, T0) = Q−+KK(x, T0;T1, T2,K)1(x < K)+

+e−r(T2−T1)Q+
K(x, T0;T1,K)1(x < K)+

+g(T1, T2)A+
K(x, T0;T1)1(x < K) +G(T0, T1, T2)x1(x > K)−

−Ke−r(T2−T0)1(x > K).

Thus the price of fixed time twice shout call option at t < T0 is given by

V (x, t) = Q−−+KKK(x, t;T0, T1, T2,K) + e−r(T2−T1)Q−+KK(x, t;T0, T1,K)+

+g(T1, T2)A−+KK(x, t;T0, T1) +G(T0, T1, T2)A+
K(x, t;T0)

−Ke−r(T2−T0)B+
K(x, t;T0), t < T0. (27)
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4. Conclusions

In this paper we introduced the concept of higher order binary options and then
provide the pricing formulae of n-th order binaries using solving method of PDE.
Then we applied them to pricing of some multiple-expiry exotic options such as
Bermudan options, multi time extendable options, fixed time twice shout options
and etc. Here when calculating the price of concrete multiple-expiry exotic op-
tions, the focus of discussion was on explaining how to express the expiry payoffs
of the exotic option as a combination of the payoffs of some class of higher order
binary options. Here we assumed that risk free rate, dividend rate and volatility
are constant but we could easily extend to the case with time dependent coefficients.
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