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PERIODIC SOLUTIONS FOR NONLINEAR NEUTRAL
DIFFERENCE EQUATIONS WITH VARIABLE DELAY

ABDELOUAHEB ARDJOUNI, AHCENE DJOUDI

Abstract. The nonlinear neutral difference equation with variable delay

x (n + 1) = a (n) x (n) +4g (n, x (n− τ (n))) + f (n, x (n) , x (n− τ (n))) ,

is considered in this work. By using Krasnoselskii’s fixed point theorem and
the contraction mapping principle, we establish some criteria for the existence
and uniqueness of periodic solutions to the neutral difference equation.

1. Introduction

Due to their importance in numerous applications, for example, physics, popula-
tion dynamics, industrial robotics, and other areas, many authors are studying the
existence, uniqueness of solutions for delay difference equations, see the references
in this article and references therein.

In this paper, we are interested in the analysis of qualitative theory of periodic
solutions of delay difference equations. Motivated by the papers [1], [2], [4], [5] and
the references therein, we concentrate on the existence and uniqueness of periodic
solutions for the nonlinear neutral difference equation with variable delay

x (n+ 1) = a (n)x (n) +4g (n, x (n− τ (n))) + f (n, x (n) , x (n− τ (n))) , (1)

where
g : Z× R → R, f : Z× R× R → R,

with Z is the set of integers and R is the set of real numbers. Throughout this
paper 4 denotes the forward difference operator 4x (n) = x (n+ 1)−x (n) for any
sequence {x (n) , n ∈ Z}. Also, we define the operator E by Ex (n) = x (n+ 1).
For more on the calculus of difference equations, we refer the reader to [3].

The purpose of this paper is to use Krasnoselskii’s fixed point theorem to show
the existence of periodic solutions for equation (1). To apply Krasnoselaskii’s fixed
point theorem we need to construct two mappings, one is a contraction and the other
is completely continuous. We also use the contraction mapping principle to show the
existence of a unique periodic solution of (1). It is important to note that, in our
consideration, the neutral term 4g (n, x (n− τ (n))) of (1) produces nonlinearity
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in the neutral term 4x (n− τ (n)). While, the neutral term 4x (n− τ (n)) in [4]
enters linearly. As a consequence, we have performed an appropriate analysis which
is different from that used in [4] to construct the mappings in order to employ fixed
point theorems.

The organization of this paper is as follows. In Section 2, we present the inversion
of difference equation (1) and Krasnoselskii’s fixed point theorem. For details on
Krasnoselskii’s theorem we refer the reader to [6]. In Section 3, we present our
main results on existence and uniqueness of periodic solutions of (1).

2. Preliminaries

Let T be an integer such that T ≥ 1. Define PT = {ϕ ∈ C (Z,R) : ϕ (n+ T ) =
ϕ (n)} where C (Z,R) is the space of all real valued functions. Then (PT , ‖.‖) is a
Banach space with the maximum norm

‖x‖ = max
n∈[0,T−1]∩Z

|x (n)| .

Since we are searching for the existence of periodic solutions for equation (1), it is
natural to assume that

a (n+ T ) = a (n) , τ (n+ T ) = τ (n) , (2)

with τ being scalar sequence and τ (n) ≥ τ∗ > 0. Also, we assume

n−1∏
s=n−T

a (s) 6= 1. (3)

Throughout this paper we assume a (n) 6= 0 for all n ∈ [0, T − 1] ∩ Z. Since we are
searching for periodic solutions, it is natural to ask that the functions g (n, x) and
f (n, x, y) are periodic in n with period T and Lipschitz continuous in x and in x
and y, respectively. That is

g (n+ T, x) = g (n, x) , f (n+ T, x, y) = f (n, x, y) , (4)

and there are positive constants L1, L2, L3 such that

|g (n, x)− g (n, y)| ≤ L1 ‖x− y‖ , (5)

and
|f (n, x, y)− f (n, z, w)| ≤ L2 ‖x− z‖+ L3 ‖y − w‖ . (6)

The following lemma is fundamental to our results.

Lemma 2.1. Suppose (2)–(4) hold. If x ∈ PT , then x is a solution of equation (1)
if and only if

x (n) = g (n, x (n− τ (n)))

+

(
1−

n−1∏
s=n−T

a (s)

)−1 n−1∑
u=n−T

[f (u, x (u) , x (u− τ (u)))

+ (a (u)− 1) g (u, x (u− τ (u)))]
n−1∏

s=u+1

a (s) . (7)
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Proof. We consider two cases, n ≥ 1 and n ≤ 0. Let x ∈ PT be a solution of (1).
For n ≥ 1 equation (1) is equivalent to

4

[
x (n)

n−1∏
s=0

a−1 (s)

]

= [4g (n, x (n− τ (n))) + f (n, x (n) , x (n− τ (n)))]
n∏

s=0

a−1 (s) . (8)

By summing (8) from n− T to n− 1, we obtain

n−1∑
u=n−T

4

[
x (u)

u−1∏
s=0

a−1 (s)

]

=
n−1∑

u=n−T

[4g (u, x (u− τ (u))) + f (u, x (u) , x (u− τ (u)))]
u∏

s=0

a−1 (s) .

As a consequence, we arrive at

x (n)
n−1∏
s=0

a−1 (s)− x (n− T )
n−T−1∏

s=0

a−1 (s)

=
n−1∑

u=n−T

[4g (u, x (u− τ (u))) + f (u, x (u) , x (u− τ (u)))]
u∏

s=0

a−1 (s) .

Since x (n− T ) = x (n), we obtain

x (n)

[
n−1∏
s=0

a−1 (s)−
n−T−1∏

s=0

a−1 (s)

]

=
n−1∑

u=n−T

[4g (u, x (u− τ (u))) + f (u, x (u) , x (u− τ (u)))]
u∏

s=0

a−1 (s) . (9)

Rewrite

n−1∑
u=n−T

4g (u, x (u− τ (u)))
u∏

s=0

a−1 (s)

=
n−1∑

u=n−T

E

[
u−1∏
s=0

a−1 (s)

]
4g (u, x (u− τ (u))) .
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Performing a summation by parts on the on the above equation, we get

n−1∑
u=n−T

4g (u, x (u− τ (u)))
u∏

s=0

a−1 (s)

= g (n, x (n− τ (n)))

[
n−1∏
s=0

a−1 (s)−
n+T−1∏

s=0

a−1 (s)

]

−
n−1∑

u=n−T

g (u, x (u− τ (u)))4

[
u−1∏
s=0

a−1 (s)

]

= g (n, x (n− τ (n)))

[
n−1∏
s=0

a−1 (s)−
n+T−1∏

s=0

a−1 (s)

]

−
n−1∑

u=n−T

g (u, x (u− τ (u))) [1− a (u)]
u∏

s=0

a−1 (s) . (10)

Substituting (10) into (9), we obtain

x (n)

[
n−1∏
s=0

a−1 (s)−
n+T−1∏

s=0

a−1 (s)

]

= g (n, x (n− τ (n)))

[
n−1∏
s=0

a−1 (s)−
n+T−1∏

s=0

a−1 (s)

]

−
n−1∑

u=n−T

g (u, x (u− τ (u))) [1− a (u)]
u∏

s=0

a−1 (s)

+
n−1∑

u=n−T

f (u, x (u) , x (u− τ (u)))
u∏

s=0

a−1 (s) .

Dividing both sides of the above equation by
n−1∏
s=0

a−1 (s)−
n+T−1∏

s=0
a−1 (s), we obtain

(7).
Now for n ≤ 0, equation (1) is equivalent to

4

[
x (n)

0∏
s=n

a−1 (s)

]

= [4g (n, x (n− τ (n))) + f (n, x (n) , x (n− τ (n)))]
0∏

s=n+1

a−1 (s) .

Summing the above expression from n − T to n − 1, we obtain (7) by a similar
argument. This completes the proof. �
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Using (7) we define the mapping H : PT → PT by

(Hϕ) (n) = g (n, ϕ (n− τ (n)))

+

(
1−

n−1∏
s=n−T

a (s)

)−1 n−1∑
u=n−T

[f (u, ϕ (u) , ϕ (u− τ (u)))

+ (a (u)− 1) g (u, ϕ (u− τ (u)))]
n−1∏

s=u+1

a (s) . (11)

Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables
us to prove the existence of positive periodic solutions to (1). For its proof we refer
the reader to [6].

Theorem 2.2 (Krasnoselskii). Let D be a closed convex nonempty subset of a
Banach space (B, ‖.‖) . Suppose that A and B map D into B such that

(i) x, y ∈ D, implies Ax+ By ∈ D,
(ii) A is completely continuous,
(iii) B is a contraction mapping.

Then there exists z ∈ D with z = Az + Bz.

3. Existence of periodic solutions

To apply Theorem 2.2, we need to construct two mappings, one is a contraction
and the other is compact. Therefore, we express equation (11) as

(Hϕ) (n) = (Bϕ) (n) + (Aϕ) (n) , (12)

where A,B : PT → PT are defined by

(Bϕ) (n) = g (n, ϕ (n− τ (n))) , (13)

and

(Aϕ) (n) =

(
1−

n−1∏
s=n−T

a (s)

)−1 n−1∑
u=n−T

[f (u, ϕ (u) , ϕ (u− τ (u)))

+ (a (u)− 1) g (u, ϕ (u− τ (u)))]
n−1∏

s=u+1

a (s) . (14)

To simplify notations, we introduce the following constants.

η = max
n∈[0,T−1]∩Z

∣∣∣∣∣∣
(

1−
n−1∏

s=n−T

a (s)

)−1
∣∣∣∣∣∣ , ρ = max

u∈[0,T−1]∩Z
|a (u)− 1| ,

γ = max
u∈[n−T,n−1]∩Z

n−1∏
s=u+1

a (s) .

Lemma 3.1. Suppose that the conditions (2)–(6) hold. Then A : PT → PT is
completely continuous.

Proof. We first show that (Aϕ) (n+ T ) = (Aϕ) (n).
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Let ϕ ∈ PT . Then using (14) we arrive at

(Aϕ) (n+ T ) =

(
1−

n+T−1∏
s=n

a (s)

)−1 n+T−1∑
u=n

[f (u, ϕ (u) , ϕ (u− τ (u)))

+ (a (u)− 1) g (u, ϕ (u− τ (u)))]
n+T−1∏
s=u+1

a (s) .

Let j = u− T , then

(Aϕ) (n+ T )

=

(
1−

n+T−1∏
s=n

a (s)

)−1 n−1∑
j=n−T

[f (j + T, ϕ (j + T ) , ϕ (j + T − τ (j + T )))

+ (a (j + T )− 1) g (j + T, ϕ (j + T − τ (j + T )))]
n+T−1∏

s=j+T+1

a (s)

=

(
1−

n+T−1∏
s=n

a (s)

)−1 n−1∑
j=n−T

[f (j, ϕ (j) , ϕ (j − τ (j)))

+ (a (j)− 1) g (j, ϕ (j − τ (j)))]
n+T−1∏

s=j+T+1

a (s) .

Now let k = s− T , then

(Aϕ) (n+ T ) =

(
1−

n−1∏
k=n−T

a (k)

)−1 n−1∑
j=n−T

[f (j, ϕ (j) , ϕ (j − τ (j)))

+ (a (j)− 1) g (j, ϕ (j − τ (j)))]
n−1∏

k=j+1

a (k)

= (Aϕ) (n) .

To see that A is continuous, we let ϕ,ψ ∈ PT . Given ε > 0, take δ = ε/M with
M = ηγT (L2 + L3 + ρL1), where L1, L2 and L3 are given by (5) and (6).
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Now, for ‖ϕ− ψ‖ < δ, we obtain

|(Aϕ) (n)− (Aψ) (n)|

=

∣∣∣∣∣∣
(

1−
n−1∏

s=n−T

a (s)

)−1

×
n−1∑

u=n−T

[(f (u, ϕ (u) , ϕ (u− τ (u)))− f (u, ψ (u) , ψ (u− τ (u))))

+ (a (u)− 1) (g (u, ϕ (u− τ (u)))− g (u, ψ (u− τ (u))))]
n−1∏

s=u+1

a (s)

∣∣∣∣∣
≤ η

n−1∑
u=n−T

[L2 ‖ϕ− ψ‖+ L3 ‖ϕ− ψ‖+ ρL1 ‖ϕ− ψ‖] γ

≤ ηγT (L2 + L3 + ρL1) ‖ϕ− ψ‖
= M ‖ϕ− ψ‖ < Mδ = ε.

Then ‖Aϕ−Aψ‖ < ε. This proves A is continuous.
Next, we show that A maps bounded subsets into compact sets. Let J be given,

S = {ϕ ∈ PT : ‖ϕ‖ ≤ J} and Q = {Aϕ : ϕ ∈ S}, then S is a subset of RT which is
closed and bounded thus compact. As A is continuous it maps compact sets into
compact sets. Then Q = A (S) is compact. Therefore A is completely continuous.
This completes the proof. �

Lemma 3.2. Suppose that (5) holds. If B is given by (13) with

L1 < 1, (15)

then B : PT → PT is a contraction.

Proof. Let B be defined by (13). Obviously, (Bϕ) (n+ T ) = (Bϕ) (n). So, for any
ϕ,ψ ∈ PT , we have

|(Bϕ) (n)− (Bψ) (n)| ≤ |g (n, ϕ (n− τ (n)))− g (n, ψ (n− τ (n)))|
≤ L1 ‖ϕ− ψ‖ .

Then ‖Bϕ− Bψ‖ ≤ L1 ‖ϕ− ψ‖. Thus B : PT → PT is a contraction by (15). �

Observe that in view of (5) and (6) we have

|g (n, x)| = |g (n, x)− g (n, 0) + g (n, 0)|
≤ |g (n, x)− g (n, 0)|+ |g (n, 0)|
≤ L1 ‖x‖+ α,

and

|f (n, x, y)| = |f (n, x, y)− f (n, 0, 0) + f (n, 0, 0)|
≤ |f (n, x, y)− f (n, 0, 0)|+ |f (n, 0, 0)|
≤ L2 ‖x‖+ L3 ‖y‖+ β,

where
α = max

n∈[0,T−1]∩Z
|g (n, 0)| and β = max

n∈[0,T−1]∩Z
|f (n, 0, 0)| .
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Theorem 3.3. Suppose (2)–(6) and (15) hold. Let J be a positive constant satis-
fying the inequality

L1J + α+ ηγT [(L2 + L3) J + β + ρ (L1J + α)] ≤ J.

Let D = {ϕ ∈ PT : ‖ϕ‖ ≤ J}. Then equation (1) has a T -periodic solution x in the
subset D.

Proof. By Lemma 3.1, the operator A : D → PT is completely continuous. Also,
from Lemma 3.2, the operator B : D → PT is a contraction. Moreover, if ϕ,ψ ∈ D,
we see that

|(Bψ) (n) + (Aϕ) (n)|

=

∣∣∣∣∣∣g (n, ψ (n− τ (n))) +

(
1−

n−1∏
s=n−T

a (s)

)−1

×
n−1∑

u=n−T

[f (u, ϕ (u) , ϕ (u− τ (u))) + (a (u)− 1) g (u, ϕ (u− τ (u)))]
n−1∏

s=u+1

a (s)

∣∣∣∣∣
≤ L1 ‖ψ‖+ α+ ηγ

n−1∑
u=n−T

[(L2 + L3) ‖ϕ‖+ β + ρ (L1 ‖ϕ‖+ α)]

≤ L1J + α+ ηγT [(L2 + L3) J + β + ρ (L1J + α)] ≤ J.

Then ‖Bψ +Aϕ‖ ≤ J . This shows that Bψ +Aϕ ∈ D. Clearly, all the hypotheses
of the Krasnoselskii theorem are satisfied. Thus there exists a fixed point x ∈ D
such that x = Bx+Ax. By Lemma 2.1 this fixed point is a solution of (1) and the
proof is complete. �

Remark 3.4. The constant J of Theorem 3.3 serves as a priori bound on all possible
T -periodic solutions of equation (1).

Theorem 3.5. Suppose (2)–(6) and (15) hold. If

L1 + ηγT (L2 + L3 + ρL1) ≤ ν < 1,

then equation (1) has a unique T -periodic solution.

Proof. Let the mapping H be given by (12). For ϕ,ψ ∈ PT , in view of (12), we
have

‖Hϕ−Hψ‖ = ‖Bϕ+Aϕ− Bψ −Aψ‖
≤ ‖Bϕ− Bψ‖+ ‖Aϕ−Aψ‖
≤ L1 ‖ϕ− ψ‖+ ηγT (L2 ‖ϕ− ψ‖+ L3 ‖ϕ− ψ‖+ ρL1 ‖ϕ− ψ‖)
≤ [L1 + ηγT (L2 + L3 + ρL1)] ‖ϕ− ψ‖
≤ ν ‖ϕ− ψ‖ .

This completes the proof by invoking the contraction mapping principle. �
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