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THE UNIFIED SYSTEM BETWEEN LORENZ AND CHEN SYSTEMS:

A DISCRETIZATION PROCESS

A. M. A. EL-SAYED, S. M. SALMAN

Abstract. The unified chaotic system that contains the Lorenz and Chen systems was

introduced. In this paper we are interested in discretizing that system. Fixed points

and their asymptotic stability of the discrete system obtained are investigated. Some
dynamical behaviors such as chaotic attractor, bifurcation and chaos are discussed.

1. Introduction

It was notable that both Lorenz and Chen system share some common properties such as
they have the same symmetry, stability and dissipativity. In [8], a unified chaotic system
was introduced that contains the Lorenz and Chen system as two dual systems as the
two extremes to its spectrum. On the other hand, Some examples of dynamical systems
generated by piecewise constant arguments have been studied in [2]-[3]. Here we propose
a discretization process to obtain the discrete version of that unified system.

Consider the unified chaotic system

x. = (25β + 10)(y − x), t ∈ (0, T ],

y. = (28− 35β)x− xz + (29β − 1)y,

z. = xy − β + 8

3
z,

(1.1)

where β ∈ [0, 1].
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Meanwhile, consider the corresponding system with piecewise constant arguments given
by

x(t) = (25β + 10)(y(r[
t

r
])− x(r[

t

r
])),

y(t) = (28− 35β)x(r[
t

r
])− x(r[

t

r
])z(r[

t

r
]) + (29β − 1)y(r[

t

r
]),

z(t) = x(r[
t

r
])y(r[

t

r
])− β + 8

3
z(r[

t

r
]).

(1.2)

Let t ∈ [0, r), then [ tr ] = 0, and the solution of (1.2) is given by

x1(t) = xo + t((25β + 10)(yo − xo)), t ∈ [0, r)

y1(t) = yo + t((28− 35β)xo − xozo + (29β − 1)yo), t ∈ [0, r)

z1(t) = zo + t(xoyo −
β + 8

3
zo), t ∈ [0, r).

Let t ∈ [r, 2r), then [ tr ] = 1, and the solution of (1.2) is given by

x2(t) = x1(r) + (t− r)((25β + 10)(y1 − x1)), t ∈ [0, r)

y2(t) = y1(r) + (t− r)((28− 35β)x1 − x1z1 + (29β − 1)y1), t ∈ [0, r)

z2(t) = z1(r) + (t− r)(x1y1 −
β + 8

3
z1), t ∈ [0, r).

Repeating the process we get

xn+1(t) = xn(nr) + (t− nr)((25β + 10)(yn(nr)− xn(nr))), t ∈ [r, 2r)

yn+1(t) = yn(nr) + (t− nr)((28− 35β)xn(nr)− xn(nr)zn(nr) + (29β − 1)yn(nr)),

zn+1(t) = zn(nr) + (t− nr)(xn(nr)yn(nr)− β + 8

3
zn(nr)),

as t→ (n+ 1)r,

xn+1((n+ 1)r) = xn(nr) + r((25β + 10)(yn(nr)− xn(nr))), t ∈ [nr, (n+ 1)r)

yn+1((n+ 1)r) = yn(nr) + r((28− 35β)xn(nr)− xn(nr)zn(nr) + (29β − 1)yn(nr)),

zn+1((n+ 1)r) = zn(nr) + r(xn(nr)yn(nr)− β + 8

3
zn(nr)).

That is

xn+1((n+ 1)r) = xn + r((25β + 10)(yn − xn)), t ∈ [nr, (n+ 1)r)

yn+1((n+ 1)r) = yn + r((28− 35β)xn − xnzn + (29β − 1)yn),

zn+1((n+ 1)r) = zn + r(xnyn −
β + 8

3
zn).

(1.3)

Moreover, if we consider the equations

x(t) = (25β + 10)(y(r[
t− r
r

])− x(r[
t− r
r

])),

y(t) = (28− 35β)x(r[
t− r
r

])− x(r[
t− r
r

])z(r[
t− r
r

]) + (29β − 1)y(r[
t− r
r

]),

z(t) = x(r[
t− r
r

])y(r[
t− r
r

])− β + 8

3
z(r[

t− r
r

]).
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We can apply the same procedure to obtain the discretization of the second order difference
equation

xn+1 = xn + r((25β + 10)(yn−1 − xn−1)), t ∈ [0, r)

yn+1 = yn + r((28− 35β)xn−1 − xn−1zn−1 + (29β − 1)yn−1),

zn+1 = zn + r(xn−1yn−1 −
β + 8

3
zn−1).

(1.4)

Remark 1. It should be noticed that the system (1.3) can be obtained also by applying
Euler’s discretization method [12]. However, Euler’s method fails in obtaining system
(1.4).

2. Fixed points and their asymptotic stability

Now we study the asymptotic stability of the fixed points of the system (1.3) which has
three fixed points if (β + 8)(9− 2β) > 0:
• fix1 = (0, 0, 0)

• fix2 = (
√

(β + 8)(9− 2β),
√

(β + 8)(9− 2β), 27− 6β)

• fix3 = (−
√

(β + 8)(9− 2β),−
√

(β + 8)(9− 2β), 27− 6β)

The last two fixed points are symmetrically placed with respect to z−axis.

By considering a Jacobian matrix for one of these fixed points and calculating their eigen-
values, we can investigate the stability of each fixed point based on the roots of the system
characteristic equation [7].

Linearizing the system (1.3) about fix1 yields the following characteristic equation

P (λ) ≡ λ3 + (B + C − 1)λ2 + (BC −B +A)λ+ (AC −A−D) = 0,

where:
A = 1 + r(4β − 11)− r2(25β + 10)(29β − 1)),
B = −2− r(−54β − 11) + r2(25β + 10)(28− 35β),

C = r β+8
3 ,

D = r3(25β + 10)(28− 35β)(β+8
3 )− r2(25β + 10)(28− 35β).

Now let a1 = (B+C−1), a2 = (BC−B+A), a3 = (AC−A−D). From the Jury test, if
P (1) > 0, P (−1) < 0, and a3 < 1, |b3| > b1, c3 > |c2|, where b3 = 1−a23, b2 = a1−a3a2,
b1 = a2 − a3a1, c3 = b23 − b21, and c2 = b3b2 − b1b2, then the roots of P (λ) satisfy λ < 1
and thus fix1 is a asymptotically stable.

While linearizing the system (1.3) about fix2 or fix3 yields the following characteristic
equation

F (λ) ≡ λ3 + a11λ
2 + a22λ+ a33 = 0,

where:
a11 = 3− 11r + 4βr,
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a22 = 25.3βr3 + 31β2r2 + 315βr2 + 717.3βr + 29.6r − 59.3r2 − 7.3r3 − 3,
a33 = −r2(25β + 10)(1− 29β)(1− r(β+8

3 )− r3(25β + 10)(β + 8)(9− 2β),

From the Jury test, if F (1) > 0, F (−1) < 0, and a33 < 1, |b33| > b11, c33 > |c22|,
where b33 = 1 − a233, b22 = a11 − a33a22, b11 = a22 − a33a11, c33 = b233 − b211, and
c22 = b33b22 − b11b22, then the roots of F (λ) satisfy λ < 1 and thus fix2 or fix3 is a
asymptotically stable.

3. Attractors, bifurcation and chaos

In this section we show by numerical experiments that the dynamical behavior of the dy-
namica systems (1.3) and (1.4) is strongly affected by the change in β. In all simulations
we take r = 0.01
Take β = −4.2 in (1.3) (Figure (1)).
Take β = −2.5 in (1.3) (Figure (2)).
Take β = 0 in (1.3) (Figure (3)).
Take β = 0.3 in (1.3) (Figure (4)).
Take β = −1.5 in (1.4) (Figure (5)).
Take β = −1 in (1.4) (Figure (6)).
Take β = −0.9 in (1.4) (Figure (7)).
Take β = −0.7 in (1.4) (Figure (8)).

Figure 1. Regular attractor
of (1.3) with β = −4.2

Figure 2. Regular attractor
of (1.3) with β = −2.5
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Figure 3. Chaotic attractor
of (1.3) with β = 0

Figure 4. Chaotic attractor
of (1.3) with β = 0.3

Figure 5. Regular attractor
of (1.4) with β = −1.5

Figure 6. Chaotic attractor
of (1.4) with β = −1
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Figure 7. Chaotic attractor
of (1.4) with β = −0.9

Figure 8. Chaotic attractor
of (1.4) with β = −0.7

Figure 9. Bifurcation dia-
gram of (1.3) as a function of
x

Figure 10. Bifurcation dia-
gram of (1.3) as a function of
z
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Figure 11. Bifurcation dia-
gram of (1.4) as a function of
x

Figure 12. Bifurcation dia-
gram of (1.4) as a function of
z

4. Conclusion

A discretization process is applied to descretize the unified dynamical system between
the Lorenz and Chen systems with piecewise constant arguments. We obtained first and
second difference equations of the unified system. Euler’s discretzation method was able
to obtain first order difference equation while we were able here to obtain a second order
difference equation. The range of the parameter β of the original system has been changed
from [0, 1] to [−0.9, 0.3].
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