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CLASS MAPPINGS PROPERTIES OF CONVOLUTIONS

INVOLVING CERTAIN UNIVALENT FUNCTIONS ASSOCIATED

WITH HYPERGEOMETRIC FUNCTIONS

A.K. SHARMA, SAURABH PORWAL AND K.K. DIXIT

Abstract. The purpose of the present paper is to establish certain conditions
to ensure that linear operator defined here maps a certain subclass of close-to-
convex Rτ (A,B) into subclasses of convex and starlike functions α− UCV (β)

and α− ST (β), respectively by making use of hypergeometric inequalities.

1. Introduction

Let A be the class consisting of functions of the form

f(z) = z +
∞∑

n=2

anz
n (1)

that are analytic in the open unit disk E = {z : |z| < 1}. As usual, denote by S
the subclass of A consisting of function which are also univalent in E. Let S∗(α)
and C(α) denote the subclass of S consisting of starlike and convex functions of
order α(0 ≤ α < 1) respectively [6]. S∗(0) = S∗ and C(0) = C are respectively the
classes of starlike and convex functions in S. Recently Bharti et al. [1] introduced
the following subclasses of starlike and convex functions.
Definition 1. A function f of the form (1) is in α − ST (β) if it satisfies the
condition

Re

{
zf(z)

f(z)

}
≥ α

∣∣∣∣zf(z)f(z)
− 1

∣∣∣∣+ β, α ≥ 0, 0 ≤ β < 1, (2)

and f ∈ α− UCV (β) if and only if zf ∈ α− ST (β).
It should be noted that 1 − ST (0) is class of starlike functions corresponding

to uniformly convex functions and 1 − UCV (0) is the class of uniformly convex
functions given by Goodman [8] (also see [18]). Furthermore Bharti et al. [1]
showed that

α− ST (β) = S∗
(
α+ β

1 + α

)
, α− UCV (β) = C

(
α+ β

1 + β

)
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Definition 2. A function f ∈ A in said to be in the class Rτ (A,B). If it satisfies
the inequality∣∣∣∣ f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1 (z ∈ E : τ ∈ C/{0},−1 ≤ B < A ≤ 1) . (3)

The class Rτ (A,B) was introduced by Dixit and Pal [4]. By giving appropriate
values to the parameters τ, A and B, two interesting subclasses studied by Pon-
nusamy and Ronning [17] and Padmanabhan [13] can be reduced.

Let F (a, b; c; z) be the (Gaussian) hypergeometric function defined by

F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn (4)

where c ̸= 0,−1,−2, ........ and (λ)n is the Pochhammer symbol defined by

(λ)n =

{
1 if n = 0

λ(λ+ 1).........(λ+ n− 1) if n ∈ N. = {1, 2, 3.....}.
(5)

We note that F (a, b; c : 1) converges for Re (c− a− b) > 0 and is related to the
Gamma function by

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
. (6)

The hypergeometric function F (a, b; c; z) has been studied extensively by vari-
ous authors and plays an important role in geometric function theory , We refer
to([2], [3], [12], [14], [15], [16], [17], [19], [20]) and references therein for some inter-
esting results.

We now recall the Hohlov operator Iabc : A → A defined in term of the Hadamard
product (or convolution) by (cf. [9])

(Iabc (f))(z) = zF (a, b; c; z) ∗ f(z) (f ∈ A, z ∈ E). (7)

Thus from (4) we have

(Iabc (f))(z) = z +

∞∑
n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
anz

n (z ∈ E). (8)

It is well known that the class S and many of its subclasses are not closed under
the ring operations of usual addition and multiplication of functions. Therefore
study of class preserving and class transforming operators is an interesting prob-
lem in geometric function theory, The operator Iabc (f) is the natural extension of
the Alexander, Libera, Bernardi and Carlsan - Shaffer operator (denoted here by
A,L,B and L(a, c) respectively). Thus

A(f) = I1,12 (f), L(f) = I1,23 (f), B(f) = I1,γ+1
γ+2 (f), L(a, b)(f) = Ia,1c (f).

Dixit and Pathak [5] studied the mapping properties of a function fµ to be as
given in

fµ(z) = (1− µ)zF (a, b; c; z) + µz[zF (a, b; c; z)] (µ ≥ 0) (9)

and investigated the geometric properties of an integral operator of the form

I(z) =

∫ z

0

fµ(t)

t
dt.
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Further, Kim and Shon [10] considered a liner operator Mµ : A → A defined by

Mµ(f) = fµ(z)
∗f(z) = z +

∞∑
n=2

(1− µ+ µn)
(a)n−1(b)n−1anz

n

(c)n−1(1)n−1
. (10)

For µ = 0 in (10), we have Mµ(f) = (Ia,bc (f))(z).
The purpose of the present paper is to make use of linear operator defined by

(10) in order to establish a number of connections between the classes Rτ (A,B), α−
UCV (β) and α− ST and various other subclasses of A.

2. Main Results

To establish our main results, we need each of the following results in our inves-
tigation.
Lemma 1. (see [1]) let f ∈ A be of the form (1).

If
∞∑

n=2

[n(1 + α)− (α+ β)]an ≤ 1− β, then f ∈ α− ST (β). (11)

Lemma 2. (see [1]) A function f of the form (1) is in α−UCV (β), if it satisfies
the inequality

∞∑
n=2

n[n(1 + α)− (α− β)]an ≤ 1− β. (12)

Lemma 3. (see [4]). If f ∈ Rτ (A,B) is of the form (1) then

|an| ≤ (A−B)
|τ |
n
, (n ∈ N/{0}; τ ∈ C/{0} and − 1 ≤ B < A ≤ 1) (13)

The estimate in (13) is sharp.
Theorem 1. If a > 1, b > 1 and c > a + b + 1. If f ∈ Rτ (A,B) and the

inequality

(A−B)|τ |Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)[
µ(α+ 1)ab

(c− a− b− 1)
+ {1 + α− µ(α+ β)}+ (α+ β)(µ− 1)(c− a− b)

(a− 1)(b− 1)

]
≤ (A−B)|τ |

[
(α+ β)(µ− 1)(c− 1)

(a− 1)(b− 1)
+ (1− β)

]
+ (1− β)

is satisfied, then Mµ(f) ∈ α− ST (β).
Proof. By Lemma 1, it suffices to show that

T1=
∞∑

n=1

[n(1 + α)− (α+ β)]

∣∣∣∣(1− µ+ µn)
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣ ≤ 1− β.

Since f ∈ Rτ (A,B), then by Lemma 3, we have

|an| ≤
(A−B)|τ |

n
.
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Hence

T1 ≤
∞∑

n=2

[n(1 + α)− (α+ β)]

[
(1− µ+ µn)

(a)n−1(b)n−1

(c)n−1(1)n−1

(A−B)|τ |
n

]

= (A−B)|τ |
∞∑

n=2

[
µ(1+α)n+{(1−µ)(1+α)−µ(α+β)}− (α+ β)(1− µ)

n

]
(a)n−1(b)n−1

(c)n−1(1)n−1

= (A−B)|τ |
∞∑

n=1

[
µ(1 + α)(n+ 1)

(a)n(b)n
(c)n(1)n

+ {(1− µ)(1 + α)− µ(α+ β)} (a)n(b)n
(c)n(1)n

− (α+ β)(1− µ)
(a)n(b)n

(c)n(1)n(n+ 1)

]
= (A−B)|τ |

∞∑
n=1

[
µ(1+α)

(a)n(b)n
(c)n(1)n−1

+µ(1+α)
(a)n(b)n
(c)n(1)n

+{(1−µ)(1+α)−µ(α+β)}

(a)n(b)n
(c)n(1)n

− (α+ β)(1− µ)
(a)n(b)n
(c)n(1)n+1

]
= (A−B)|τ |

∞∑
n=1

[
µ(1+α)

ab

c

(a+ 1)n−1(b+ 1)n−1

(c+ 1)n−1(1)n−1
+{µ(1+α)+(1−µ)(1+α)−µ(α+β)}

× (a)n(b)n
(c)n(1)n

+ (α+ β)(µ− 1)
(c− 1)

(a− 1)(b− 1)

(a− 1)n+1(b− 1)n+1

(c− 1)n+1(1)n+1

]
= (A−B)|τ |

[
µ(1 + α)

ab

c

∞∑
n=0

(a+ 1)n(b+ 1)n
(c+ 1)n(1)n

+ {1 + α− µ(α+ β)}
∞∑

n=0

(a)n(b)n
(c)n(1)n

−{1+α−µ(α+β)}+(α+β)(µ−1)
(c− 1)

(a− 1)(b− 1)

{ ∞∑
n=0

(a− 1)n(b− 1)n
(c− 1)n(1)n

−1− (a− 1)(b− 1)

(c− 1)

}]

= (A−B)|τ |
[
µ(1 + α)

ab

c

∞∑
n=0

(a+ 1)n(b+ 1)n
(c+ 1)n(1)n

+ {1 + α− µ(α+ β)}
∞∑

n=0

(a)n(b)n
(c)n(1)n

−{1+α−µ(α+β)}+(α+β)(µ−1)
(c− 1)

(a− 1)(b− 1)

{ ∞∑
n=0

(a− 1)n(b− 1)n
(c− 1)n(1)n

− 1− (a− 1)(b− 1)

(c− 1)

}]
= (A−B)|τ |

[
µ(1 + α)

ab

c
F (a+ 1, b+ 1; c+ 1; 1) + {1 + α− µ(α+ β)}F (a, b; c; 1)

−{1+α−µ(α+β)}+(α+β)(µ−1)
(c− 1)

(a− 1)(b− 1)
{F (a−1, b−1; c−1; 1)−1− (a− 1)(b− 1)

(c− 1)
}
]

= (A−B)|τ |
[
µ(1+α)

ab

c

Γ(c+ 1))Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
+{1+α−µ(α+β)} ΓcΓ(c− a− b)

Γ(c− a)Γ(c− b)

− {1 + α− µ(α+ β)}+ (α+ β)(µ− 1)
(c− 1)

(a− 1)(b− 1)

Γ(c− 1)Γ(c− a− b+ 1)

Γ(c− a)Γ(c− b)

− (α+ β)(µ− 1)(c− 1)

(a− 1)(b− 1)
− (α+ β)(µ− 1)

]
= (A−B)|τ | ΓcΓ(c− a− b)

Γ(c− a)Γ(c− b)

[
µ(1 + α)ab

(c− a− b− 1)
+ {1 + α− µ(α+ β)}

+
(α+ β)(µ− 1)(c− a− b)

(a− 1)(b− 1)

]
− (α+ β)(µ− 1)(c− 1)(A−B)|τ |

(a− 1)(b− 1)
−(1−β)(A−B)|τ |.
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But, this last expression is bounded above by 1−β, if (12) holds. This completes
the proof.
If we take α = 0 and β = 0 in Theorem 1, we have the following corollary.

Corollary 1. If a > 0, b > 0 and c > a + b + 1. If f ∈ Rτ (A,B) and the

inequality (A − B)|τ | ΓcΓ(c− a− b)

Γ(c− a)Γ(c− b)

[
1 +

µab

(c− a− b− 1)

]
≤ 1 + (A − B)|τ | is

satisfied.
Then Mµ(f) ∈ S∗, where S∗ is the class of starlike functions in S.
If we take α = 1 and β = 0 in Theorem 1, we have

Corollary 2. If a > 0, b > 0 and c > a+ b+1. If f ∈ Rτ (A,B) and the inequality

=
(A−B)|τ |ΓcΓ(c− a− b)

Γ(c− a)Γ(c− b)

[
2µab

(c− a− b− 1)
+ (2− µ) +

(µ− 1)(c− a− b)

(a− 1)(b− 1)

]
≤ (A−B)|τ |

[
(µ− 1)(c− 1)

(a− 1)(b− 1)
+ 1

]
+ 1

is satisfied, then Mµ(f) ∈ 1− ST (0), a class of starlike functions corresponding to
uniformly convex functions.

Theorem 2. Let a > 0, b > 0 and c > a + b + 2. If f ∈ Rτ (A,B) and the
inequality

(A−B)|τ |
[
µ
(1 + α)(a)2(b)2
(c− a− b− 2)2

+ (2µ+ αµ+ 1 + α− µβ)
ab

(c− a− b− 1)
+ (1− β)

]
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
≤ (1− β)[1 + (A−B)|τ |]

is satisfied, then Mµ(f) ∈ α− UCV (β).
Proof. By Lemma 2, it suffices to show that

T2 ≡
∞∑

n=2

n[n(1 + α)− (α+ β)]|(1− µ+ µn)
(a)n−1(b)n−1

(c)n−1(1)n−1
an| ≤ 1− β.

Since f ∈ Rτ (A,B), then by Lemma 3

|an| ≤
(A−B)|τ |

n
.
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Hence

T2 ≤
∞∑

n=2

[
n+ nα− (α+ β)

][
1− µ+ µn

]
(a)n−1(b)n−1

(c)n−1(1)n−1
(A−B)|τ |

= (A−B)|τ |
∞∑

n=1

[
(1+α)µ(n+1)2+

[
(1−µ)(1+α)−µ(α+β)

]
(n+1)−(α+β)(1−µ)

]
(a)n(b)n
(c)n(1)n

= (A−B)|τ |
∞∑

n=1

(1+α)µn2+2(1+α)µn+(1+α)µ+{(1−µ)(1+α)−µ(α+β)}n

+ {(1− µ)(1 + α)− µ(α+ β)− (α+ β)(1− µ)} × (a)n(b)n
(c)n(1)n

= (A−B)|τ |
∞∑

n=1

[
(µ+ αµ)n2 + (µ+ 1 + α− µβ)n+ (1− β)

]
× (a)n(b)n

(c)n(1)n

= (A−B)|τ |
∞∑

n=1

[
(µ+αµ)n

(a)n(b)n
(c)n(1)n−1

+(µ+1+α−µβ)
(a)n(b)n
(c)n(1)n−1

+(1−β)
(a)n(b)n
(c)n(1)n

]

= (A−B)|τ |
∞∑

n=1

[
(µ+αµ)(n−1)

(a)n(b)n
(c)n(1)n−1

+(µ+αµ)
(a)n(b)n
(c)n(1)n−1

+(µ+1+α−µβ)

(a)n(b)n
(c)n(1)n−1

]
+ (1− β)

(a)n(b)n
(c)n(1)n

]
= (A−B)|τ |

∞∑
n=1

[
(µ+ αµ)

(a)n(b)n
(c)n(1)n−2

+ (2µ+ αµ+ 1 + α− µβ)
(a)n(b)n
(c)n(1)n−1

+ (1− β)
(a)n(b)n
(c)n(1)n

]
×

∞∑
n=1

(a+ 1)n−1(b+ 1)n−1

(c+ 1)n−1(1)n−1
+ (1− β){

∞∑
n=0

(a)n(b)n
(c)n(1)n

− 1}
]

= (A−B)|τ |
[
µ(1 + α)

(a)2(b)2
(c)2

∞∑
n=0

(a+ 2)n(b+ 2)n
(c+ 2)n(1)n

+ (2µ+ αµ+ 1 + α− µβ)
ab

c

×
∞∑

n=0

(a+ 1)n(b+ 1)n
(c+ 1)n(1)n

+ (1− β)
∞∑

n=0

(a)n(b)n
(c)n(1)n

− (1− β)

]
= (A−B)|τ |

[
µ(1 +α)

(a)2(b)2
(c)2

F (a+2, b+2; c+2; 1) + (2µ+αµ+1+α− µβ)
ab

c

× F (a+ 1, b+ 1; c+ 1; 1) + (1− β)F (a, b; c; 1)− (1− β)

]
= (A−B)|τ |

[
µ(1+α)

(a)2(b)2
(c)2

Γ(c+ 2)Γ(c− a− b− 2)

Γ(c− a)Γ(c− b)
+(2µ+αµ+1+α−µβ)

ab

c

Γ(c+ 1)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
+ (1− β)

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
− (1− β)

]
= (A−B)|τ |

[
µ(1 + α)

(a)2(b)2
(c− a− b− 2)2

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
+ (2µ+ αµ+ 1+ α− µβ)

abΓ(c)Γ(c− a− b)

(c− a− b− 1)Γ(c− b)Γc− b
+ (1− β)

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

]
− (1− β)(A−B)|τ |

= (A−B)|τ |
[
µ(1 + α)

(a)2(b)2
(c− a− b− 2)2

+ (2µ+ αµ+ 1 + α− µβ)

ab

(c− a− b− 1)
+ (1− β)

]
× Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
− (1− β)(A−B)|τ |
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But, this last expression is bounded above by (1− β) if (13) holds.
This completes the proof.

If we take α = 0, β = 0 in Theorem 2, we have the following corollary.
Corollary 3. Let a > 0, b > 0 and c > a + b + 2. If f ∈ Rτ (A,B) and the
inequality

(A−B)|τ |
[

µ(a)2(b)2
(c− a− b− 2)2

+ (2µ+ 1)
ab

(c− a− b− 1)
+ 1

]
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
≤ 1 + (A−B)|τ |

is satisfied. Then Mµ(f) ∈ C. Where C is the class of convex functions in S.
If we take α = 1 and β = 0 in Theorem 2 we have the following corollary
Corollary 4. Let a > 0, b > 0 and c > a+b+2. If f ∈ Rτ (A,B) and the inequality

(A−B)|τ |
[

µ(a)2(b)2
(c− a− b− 2)2

+ (3µ+ 1)
ab

(c− a− b− 1)
+ 1

]
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
≤ 1 + (A−B)|τ |

is satisfied. Then Mµ(f) ∈ 1− UCV (0), a class of convex functions.
Theorem 3. Let a > 1, b > 1 and c > a+b+1. If f ∈ Rτ (A,B) and the inequality

(A−B)|τ |Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

[
µ(α+ 1)ab

(c− a− b− 1)
+ {(1 + α)− µ(α+ β)}

+
(α+ β)(µ− 1)(c− a− b)

(a− 1)(b− 1)

]
≤ (A−B)|τ |

[
(α+ β)(µ− 1)(c− 1)

(a− 1)(b− 1)
+ (1− β)

]
+ (1− β)

is satisfied, then I(z)∗f(z) ∈ α− UCV (β).
Proof. Here

I(z)∗f(z) = z +
∞∑

n=2

(1− µ+ µn)
(a)n−1(b)n−1

(c)n−1(1)n−1

an
n
zn

By Lemma 2, it suffices to show that

T3 ≡
∞∑

n=2

n[n(1 + α)− (α+ β)]

[
(1− µ+ µn)

(a)n−1(b)n−1

(c)n−1(1)n−1

an
n

]
≤ 1− β.

Since f ∈ Rτ (A,B), then by Lemma 3, we have |an| ≤ (A−B)|τ |
n .

Now rest of the proof of Theorem 3 is exactly the same to that of Theorem 1,
therefore, we omit the details involved.
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