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ON (C,2)(E,1) PRODUCT MEANS OF FOURIER SERIES AND

ITS CONJUGATE SERIES

H. K. NIGAM

Abstract. This paper introduces the concept of (C,2)(E,1) product oper-
ators and establishes two new theorems on (C,2)(E,1) product summability
of Fourier series and its conjugate series. The results obtained in the paper
further extend several known results on linear operators.

1. Introduction

A study of Nörlund (N, pn) summability of Fourier series and its conjugate series
was made by Jadia [12], Pandey [22] and Singh [23]. Khare [13] studied generalized
Nörlund (N, p, q) summability of Fourier Series and its conjugate series. (N, p, q)
method includes (N, pn) method of summability as a special case. Singh & Singh
[24] studied Fourier series and its conjugate series using almost (N, p, q) summabil-
ity method and Mittal & Kumar [16] used the method of matrix summability to
study Fourier Series and its conjugate series. Matrix method includes (N, pn) and
(N, p, q) methods of summability as special cases. Thereafter, Chandra & Dixit [9]
studied |B| and |E, q| and summability of Fourier series and its allied series.

Studies on trigonometric approximation of functions in Lp−norm using differ-
ent linear operators such as Hölder, Nörlund, Riesz, Euler, Borel etc. were made
by several researchers like Mohapatra & Sahney [18], Mohapatra & Chandra ([19],
[20]), Holland, Mohapatra & Sahney [11], Chandra ([1], [2], [3], [4], [5], [6], [7], [8])
and Mohapatra & Russell [17].

Studies on degree of approximation of a function belonging to different class of
functions by product summability methods were made by Lal & Singh [15] and
Nigam [21].

The aim of the present paper is to study Fourier series and its conjugate series
by product operators. The advantage of considering product operators over linear
operators can be understood with the observation that the infinite series, which
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is neither summable by the left linear operators nor by the right linear operators
individually, is summable to some number by the product operators obtained from
the same linear operators placed in the same sequential order. Thus, the method of
product operators is more powerful than the methods of individual linear operators.
Moreover, in studies of error estimates En(f) through Trigonometric Fourier Ap-
proximation (TFA), product operators give better approximation than individual
linear operators.

Therefore, in this paper, (C,2)(E,1) product summability method is introduced
and two theorems on (C,2)(E,1) summability of Fourier series and its conjugate
series are established under a very general condition.

Let
∑∞

n=0 un be a given infinite series with sn for its nth partial sum.

Let {t(E,1)
n } denote the sequence of (E, 1) mean of the sequence {sn}. If the

(E, 1) transform of sn is defined as

t(E,1)
n (f ;x) =

1

2n

n∑
k=0

(
n
k

)
sk(f ;x) → s as n→ ∞ (1)

the series
∑∞

n=0 un is said to be summable to the number s by the (E, 1) method
(Hardy [10]).

Let {t(C,2)
n } denote the sequence of (C, 2) mean of the sequence {sn}. If the

(C, 2) transform of sn is defined as

t(C,2)
n (f ;x) =

2

(n+ 1)(n+ 2)

n∑
k=0

(n− k + 1)sk(f ;x) → s as n→ ∞ (2)

the series
∑∞

n=0 un is said to be summable to the number s by (C, 2) method
(Cesàro method).

Thus if

t(C,2)(E,1)
n (f ;x) =

2

(n+ 1)(n+ 2)

n∑
k=0

(n−k+1)
1

2k

k∑
ν=0

(
n
ν

)
sν(f ;x) → s as n→ ∞,

(3)

where {t(C,2)(E,1)
n } denote the sequence of (C, 2)(E, 1) product mean of the sequence

sn, the series
∑∞

n=0 un is said to be summable to the number s by (C, 2)(E, 1)
method.
We observe that (C, 2)(E, 1) method is regular.

Let f be a 2π-periodic and Lebesgue integrable function. The Fourier series
associated with f at a point x is defined by

f (x) ∼ a0
2

+
∞∑

n=1

(an cosnx+ bn sinnx) ≡
∞∑

n=0

An(x) (4)
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with partial sums sn (f ;x).

The conjugate series of Fourier series (4) of f is given by

∞∑
n=1

(an sinnx− bn cosnx) ≡
∞∑

n=1

Bn(x) (5)

with partial sums s̃n (f ;x).
Throughout this paper, we will call (5) as conjugate Fourier series of function f .

We use the following notations:

ϕ (t) = ϕ (x, t) = f (x+ t) + f (x− t)− 2f (x)

ψ (t) = ψ (x, t) = f (x+ t)− f (x− t)

Kn (t) =
1

π (n+ 1) (n+ 2)

n∑
k=0

[
n− k + 1

2k

k∑
ν=0

{(
k
ν

)
sin
(
ν + 1

2

)
t

sin t
2

}]

K̄n (t) =
1

π (n+ 1) (n+ 2)

n∑
k=0

[
n− k + 1

2k

k∑
ν=0

(
k
ν

)
cos
(
ν + 1

2

)
t

sin (t/2)

]

2. Main Theorems

We prove the following theorems:

2.1. Theorem 1. Let {cn} be a non-negative, monotonic, non-increasing sequence
of real constants such that

Cn =
n∑
ν

cν → ∞ as n→ ∞.

If

Φ (t) =

∫ t

0

|ϕ (u) | du = o

[
t

α
(
1
t

)
.Cτ

]
as t→ +0, (6)

where α (t) is a positive, monotonic and non-increasing function of t and

log (n+ 1) = O [{α (n+ 1)} Cn+1] , as n→ ∞ (7)

then the Fourier series (4) is summable (C, 2) (E, 1) to f (x).

2.2. Theorem 2. Let {cn} be a non-negative, monotonic, non-increasing sequence
of real constants such that

Cn =
n∑
ν

cν → ∞ as n→ ∞.

If

Ψ (t) =

∫ t

0

|ψ (u) | du = o

[
t

α
(
1
t

)
Cτ

]
as t→ +0, (8)

where α (t) is a positive, monotonic and non-increasing function of t,

2τ
n∑

k=τ

(
n− k + 1

2k

)
= O(n+ 1)(n+ 2) (9)
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and condition (7) holds then the conjugate Fourier series (5) is summable (C, 2) (E, 1)
to

f̄ (x) = − 1

2π

∫ 2π

0

ψ (t) cot

(
t

2

)
dt

at every point where this integral exists.

3. Lemmas

For the proof of our theorems, following lemmas are required:

3.1. Lemma 1. For 0 ≤ t ≤ 1
n+1 , |Kn (t)| = O(n+ 1).

Proof. For 0 ≤ t ≤ 1
n+1 , sinnt ≤ n sin t

|Kn (t)| ≤
1

π (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
(n− k + 1)

2k

k∑
ν=0

(
k
ν

)
sin
(
ν + 1

2

)
t

sin t
2

]∣∣∣∣∣
|Kn (t)| ≤

1

π (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
(n− k + 1)

2k

k∑
ν=0

(
k
ν

)
(2ν + 1) sin t

2

sin t
2

]∣∣∣∣∣
≤ 1

π (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
(n− k + 1)

2k
(2k + 1)

k∑
ν=0

(
k
ν

)]∣∣∣∣∣
=

1

π (n+ 1) (n+ 2)

n∑
k=0

[(n− k + 1) (2k + 1)]

=
n+ 1

π (n+ 1) (n+ 2)

n∑
k=0

(2k + 1)− 1

π (n+ 1) (n+ 2)

n∑
k=0

[k (2k + 1)]

=
1

π(n+ 2)

n∑
k=0

(2k + 1)− 1

π (n+ 1) (n+ 2)

[
2

n∑
k=0

k2 +

n∑
k=0

k

]

=
(n+ 1)2

π(n+ 2)
− 1

π (n+ 1) (n+ 2)

[
n(n+ 1)(2n+ 1)

3
+
n(n+ 1)

2

]
=

(n+ 1)2

π(n+ 2)
− n(2n+ 1)

3π(n+ 2)
− n

2π(n+ 2)

=
2n2 + 7n+ 6

6π(n+ 2)

= O (n+ 1)

3.2. Lemma 2. For 1
n+1 ≤ t ≤ π, |Kn (t)| = O

(
1
t

)
.
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Proof. For 1
n+1 ≤ t ≤ π, applying Jordan’s lemma, sin

(
t
2

)
≥ t

π and sinnt ≤ 1.

|Kn (t)| ≤
1

π (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
(n− k + 1)

2k

k∑
ν=0

(
k
ν

)
sin
(
ν + 1

2

)
t

sin
(
t
2

) ]∣∣∣∣∣
≤ (n+ 1)

π (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
1

2k

k∑
ν=0

(
k
ν

)
1(
t
π

)]∣∣∣∣∣
− 1

π (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
k

2k

k∑
ν=0

(
k
ν

)
1(
t
π

)]∣∣∣∣∣
=

1

t(n+ 2)

∣∣∣∣∣
n∑

k=0

[
1

2k

k∑
ν=0

(
k
ν

)]∣∣∣∣∣
− 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
k

2k

k∑
ν=0

(
k
ν

)]∣∣∣∣∣
=

1

t(n+ 2)

n∑
k=0

1− 1

t (n+ 1) (n+ 2)

n∑
k=0

k

=
(n+ 1)

t(n+ 2)
− n(n+ 1)

2t (n+ 1) (n+ 2)

≤ n+ 1

t(n+ 2)
− n

2t(n+ 2)

= O

(
1

t

)

3.3. Lemma 3. For 0 ≤ t ≤ 1
n+1 , K̄n (t) = O

(
1
t

)
.

Proof. For 0 ≤ t ≤ 1
n+1 , sin (t/2) ≥ (t/π) and |cosnt| ≤ 1

∣∣K̄n (t)
∣∣ = 1

π (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
n− k + 1

2k

k∑
ν=0

(
k
ν

)
cos
(
ν + 1

2

)
t

sin (t/2)

]∣∣∣∣∣
≤ 1

π (n+ 1) (n+ 2)

n∑
k=0

[
n− k + 1

2k

k∑
ν=0

(
k
ν

) ∣∣cos (ν + 1
2

)
t
∣∣

|sin (t/2)|

]

≤ 1

t (n+ 1) (n+ 2)

n∑
k=0

[
n− k + 1

2k

k∑
ν=0

(
k
ν

)]

=
1

t (n+ 1) (n+ 2)

n∑
k=0

(n− k + 1)

= O

(
1

t

)
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3.4. Lemma 4. For 0 ≤ a ≤ b ≤ ∞, 0 ≤ t ≤ π and any n,∣∣K̄n (t)
∣∣ = O

(
1

t

)
Proof. For 0 ≤ 1

n+1 ≤ t ≤ π, sin (t/2) ≥ (t/π)

∣∣K̄n (t)
∣∣ = 1

π (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
n− k + 1

2k

k∑
ν=0

(
k
ν

)
cos
(
ν + 1

2

)
t

sin (t/2)

]∣∣∣∣∣
≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
ei(ν+

1
2 ) t

}]∣∣∣∣∣
≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
eiν t

}]∣∣∣∣∣ ∣∣∣e it
2

∣∣∣
≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
eiν t

}]∣∣∣∣∣
≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
τ−1∑
k=0

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
eiν t

}]∣∣∣∣∣
+

1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=τ

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
eiν t

}]∣∣∣∣∣ , (10)

where τ denoted the integral part of 1
t .

Now considering first term of (10),

1

t (n+ 1) (n+ 2)

∣∣∣∣∣
τ−1∑
k=0

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
eiν t

}]∣∣∣∣∣
≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
τ−1∑
k=0

n− k + 1

2k

k∑
ν=0

(
k
ν

) ∣∣∣∣∣ ∣∣eiν t
∣∣

≤ 1

t (n+ 1) (n+ 2)

τ−1∑
k=0

[
n− k + 1

2k

k∑
ν=0

(
k
ν

) ]

≤ 1

t (n+ 1) (n+ 2)

τ−1∑
k=0

(n− k + 1)

=
1

t (n+ 1) (n+ 2)

τ−1∑
k=0

(n+ 1)− 1

t (n+ 1) (n+ 2)

τ−1∑
k=0

k

=
1

t(n+ 2)

τ−1∑
k=0

1− 1

t (n+ 1) (n+ 2)

τ−1∑
k=0

k

=
τ − 1

t(n+ 2)
− τ(τ − 1)

t(n+ 1)(n+ 2)

≤ k

(
1

t

)
(11)
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Now considering second term of (10) and using Abel’s Lemma

1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=τ

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
eiν t

}]∣∣∣∣∣
≤ 1

t (n+ 1) (n+ 2)

n∑
k=τ

n− k + 1

2k
max

0≤ m≤ k

∣∣∣∣∣
k∑

ν=0

(
k
ν

)
eiν t

∣∣∣∣∣
≤ k

t (n+ 1) (n+ 2)
2τ

n∑
k=τ

(
n− k + 1

2k

)
(12)

Combining (10) to (12), we get

K̄n (t) ≤ k

(
1

t

)
+ k

{(
1

t (n+ 1) (n+ 2)

)
2τ

n∑
k=τ

(
n− k + 1

2k

)}
(13)

4. Proof of Main Theorems

4.1. Proof of Theorem 1. Following Titchmarsh [25] and using Riemann-Lebesgue
theorem, sn(f ;x) of the series (1.4) is given by

sn (f ;x)− f (x) =
1

2π

∫ π

0

ϕ (t)
sin
(
n+ 1

2

)
t

sin t
2

dt

Using (1), the (E, 1) transform of sn (f ;x) is given by

t(E,1)
n − f (x) =

1

π 2n+1

∫ π

0

ϕ (t)

{
n∑

k=0

(
n
k

)
sin
(
k + 1

2

)
t

sin t
2

}
dt

The (C, 2) (E, 1) transform of sn (f ;x) is given by

t(C,2)(E,1) − f (x) =
1

π(n+ 1)(n+ 2)

n∑
k=0

[
(n− k + 1)

2k

∫ π

0

ϕ (t)

sin t
2

{
k∑

ν=0

(
k
ν

)
sin

(
ν +

1

2

)
t

}
dt

]

=

∫ π

0
ϕ (t) Kn (t) dt

In order to prove the theorem, we have to show under our assumptions that∫ π

0

ϕ (t) Kn (t) dt = o (1) as n→ ∞

For 0 < δ < π, we have∫ π

0

ϕ (t) Kn (t) dt =

[∫ 1
n+1

0

+

∫ δ

1
n+1

+

∫ π

δ

]
ϕ (t) Kn (t) dt

= I1.1 + I1.2 + I1.3 (say) (14)
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We consider,

|I1.1| ≤
∫ 1

n+1

0

|ϕ (t)| |Kn (t)| dt

= O (n+ 1)

[∫ 1
n+1

0

|ϕ (t)| dt

]
using Lemma 1

= O (n+ 1)

[
o

{
1

(n+ 1) α (n+ 1)Cn+1

}]
by (6)

= o

{
1

α (n+ 1)Cn+1

}
= o

{
1

log (n+ 1)

}
by (7)

= o(1), as n→ ∞ (15)

Now we consider,

|I1.2| ≤
∫ δ

1
n+1

|ϕ (t)| |Kn (t)| dt

= O

[∫ δ

1
n+1

|ϕ (t)|
(
1

t

)
dt

]
using Lemma 2

= O

[{
1

t
Φ(t)

}δ

1
n+1

+

∫ δ

1
n+1

1

t2
Φ(t) dt

]

= O

[
o

{
1

α (1/t)Cτ

}δ

1
n+1

+

∫ δ

1
n+1

o

(
1

t α
(
1
t

)
Cτ

)
dt

]
by (6)

Putting 1
t = u in second term,

I1.2 = O

[
o

{
1

α (n+ 1)Cn+1

}
+

∫ n+1

1
δ

o

(
1

u α (u)Cu

)
du

]

= o

{
1

α (n+ 1)Cn+1

}
+ o

{
1

(n+ 1 )α (n+ 1)Cn+1

}∫ n+1

1
δ

1.du

= o

{
1

log (n+ 1)

}
+ o

{
1

log (n+ 1)

}
by (7)

= o(1) + o(1), as n→ ∞
= o(1), as n→ ∞. (16)

By Riemann- Lebesgue lemma and by regularity condition of the method of summa-
bility,

|I1.3| ≤
∫ π

δ

|ϕ (t)| |Kn (t)| dt

= o(1), as n→ ∞ (17)
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Combining (14) to (17),

t(C,2)(E,1) − f(x) = o(1), as n→ ∞.

This completes the proof of theorem 1.

4.2. Proof of Theorem 2. Let s̄n (f ;x) denotes the partial sum of series (5) then
following Lal [14] and using Riemann- Lebesgue theorem, s̄n (f ;x) of series (5) is
given by

s̄n (f ;x)− f̄ (x) =
1

2π

∫ π

0

ψ (t)
cos
(
n+ 1

2

)
t

sin
(
t
2

) dt

Using (5), the (E, 1) transform of s̄n (f ;x) is given by

t̄(E,1)
n − f̄ (x) =

1

2n+1 π

∫ π

0

ψ (t)

{
n∑

k=0

(
n
k

)
cos
(
k + 1

2

)
t

sin t
2

}
dt

Now denoting (C, 2) (E, q) transform of s̄n is given by

t̄(C,2)(E,1) − f̄ (x) =
1

π(n+ 1)(n+ 2)

n∑
k=0

[
(n− k + 1)

2k

∫ π

0

ψ (t)

sin t
2

{
k∑

ν=0

(
k
ν

)
cos

(
ν +

1

2

)
t

}
dt

]

=

∫ π

0
ψ (t) K̄n (t) dt

In order to prove the theorem, we have to show under our assumptions that∫ π

0

ψ (t) K̄n (t) dt = o(1) as n→ ∞

For 0 < δ < π, we have∫ π

0

ψ (t) K̄n (t) dt =

[∫ 1
n+1

0

+

∫ δ

1
n+1

+

∫ π

δ

]
ψ (t) K̄n (t) dt

= I2.1 + I2.2 + I2.3 (say) (18)

We consider,

|I2.1| ≤
∫ 1

n+1

0

|ψ (t)|
∣∣K̄n (t)

∣∣ dt
= O

[∫ 1
n+1

0

1

t
|ψ (t)| dt

]
using Lemma 3

= O (n+ 1)

[∫ 1
n+1

0

|ψ (t)| dt

]

= O (n+ 1)

[
o

{
1

(n+ 1) α (n+ 1)Cn+1

}]
by (8)

= o

{
1

α (n+ 1)Cn+1

}
= o

{
1

log (n+ 1)

}
by (7)

= o(1), as n→ ∞ (19)
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Now,

|I2.2| ≤
∫ δ

1
n+1

|ψ (t)|
∣∣K̄n (t)

∣∣ dt
≤

[
k

∫ δ

1
n+1

[
1

t
+

(
1

t (n+ 1) (n+ 2)

)
2τ

n∑
k=τ

(
n− k + 1

2k

)]
|ψ (t)| dt

]

= O

[∫ δ

1
n+1

(
1

t

)
|ψ (t)| dt

]
by (9)

= O

[{
1

t
Ψ(t)

}δ

1
n+1

+

∫ δ

1
n+1

1

t2
Ψ(t) dt

]

= O

o{ 1

α
(
1
t

)
Cτ

}δ

1
n+1

+

∫ δ

1
n+1

o

(
1

t α
(
1
t

)
Cτ

)
dt

 by (8)

Putting 1
t = u in second term,

|I2.2| = O

[
o

{
1

α (n+ 1)Cn+1

}
+

∫ n+1

1
δ

o

(
1

u α (u)Cu

)
du

]

= o

{
1

α (n+ 1)Cn+1

}
+ o

{
1

(n+ 1 )α (n+ 1)Cn+1

}∫ n+1

1
δ

1.du

= o

{
1

log (n+ 1)

}
+ o

{
1

log (n+ 1)

}
by (7)

= o(1) + o(1), as n→ ∞
= o(1), as n→ ∞ (20)

By Riemann- Lebesgue lemma and by regularity condition of (C, 2)(E, 1) method
of summability,

|I2.3| ≤
∫ π

δ

|ψ (t)|
∣∣K̄n (t)

∣∣ dt
= o(1), as n→ ∞ (21)

Combining (18) to (21),

t̄(C,2)(E,1) − f̄ (x) = o(1), as n→ ∞
This completes the proof of theorem 2.
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