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BLOW-UP ANALYSIS FOR A DEGENERATE PARABOLIC

SYSTEM WITH POSITIVE DIRICHLET BOUNDARY VALUE∗

ZHENGQIU LING

Abstract. This paper investigates a nonlocal degenerate parabolic system
with positive Dirichlet boundary value conditions. By means of the super- and

sub-solution techniques and piecewise functions, some results of interactions
among the multi-nonlinearities in the system described by four exponents,
global boundedness and blow-up criteria of positive solutions are determined.
The results show the positive boundary value ε0 plays an important role in

the case of blow-up.

1. Introduction

In this paper, we investigate the following nonlocal degenerate parabolic system

ut = ∆um + a∥v∥pα, vt = ∆vn + b∥u∥qβ , x ∈ Ω, t > 0 (1)

with positive Dirichlet boundary value conditions

u(x, t) = ε0 > 0, v(x, t) = ε0 > 0, x ∈ ∂Ω, t > 0 (2)

and initial data

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (3)

where Ω be a bounded domain in RN ( N ≥ 1 ) with smooth boundary ∂Ω, and
constants m,n > 1 , α, β ≥ 1, a, b, p, q > 0, where u0(x), v0(x) > ε0 are nonnegative
bounded functions on Ω, and where ∥ · ∥αα =

∫
Ω
| · |αdx.

The coupled parabolic system (1)-(3) can be interpreted as the porous medium or
diffusion equations such as thermoelasticity ([1]). They are worth to study because
of the applications to heat and mass transport processes. In addition, there exist
interesting interactions among the multi-nonlinearities described by four exponents
m,n, p and q in the model (1)-(3).

In the past two decades, many physical phenomena were formulated into nonlo-
cal mathematical models (see [2]-[6] and references therein) and studied by many
authors. For example, Bebernes and Bressan ([2]) studied an ignition model for a
compressible reactive gas which is a nonlocal reaction-diffusion equation. Pao ([3])
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discussed a nonlocal model arising from combustion theory. On the other hand,
some authors ([7]-[8]) studied a class of nonlocal degenerate parabolic equations
which arise in a model of population that communicates through chemical means.

In recent years, many important results have appeared on blow-up problems for
nonlinear parabolic systems. We will recall some of those results concerning the first
initial-boundary value problems. For other related works on the global existence
and blow-up of solutions of nonlinear parabolic systems, we refer the reader to
[9]-[11] and references therein.

In [12], Galaktionov et al. considered the system

ut = ∆uν+1 + vp, vt = ∆vµ+1 + uq (4)

with homogeneous Dirichlet boundary conditions. They proved that pc = pq− (ν+
1)(µ+1) is the critical exponent of (4). Later, Song in [13] and Deng in [14] studied
the following problem

ut = ∆um + uαvp, vt = ∆vn + uqvβ (5)

by different methods. Some results, which concern the global boundedness and
blow-up criteria of solutions were determined.

In 2003, Deng [15] et al. investigated the system (1), (3) with homogeneous
Dirichlet boundary condition

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0. (6)

Several interesting results are established. We only state some of them here.

Theorem 1 Under the above assumptions.
(1) If pq < mn, then the every nonnegative solution of (1), (3) and (6) is global.
(2) If pq > mn, then

(i) the nonnegative solution of (1),(3) and (6) is global if the initial data u0, v0
are sufficiently small;

(ii) the nonnegative solution of (1),(3) and (6) blows up in finite time if the initial
data u0, v0 are sufficiently large.
(3) If pq = mn, then

(i) the nonnegative solution of (1),(3) and (6) is global if the domain Ω is suffi-
ciently small;

(ii) the nonnegative solution of (1),(3) and (6) blows up in finite time if the
domain Ω contains a sufficiently large ball, and u0, v0 are positive and continuous
in Ω.

For the degenerate parabolic system (1)-(3), due to the positivity of the bound-
ary value, we can deal with the comparison principle and classical solutions by
similar arguments as [15] and [16]. We point out that blow-up behavior of posi-
tive solutions is similar for the system (1),(3) with either homogeneous Dirichlet
boundary condition (6) or positive Dirichlet boundary value condition (2), but the
globality of positive solutions is somewhat different, see Remark 1.

The rest of the paper is organized as follows. Section 2 deals with global bound-
edness of solutions, we will prove Theorems 2 and 3. Theorems 4 and 5 about
blow-up criteria are proved in Section 3. Some remarks are given in Section 4.
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2. Global boundedness

Clearly, any solution (u, v) of (1)-(3) satisfies u(x, t) ≥ ε0, v(x, t) ≥ ε0 by
the comparison principle due to the boundary condition (2) and the initial data
u0(x), v0(x) ≥ ε0. Therefore, the local classical solutions to (1)-(3) do exist. We
say a solution (u, v) of (1)-(3) blows up in finite time T if

lim
t→T

max
Ω

(|u(·, t)|+ |v(·, t)|) = +∞.

Now, we deal with the following theorems on global boundedness of solutions.

Theorem 2 Assume pq < mn. Then the nonnegative solutions of system (1)-(3)
are globally bounded.

Proof. According to the comparison principle, we only need to construct bounded,
positive super-solutions for any T > 0. Let ψ(x) be the unique positive solution of
the following linear elliptic problem

−∆ψ(x) = 1, x ∈ Ω; ψ(x) = 1, x ∈ ∂Ω.

Denote C = maxx∈Ω ψ(x), then 1 ≤ ψ(x) ≤ C. Now, we define the functions ū, v̄
as

ū(x, t) = k1ψ
1
m (x), v̄(x, t) = k2ψ

1
n (x), x ∈ Ω, t > 0 (7)

with positive constants k1, k2 to be determined later. Clearly, for any T > 0, (ū, v̄)
is a bounded function and ū ≥ k1 > 0, v̄ ≥ k2 > 0. Then, a series of computations
yields

ūt −∆ūm = km1 , ∥v̄∥pα = kp2∥ψ(x)
1
n ∥pα ≤ kp2C

p
n |Ω|p/α, (8)

v̄t −∆v̄n = kn2 , ∥ū∥qβ = kq1∥ψ(x)
1
m ∥qβ ≤ kq1C

q
m |Ω|q/β . (9)

Denote

C1 =
(
aC

p
n |Ω|

p
α

) 1
m , C2 =

(
b

1
qC

1
m |Ω|

1
β
)−1

. (10)

The assumption pq < mn implies p
m < n

q . So, for the positive constants C1 and

C2, there exist sufficiently large constants k1, k2 > 0 such that C1k
p
m
2 ≤ k1 ≤ C2k

n
q

2 ,
which implies that

ūt −∆ūm ≥ a∥v̄∥pα, v̄t −∆v̄n ≥ b∥ū∥qβ , x ∈ Ω, t > 0. (11)

In addition, we may assume k1, k2 to be so large that

ū(x, 0) = k1ψ
1
m (x) ≥ u0(x), v̄(x, 0) = k2ψ

1
n (x) ≥ v0(x), x ∈ Ω (12)

and

ū(x, t) = k1ψ
1
m (x) ≥ ε0, v̄(x, t) = k2ψ

1
n (x) ≥ ε0, x ∈ ∂Ω, t > 0. (13)

Thus we have shown that (ū, v̄) is a positive super-solution of (1)-(3), which
implies the global boundedness of solutions to the problem (1)-(3). The proof is
complete. �

Now consider the critical case of pq = mn. Denote by φ1(x) the first eigenfunc-
tion of the problem

∆φ(x) + λφ(x) = 0, x ∈ Ω; φ(x) = 0, x ∈ ∂Ω (14)

with the first eigenvalue λ1. Then φ1(x) > 0 in Ω with λ1 > 0. It is well known
that λ1 can be used to describe the size of Ω([14]).
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Theorem 3 Assume pq = mn. If the diameter of Ω is sufficiently small, then the
solutions of (1)-(3) are globally bounded.

Proof. Because of the continuous dependence of λ1 upon the domain Ω([17]),

we know that for any constant λ̃ ∈ (0, λ1), there is a bounded domain Ω̃ ⊃ Ω such

that λ̃ is the first eigenvalue of the following problem

∆φ(x) + λφ(x) = 0, x ∈ Ω̃; φ(x) = 0, x ∈ ∂Ω̃. (15)

Let φ̃(x) be the first eigenfunction of (15) with the first eigenvalue λ̃, normalized

by ∥φ̃∥∞ = 1, then φ̃(x) > 0 in Ω̃, and hence φ̃(x) ≥ δ0 > 0 on Ω for some positive
constant δ0.

Define

ū(x, t) =Ma1 φ̃
1
m (x), v̄(x, t) =M b1 φ̃

1
n (x), x ∈ Ω, t > 0 (16)

with positive constants a1 and b1 satisfying(
−m p
q −n

)(
a1
b1

)
=

(
0
0

)
. (17)

Since pq = mn, there exists positive solutions to linear system (17). With a pair
of such positive constants a1 and b1, by calculating directly, we have ūt = 0, v̄t = 0
and

∆ūm + a∥v̄∥pα =Mma1 φ̃
(
− λ̃+ ac1M

pb1−ma1 φ̃−1
)
≤Mma1 φ̃

(
− λ̃+

ac1
δ0

)
, (18)

∆v̄n + b∥ū∥qβ =Mnb1 φ̃
(
− λ̃+ bc2M

qa1−nb1 φ̃−1
)
≤Mnb1 φ̃

(
− λ̃+

bc2
δ0

)
, (19)

where

c1 = ∥φ̃ 1
n ∥pα > 0, c2 = ∥φ̃ 1

m ∥qβ > 0.

As the domain Ω becomes smaller and smaller, the corresponding first eigenvalue
λ1 of (14) will become bigger and bigger. Therefore, assume the diameter of Ω is
sufficiently small such that

λ1 > λ0 =: max
{ac1
δ0
,
bc2
δ0

}
. (20)

Moreover, choose the λ̃ such that λ0 < λ̃ < λ1. Thus, from (18)-(20) we obtain

∆ūm + a∥v̄∥pα ≤ ūt, ∆v̄n + b∥ū∥qβ ≤ v̄t

for x ∈ Ω and t > 0. On the other hand, taking M large enough such that

ū(x, t) =Ma1 φ̃
1
m (x) ≥ ε0, v̄(x, t) =M b1 φ̃

1
n (x) ≥ ε0, x ∈ ∂Ω, t > 0

and

ū(x, 0) =Ma1 φ̃
1
m (x) ≥ u0(x), v̄(x, 0) =M b1 φ̃

1
n (x) ≥ v0(x), x ∈ Ω.

So we have proved that (ū, v̄) is a super-solution of (1)-(3), which implies the
global boundedness of solutions to the problem (1)-(3). The proof is complete. �



EJMAA-2013/1(2) BLOW-UP ANALYSIS FOR A DEGENERATE PARABOLIC SYSTEM 349

3. Blow-up criteria

The following theorems is concerning blow-up criteria for the solutions of (1)-
(3). Due to the requirement of the comparison principle, we will construct blow-up
positive sub-solutions to complete the proofs of theorems.

Theorem 4 Assume pq > mn, and the initial data u0(x), v0(x) are sufficiently
large. Then the nonnegative solution of (1)-(3) blows up in a finite time.

Proof. Since pq > mn, and hence there exists two positive constants α1, β1 large
enough that

p

m
>
α1

β1
>
n

q
and (m− 1)α1 > 1, (n− 1)β1 > 1. (21)

Construct the piecewise functions ũ, ṽ as follows

ũ(x, t) =


Mα1ε0

[(1− ct) +M ]α1

(
1 + φ1(x)

)α1

, (x, t) ∈ Ω×
(
0,

1

c

]
,

Mα1ε0
[(1− ct) +M ]α1

φα1
1 (x), (x, t) ∈ Ω×

(1
c
,
1 +M

c

)
,

(22)

ṽ(x, t) =


Mβ1ε0

[(1− ct) +M ]β1

(
1 + φ1(x)

)β1

, (x, t) ∈ Ω×
(
0,

1

c

]
,

Mβ1ε0
[(1− ct) +M ]β1

φβ1

1 (x), (x, t) ∈ Ω×
(1
c
,
1 +M

c

)
,

(23)

whereM and c are positive constants to be determined later, φ1(x) is the first eigen-
function (normalized by ∥φ1∥∞ = 1) of the problem (14) with the corresponding
first eigenvalue λ1. Then λ1 > 0 and φ1(x) > 0 in Ω. It is easy to see that


ũ(x, t) =

Mα1ε0
[(1− ct) +M ]α1

≤ ε0, ṽ(x, t) =
Mβ1ε0

[(1− ct) +M ]β1
≤ ε0, (x, t) ∈ ∂Ω×

(
0,

1

c

]
,

ũ(x, t) = 0 ≤ ε0, ṽ(x, t) = 0 ≤ ε0, (x, t) ∈ ∂Ω×
(1
c
,
1 +M

c

)
.

(24)
In addition, by calculating direct, we have

ũt =
cα1M

α1ε0
[(1− ct) +M ]α1+1

(
1 + φ1(x)

)α1

,

∆ũm =
Mmα1εm0 mα1(mα1 − 1)

[(1− ct) +M ]mα1

(
1 + φ1

)mα1−2|∇φ1|2

− λ1M
mα1εm0 mα1

[(1− ct) +M ]mα1

(
1 + φ1

)mα1−1
φ1,

∥ṽ∥pα =
c̃11M

β1pεp0
[(1− ct) +M ]β1p

, c̃11 = ∥(1 + φ1)
β1∥pα > 0,
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and hence

ũt −∆ũm − a∥ṽ∥pα ≤ cα1M
α1ε0

[(1− ct) +M ]α1+1

(
1 + φ1

)α1

+
λ1M

mα1εm0 mα1

[(1− ct) +M ]mα1

(
1 + φ1

)mα1−1
φ1 −

ac̃11M
β1pεp0

[(1− ct) +M ]β1p

≤
cα1M

α1ε0
(
1 + φ1

)α1

[(1− ct) +M ]α1+1
+

λ1M
mα1εm0 mα1

[(1− ct) +M ]mα1

(
1 + φ1

)mα1 − ac̃11M
β1pεp0

[(1− ct) +M ]β1p

=
Mα1ε0(1 + φ1)

α1

[(1− ct) +M ]α1+1

[
cα1 +

M (m−1)α1εm−1
0

[(1− ct) +M ]mα1−α1−1

(
λ1mα1(1 + φ1)

(m−1)α1

− ac̃11M
β1p−mα1ε

p−m
0

[(1− ct) +M ]β1p−mα1

(
1 + φ1

)−α1
)]

≤ Mα1ε0(1 + φ1)
α1

[(1− ct) +M ]α1+1

[
cα1 −

M (m−1)α1εm−1
0

[(1− ct) +M ]mα1−α1−1

(
− λ1mα12

(m−1)α1

+
ac̃11M

β1p−mα1εp−m
0

(1 +M)β1p−mα1
2−α1

)]
(25)

for (x, t) ∈ Ω× (0, 1/c]. Similarly,

ṽt −∆ṽn − b∥ũ∥qβ ≤ Mβ1ε0(1 + φ1)
β1

[(1− ct) +M ]β1+1[
cβ1 −

M (n−1)β1εn−1
0

[(1− ct) +M ]nβ1−β1−1

(
− λ1nβ12

(n−1)β1 +
bc̃21M

α1q−nβ1εq−n
0

(1 +M)α1q−nβ1
2−β1

)]
(26)

for (x, t) ∈ Ω× (0, 1/c] and

ũt−∆ũm − a∥ṽ∥pα ≤ Mα1ε0φ
α1
1

[(1− ct) +M ]α1+1[
cα1 −

M (m−1)α1εm−1
0

[(1− ct) +M ]mα1−α1−1

(
− λ1mα1 +

ac̃12M
β1p−mα1εp−m

0

(1 +M)β1p−mα1

)]
, (27)

ṽt−∆ṽn − b∥ũ∥qβ ≤ Mβ1ε0φ
β1

1

[(1− ct) +M ]β1+1[
cβ1 −

M (n−1)β1εn−1
0

[(1− ct) +M ]nβ1−β1−1

(
− λ1nβ1 +

bc̃22M
α1q−nβ1εq−n

0

(1 +M)α1q−nβ1

)]
(28)

for (x, t) ∈ Ω× (1/c, (1 +M)/c), where

c̃21 = ∥(1 + φ1)
α1∥qβ > 0, c̃12 = ∥φβ1

1 ∥pα > 0, c̃22 = ∥φα1
1 ∥qβ > 0.

Denote

M11 =
(2mα1λ1mα1

ac̃11ε
p−m
0

) 1
β1p−mα1

, M21 =
(2nβ1λ1nβ1

bc̃21ε
q−n
0

) 1
α1q−nβ1

,

M12 =
( λ1mα1

ac̃12ε
p−m
0

) 1
β1p−mα1

, M22 =
( λ1nβ1

bc̃22ε
q−n
0

) 1
α1q−nβ1

.

Letting

M > max
( M11

1−M11
,

M21

1−M21
,

M12

1−M12
,

M22

1−M22

)
(29)
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and then 

δ11 =
ac̃11M

β1p−mα1εp−m
0

(1 +M)β1p−mα1
2−α1 − λ1mα12

(m−1)α1 > 0,

δ12 =
ac̃12M

β1p−mα1εp−m
0

(1 +M)β1p−mα1
− λ1mα1 > 0,

δ21 =
bc̃21M

α1q−nβ1εq−n
0

(1 +M)α1q−nβ1
2−β1 − λ1nβ12

(n−1)β1 > 0,

δ22 =
bc̃22M

α1q−nβ1εq−n
0

(1 +M)α1q−nβ1
− λ1nβ1 > 0.

Define

A11 =
M (m−1)α1εm−1

0 δ11
α1(1 +M)mα1−α1−1

, A21 =
M (n−1)β1εn−1

0 δ21
β1(1 +M)nβ1−β1−1

,

A12 =
M (m−1)α1εm−1

0 δ12
α1(1 +M)mα1−α1−1

, A22 =
M (n−1)β1εn−1

0 δ22
β1(1 +M)nβ1−β1−1

.

Taking

c ≤ min
(
A11, A12, A21, A22

)
. (30)

Thus, from (25)-(30) we get

ũt−∆ũm−a∥ṽ∥pα ≤ 0, ṽt−∆ṽn−b∥ũ∥qβ ≤ 0, for (x, t) ∈ Ω×
(
0, (1+M)/c

)
. (31)

Choose u0(x), v0(x) properly large such that

ũ(x, 0) ≤ u0(x) , ṽ(x, 0) ≤ v0(x), on x ∈ Ω. (32)

We know from (24), (31) and (32) that (ũ, ṽ) is a sub-solution of (1)-(3), which
means that the solutions of (1)-(3) will blow up in time T ≤ (1 +M)/c. The proof
is complete. �
Theorem 5 Assume pq = mn, then the nonnegative solution of (1)-(3) blows up
in finite time if the domain contains a sufficiently large ball, and u0(x), v0(x) are
positive and continuous in Ω.

Proof. Since pq = mn, clearly, there exists two positive constants l1, l2 large
enough that

p

m
=
l1
l2

=
n

q
and (m− 1)l1 > 1, (n− 1)l2 > 1. (33)

Without loss of generality, we may assume that 0 ∈ Ω. Let BR = B(0, R) be a
ball such that BR ⊂⊂ Ω. In the following, we will prove that (u, v) blows up in
finite time in the ball BR. Because if so, (u, v) does blow up in the large domain
Ω.

Denote by λBR
> 0 and ϕR(r) the first eigenvalue and the corresponding eigen-

function of the following eigenvalue problem

−ϕ′′(r)− N − 1

r
ϕ′(r) = λϕ(r), r ∈ (0, R); ϕ′(0) = 0, ϕ(R) = 0.

It is well known that ϕR(r) can be normalized as ϕR(r) > 0 in BR and ϕR(0) =
maxBR

ϕR(r) = 1. By the property (let τ = r/R) of eigenvalues and eigenfunc-
tions we see that λBR = R−2λB1 and ϕR(r) = ϕ1(r/R) = ϕ1(τ), where λB1 and
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ϕ1(τ) are the first eigenvalue and the corresponding normalized eigenfunction of
the eigenvalue problem in the unit ball B1(0). Moreover,

max
B1

ϕ1(τ) = ϕ1(0) = ϕR(0) = max
BR

ϕR(r) = 1.

Similar to (22) and (23), we define the following piecewise functions

ũ(x, t) =


M l1ε0

[(1− ct) +M ]l1

(
1 + ϕR(|x|)

)l1
, (x, t) ∈ Ω×

(
0,

1

c

]
,

M l1ε0
[(1− ct) +M ]l1

ϕl1R(|x|), (x, t) ∈ Ω×
(1
c
,
1 +M

c

)
,

(34)

ṽ(x, t) =


M l2ε0

[(1− ct) +M ]l2

(
1 + ϕR(|x|)

)l2
, (x, t) ∈ Ω×

(
0,

1

c

]
,

M l2ε0
[(1− ct) +M ]l2

ϕl2R(|x|), (x, t) ∈ Ω×
(1
c
,
1 +M

c

)
,

(35)

where M and c are positive constants to be determined. Similar to (25)-(28), by
calculating directly, we have

ũt−∆ũm − a∥ṽ∥pα ≤ M l1ε0(1 + ϕR)
l1

[(1− ct) +M ]l1+1[
cl1 −

M (m−1)l1εm−1
0

[(1− ct) +M ](m−1)l1−1

(
ac̃31ε

p−m
0 2−l1 − λBR

ml12
(m−1)l1

)]
, (36)

ṽt−∆ṽn − b∥ũ∥qβ ≤ M l2ε0(1 + ϕR)
l2

[(1− ct) +M ]l2+1[
cl2 −

M (n−1)l2εn−1
0

[(1− ct) +M ](n−1)l2−1

(
bc̃41ε

q−n
0 2−l2 − λBR

nl22
(n−1)l2

)]
(37)

for (x, t) ∈ Ω× (0, 1/c] and

ũt −∆ũm − a∥ṽ∥pα ≤
M l1ε0ϕ

l1
R

[(1− ct) +M ]l1+1[
cl1 −

M (m−1)l1εm−1
0

[(1− ct) +M ](m−1)l1−1

(
ac̃32ε

p−m
0 − λBRml1

)]
, (38)

ṽt −∆ṽn − b∥ũ∥qβ ≤
M l2ε0ϕ

l2
R

[(1− ct) +M ]l2+1[
cl2 −

M (n−1)l2εn−1
0

[(1− ct) +M ](n−1)l2−1

(
bc̃42ε

q−n
0 − λBR

nl2

)]
(39)

for (x, t) ∈ Ω× (1/c, (1 +M)/c), where

c̃31 = ∥(1 + ϕR)
l2∥pα, c̃41 = ∥(1 + ϕR)

l1∥qβ , c̃32 = ∥ϕl2R∥
p
α, c̃42 = ∥ϕl1R∥

q
β > 0.

Then, in view of λBR
= R−2λB1 , we may assume that R, that is , the ball BR ,

is sufficiently large that

λBR
< min

(ac̃31εp−m
0

2ml1ml1
,
bc̃41ε

q−n
0

2nl2nl2
,
ac̃32ε

p−m
0

ml1
,
bc̃42ε

q−n
0

nl2

)
(40)
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and hence{
δ31 = ac̃31ε

p−m
0 2−l1 − λBRml12

(m−1)l1 > 0, δ32 = ac̃32ε
p−m
0 − λBRml1 > 0,

δ41 = bc̃41ε
q−n
0 2−l2 − λBR

nl22
(n−1)l2 > 0, δ42 = bc̃42ε

q−n
0 − λBR

nl2 > 0.

Define

A31 =
M (m−1)l1εm−1

0 δ31
l1(1 +M)(m−1)l1−1

, A32 =
M (m−1)l1εm−1

0 δ32
l1(1 +M)(m−1)l1−1

,

A41 =
M (n−1)l2εn−1

0 δ41
l2(1 +M)(n−1)l2−1

, A42 =
M (n−1)l2εn−1

0 δ42
l2(1 +M)(n−1)l2−1

.

Taking

c ≤ min
(
A31, A32, A41, A42

)
. (41)

Therefore, (36)-(41) imply that (31) holds for (x, t) ∈ BR × (0, (1 +M)/c. In
addition, it is easy to see that

ũ(x, t) ≤ ε0, ṽ(x, t) ≤ ε0, (x, t) ∈ ∂Ω× (0, (1 +M)/c).

Thus, (ũ, ṽ) is a positive sub-solution of (1)-(3) in the ball BR, which blows up in
finite time provided we choose M small enough to satisfy (32) in the ball BR. The
proof is complete. �

4. Some remarks

Remark 1 Assume pq > mn and the initial data u0(x), v0(x) are sufficiently small.
Then if the boundary value ε0 is small enough, by the proof of Theorem 2 we know
the nonnegative solution of (1)− (3) exists globally.

Remark 2 The results in this paper show the interactions among the multi-
nonlinearities in the parabolic system (1)-(3). Roughly speaking, either small dif-
fusion exponents m,n or large coupling exponents p, q benefit the occurrence of
the finite blow-up. The key condition is pq > mn or pq < mn, the critical case
of pq = mn belongs to the situations of global existence (or blow-up), where one
needs some other assumptions that the size of Ω should be smaller (or larger). The
boundary value is taken as positive constant ε0 in (2), which guarantees the local
existence of classical solutions to the problem (1)-(3).

We know from Theorems 2 and 3 that the global boundedness conditions for
(1)-(3) are independent of the value of ε0. While Theorems 4 and 5 show that the
case of blow-up is quite different. In particular, the value of ε0 plays an important
role in Theorem 5. Indeed, in addition to the key condition pq = mn, the global
non-existence depends essentially on the relation between λBR (the description of
the size of ball BR) and ε0 (the boundary value). To make a finite blow-up to
problem (1)-(3), for fixed ε0, the size of BR should be properly large (i.e. λBR is
properly small) such that the inequality (40) holds, i.e.

λBR < min
(ac̃31εp−m

0

2ml1ml1
,
bc̃41ε

q−n
0

2nl2nl2
,
ac̃32ε

p−m
0

ml1
,
bc̃42ε

q−n
0

nl2

)
.

Equivalently, we can understand the same inequality (40) as that for fixed BR,
ε0 should be properly large with p−m > 0, q − n > 0 such that

ε0 > max
{(2ml1ml1λBR

ac̃31

) 1
p−m

,
(2nl2nl2λBR

bc̃41

) 1
q−n

,
(ml1λBR

ac̃32

) 1
p−m

,
(nl2λBR

bc̃41

) 1
q−n

}
.
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