CERTAIN CLASS OF ANALYTIC FUNCTIONS DEFINED BY SALAGEAN OPERATOR WITH VARYING ARGUMENTS

M. K. AOUF, R. M. EL-ASHWAH AND F. M. ABDULKAREM

AbSTRACT. In the paper we derive results for certain new of analytic functions defined by using Salagean operator with varying arguments.

1. Introduction

Let \mathcal{A} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the open unit disc $U=\{z \in \mathbb{C}:|z|<1\}$. For a function $f \in \mathcal{A}$, where $f(z)$ is given by (1.1), we define

$$
\begin{gather*}
D^{0} f(z)=f(z) \tag{1.2}\\
D^{1} f(z)=D f(z)=z f^{\prime}(z) \tag{1.3}
\end{gather*}
$$

and

$$
\begin{equation*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right)=z\left(D^{n-1} f(z)\right)^{\prime}(n \in \mathbb{N}=\{1,2, \ldots\}) \tag{1.4}
\end{equation*}
$$

The differential operator D^{n} was introduced by Salagean [9].
It is easy to see that

$$
\begin{equation*}
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) . \tag{1.5}
\end{equation*}
$$

In this paper we define the class $G(n, \lambda, A, B)$ as follows:
Definition 1. Let $G(n, \lambda, A, B)$ denote the subclass of \mathcal{A} consisting of functions $f(z)$ of the form (1.1) such that

$$
\begin{gather*}
\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n} f(z)\right)^{\prime \prime} \prec \frac{1+A z}{1+B z} \tag{1.6}\\
\left(\lambda \geq 0 ;-1 \leq A<B \leq 1 ; 0<B \leq 1 ; n \in \mathbb{N}_{0} ; z \in U\right) .
\end{gather*}
$$

Specializing the parameters λ, A, B and n, we can obtain different classes studied by various authors:
(i) $G(0, \lambda, 2 \alpha-1,1)=R(\lambda, \alpha)(0 \leq \alpha<1, \lambda \geq 0)$ (see Altintas [2]);
(ii) $G(0,0,2 \alpha-1,1)=T^{* *}(\alpha)(0 \leq \alpha<1)$ (see Sarangi and Uralegaddi [10] and Al-Amiri [1]);
(iii) $G(0,0,(2 \alpha-1) \beta, \beta)=P^{*}(\alpha, \beta)(0 \leq \alpha<1,0<\beta \leq 1)$ (see Gupta and Jain [6]);

Key words and phrases. Analytic functions, univalent, Salagean operator, extreme points.
Submitted Apr. 30, 2013.
(iv) $G(0,0,((1+\mu) \alpha-1) \beta, \mu \beta)=P^{*}(\alpha, \beta, \mu)(0 \leq \alpha<1,0<\beta \leq 1,0<\mu \leq 1)$ (see

Owa and Aouf [7]).
Also we note that:
(i) $G(0, \lambda, A, B)=R(\lambda, A, B)=\left\{f(z) \in \mathcal{A}: f^{\prime}(z)+\lambda z f^{\prime \prime}(z) \prec \frac{1+A z}{1+B z}(\lambda \geq 0\right.$;

$$
-1 \leq A<B \leq 1 ; 0<B \leq 1 ; z \in U)\} ;
$$

(ii) $G(n, 0, A, B)=G_{n}(A, B)=\left\{f(z) \in \mathcal{A}:\left(D^{n} f(z)\right)^{\prime} \prec \frac{1+A z}{1+B z}(\lambda \geq 0\right.$;

$$
\begin{equation*}
\left.\left.-1 \leq A<B \leq 1 ; 0<B \leq 1 ; n \in \mathbb{N}_{0} ; z \in U\right)\right\} \tag{1.8}
\end{equation*}
$$

(iii) $G(n, 0,2 \alpha-1,1)=G_{n}(\alpha)=f(z) \in \mathcal{A}: \Re\left\{\left(D^{n} f(z)\right)^{\prime}\right\}>\alpha$;
$\left.\left.0 \leq \alpha<1 ; n \in \mathbb{N}_{0} ; z \in U\right)\right\}$. Silverman [11] defined the class of univalent functions $f(z)$ are given by (1.1) for which $\arg \left(a_{k}\right)$ prescribed in such a way that $f(z)$ is univalent if and only if $f(z)$ is starlike as follows:
Definition 2 A function $f(z)$ of the form (1.1) is said to be in the class $V\left(\theta_{k}\right)$ if $f \in \mathcal{A}$ and $\arg \left(a_{k}\right)=\theta_{k}$ for all $k \geq 2$. If furthermore there exist a real number δ such that $\theta_{k}+(k-1) \delta \equiv \pi(\bmod 2 \pi)(k \geq 2)$, then $f(z)$ is said to be in the class $V\left(\theta_{k}, \delta\right)$. The union of $V\left(\theta_{k}, \delta\right)$ taken over all possible sequences $\left\{\theta_{k}\right\}$ and all possible real numbers δ is denoted by V.
Let $V G(n, \lambda, A, B)$ denote the subclass of V consisting of functions $f(z) \in G(n, \lambda, A, B)$. We note that:
(i) $V G(0,0,2 \alpha-1,1)=C_{n}(\alpha)=\left\{f \in V: \Re\left\{f^{\prime}(z)\right\}>\alpha ; 0 \leq \alpha<1\right\}$, studied by Srivastava and Owa [12].
Also we note that by specializing the parameters λ, A, B and n we can obtain different classes with varying arguments:
(i) $V G(0, \lambda, 2 \alpha-1,1)=V R(\lambda, \alpha)(0 \leq \alpha<1, \lambda \geq 0)$;
(ii) $V G(n, 0,2 \alpha-1,1)=V G_{n}(\alpha)\left(0 \leq \alpha<1, n \in \mathbb{N}_{0}\right)$;
(iii) $V G(0,0,(2 \alpha-1) \beta, \beta)=V P^{*}(\alpha, \beta)(0 \leq \alpha<1,0<\beta \leq 1)$;
(iv) $V G(0,0,((1+\mu) \alpha-1) \beta, \mu \beta)=V P^{*}(\alpha, \beta, \mu)(0 \leq \alpha<1,0<\beta \leq 1,0<\mu \leq 1)$;
(v) $V G(0, \lambda, A, B)=V R(\lambda, A, B)(\lambda \geq 0,-1 \leq A<B \leq 1,0<B \leq 1)$.

Some subclasses of analytic functions with varying arguments were itroduced and studied by various authors (see [3], [4] , [5] and [8]). In this paper we obtain coefficient bounds for functions in the class $V G(n, \lambda, A, B)$, further we obtain distortion bounds and the extreme points for functions in this class.

2. Coefficient estimates

Unless otherwise mentioned, we assume in the reminder of this paper that, $\lambda \geq 0$, $-1 \leq A<B \leq 1,0<B \leq 1, n \in \mathbb{N}_{0}$ and $z \in U$.
Theorem 1. Let the function $f(z)$ defined by (1.1) be in V. Then $f(z) \in V G(n, \lambda, A, B)$, if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n+1} C_{k}\left|a_{k}\right| \leq(B-A), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{k}=(1+B)[1+\lambda(k-1)] . \tag{2.2}
\end{equation*}
$$

Proof. Assume that $f(z) \in V G(n, \lambda, A, B)$. Then

$$
\begin{equation*}
h(z)=\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n} f(z)\right)^{\prime \prime}=\frac{1+A w(z)}{1+B w(z)} \tag{2.3}
\end{equation*}
$$

where

$$
w \in H=\{w \text { analytic, } w(0)=0 \text { and }|w(z)|<1, z \in U\}
$$

Thus we get

$$
w(z)=\frac{1-h(z)}{B h(z)-A}
$$

Therefore

$$
h(z)=1+\sum_{k=2}^{\infty} k^{n+1}[1+\lambda(k-1)] a_{k} z^{k-1}
$$

and $|w(z)|<1$ implies

$$
\begin{equation*}
\left|\frac{\sum_{k=2}^{\infty} k^{n+1}[1+\lambda(k-1)] a_{k} z^{k-1}}{(B-A)+B \sum_{k=2}^{\infty} k^{n+1}[1+\lambda(k-1)] a_{k} z^{k-1}}\right|<1 \tag{2.4}
\end{equation*}
$$

Since $f(z)$ lies in the class $V\left(\theta_{k}, \delta\right)$ for some sequence $\left\{\theta_{k}\right\}$ and a real number δ such that

$$
\theta_{k}+(k-1) \delta \equiv \pi(\bmod 2 \pi) \quad(k \geq 2)
$$

Set $z=r e^{i \delta}(\delta \in \mathbb{R})$ in (2.4), we get

$$
\begin{equation*}
\left|\frac{\sum_{k=2}^{\infty} k^{n+1}[1+\lambda(k-1)]\left|a_{k}\right| r^{k-1}}{(B-A)-B \sum_{k=2}^{\infty} k^{n+1}[1+\lambda(k-1)]\left|a_{k}\right| r^{k-1}}\right|<1 \tag{2.5}
\end{equation*}
$$

Since $\Re\{w(z)\}<|w(z)|<1$, we have

$$
\begin{equation*}
\Re\left\{\frac{\sum_{k=2}^{\infty} k^{n+1}[1+\lambda(k-1)]\left|a_{k}\right| r^{k-1}}{(B-A)-B \sum_{k=2}^{\infty} k^{n+1}[1+\lambda(k-1)]\left|a_{k}\right| r^{k-1}}\right\}<1 \tag{2.6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n+1} C_{k}\left|a_{k}\right| r^{k-1} \leq(B-A) \tag{2.7}
\end{equation*}
$$

Letting $r \longrightarrow 1^{-}$in (2.7), we get (2.1).
Conversely, $f(z) \in V$ and satisfies (2.1). Since $r^{k-1}<1$. So we have

$$
\begin{aligned}
& \left|\frac{\sum_{k=2}^{\infty} k^{n+1}[1+\lambda(k-1)] a_{k} z^{k-1}}{(B-A)+B \sum_{k=2}^{\infty} k^{n+1}[1+\lambda(k-1)] a_{k} z^{k-1}}\right| \\
& \leq \frac{\sum_{k=2}^{\infty} k^{n+1}[1+\lambda(k-1)] a_{k} z^{k-1}}{(B-A)-B \sum_{k=2}^{\infty} k^{n+1}[1+\lambda(k-1)] a_{k} z^{k-1}}<1,
\end{aligned}
$$

that is $f(z) \in V G(n, \lambda, A, B)$. This completes the proof of Theorem 1 .
Corollary 1. Let the function $f(z)$ defined by (1.1) be in the class $V G(n, \lambda, A, B)$. Then

$$
\left|a_{k}\right| \leq \frac{(B-A)}{k^{n+1} C_{k}}(k \geq 2)
$$

The result (2.1) is sharp for the function $f(z)$ defined by

$$
\begin{equation*}
f(z)=z+\frac{(B-A)}{k^{n+1} C_{k}} e^{i \theta_{k}} z^{k} \quad(k \geq 2) \tag{2.8}
\end{equation*}
$$

3. Distortion theorems

Theorem 2. Let the function $f(z)$ defined by (1.1) be in the class $V G(n, \lambda, A, B)$. Then

$$
\begin{equation*}
|z|-\frac{B-A}{2^{n+1} C_{2}}|z|^{2} \leq|f(z)| \leq|z|+\frac{B-A}{2^{n+1} C_{2}}|z|^{2} \tag{3.1}
\end{equation*}
$$

The result is sharp.
Proof. We employ the same technique as used by Silverman [11]. In view of Theorem 1, since

$$
\begin{equation*}
\Phi(k)=k^{n+1} C_{k} \tag{3.2}
\end{equation*}
$$

is an increasing function of $k(k \geq 2)$, we have

$$
\Phi(2) \sum_{k=2}^{\infty}\left|a_{k}\right| \leq \sum_{k=2}^{\infty} \Phi(k)\left|a_{k}\right| \leq(B-A),
$$

that is

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left|a_{k}\right| \leq \frac{(B-A)}{\Phi(2)} \leq \frac{(B-A)}{2^{n+1} C_{2}} \tag{3.3}
\end{equation*}
$$

Thus we have

$$
|f(z)| \leq|z|+\sum_{k=2}^{\infty}\left|a_{k}\right||z|^{k} \leq|z|+|z|^{2} \sum_{k=2}^{\infty}\left|a_{k}\right|
$$

Thus

$$
|f(z)| \leq|z|+\frac{(B-A)}{2^{n+1} C_{2}}|z|^{2}
$$

Similarly, we get

$$
|f(z)| \geq|z|-\sum_{k=2}^{\infty}\left|a_{k}\right||z|^{k} \geq|z|-|z|^{2} \sum_{k=2}^{\infty}\left|a_{k}\right|
$$

Thus

$$
|f(z)| \geq|z|-\frac{(B-A)}{2^{n+1} C_{2}}|z|^{2}
$$

This completes the proof of Theorem 2. Finally the result is sharp for the function

$$
\begin{equation*}
f(z)=z+\frac{(B-A)}{2^{n+1} C_{2}} e^{i \theta_{2}} z^{2} \tag{3.4}
\end{equation*}
$$

at $z= \pm|z| e^{-i \theta_{2}}$.
Corollary 2. Under the hypotheses of Theorem 2, $f(z)$ is included in a disc with center at the origin and radius r_{1} given by

$$
\begin{equation*}
r_{1}=1+\frac{(B-A)}{2^{n+1} C_{2}} \tag{3.5}
\end{equation*}
$$

Theorem 3. Let the function $f(z)$ defined by (1.1) be in the class $V G(n, \lambda, A, B)$. Then

$$
\begin{equation*}
1-\frac{(B-A)}{2^{n} C_{2}}|z| \leq\left|f^{\prime}(z)\right| \leq 1+\frac{(B-A)}{2^{n} C_{2}}|z| \tag{3.6}
\end{equation*}
$$

The result is sharp.
Proof. Similarly $\frac{\Phi(k)}{k}$ is an increasing function of $k(k \geq 2)$, where $\Phi(k)$ is defined by (3.2). In view of Theorem 1, we have

$$
\frac{\Phi(2)}{2} \sum_{k=2}^{\infty} k\left|a_{k}\right| \leq \sum_{k=2}^{\infty} \Phi(k)\left|a_{k}\right| \leq(B-A)
$$

that is

$$
\sum_{k=2}^{\infty} k\left|a_{k}\right| \leq \frac{(B-A)}{\Phi(2)} \leq \frac{(B-A)}{2^{n} C_{2}}
$$

Thus we have

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 1+|z| \sum_{k=2}^{\infty} k\left|a_{k}\right| \leq 1+\frac{(B-A)}{2^{n} C_{2}}|z| \tag{3.7}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq 1-|z| \sum_{k=2}^{\infty} k\left|a_{k}\right| \geq 1-\frac{(B-A)}{2^{n} C_{2}}|z| \tag{3.8}
\end{equation*}
$$

Finally, we can see that the assertions of Theorem 3 are sharp for the function $f(z)$ defined by (3.4). This completes the proof of Theorem 3.
Corollary 3. Under the hypotheses of Theorem $3, f^{\prime}(z)$ is included in a disc with center at the origin and radius r_{2} given by

$$
\begin{equation*}
r_{2}=1+\frac{(B-A)}{2^{n} C_{2}} \tag{3.9}
\end{equation*}
$$

4. Extreme points

Theorem 4. Let the function $f(z)$ defined by (1.1) be in the class $V G(n, \lambda, A, B)$, with $\arg a_{k}=\theta_{k}$, where $\theta_{k}+(k-1) \delta \equiv \pi(\bmod 2 \pi)(k \geq 2)$. Define

$$
f_{1}(z)=z
$$

and

$$
f_{k}(z)=z+\frac{(B-A)}{k^{n+1} C_{k}} e^{i \theta_{k}} z^{k} \quad(k \geq 2 ; z \in U) .
$$

Then $f(z) \in V G(n, \lambda, A, B)$ if and only if $f(z)$ can expressed in the form $f(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k}(z)$, where $\mu_{k} \geq 0$ and $\sum_{k=1}^{\infty} \mu_{k}=1$.
Proof. If $f(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k}(z)$ with $\mu_{k} \geq 0$ and $\sum_{k=1}^{\infty} \mu_{k}=1$, then

$$
\begin{aligned}
f(z) & =\mu_{1} f_{1}(z)+\sum_{k=2}^{\infty} \mu_{k} f_{k}(z) \\
& =z+\sum_{k=2}^{\infty} \mu_{k} \frac{(B-A)}{k^{n+1} C_{k}} e^{i \theta_{k}} z^{k}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sum_{k=2}^{\infty}\left(k^{n+1} C_{k}\right) e^{i \theta_{k}} \frac{(B-A)}{\left(k^{n+1} C_{k}\right) e^{i \theta_{k}}} \mu_{k}=\sum_{k=2}^{\infty}(B-A) \mu_{k} \\
= & \left(1-\mu_{1}\right)(B-A) \leq(B-A) .
\end{aligned}
$$

Hence $f(z) \in V G(n, \lambda, A, B)$.
Conversely, let the function $f(z)$ defined by (1.1) be in the class $V G(n, \lambda, A, B)$, define

$$
\mu_{k}=\frac{k^{n+1} C_{k}}{(B-A) e^{i \theta_{k}}} a_{k} \quad(k \geq 2)
$$

and

$$
\mu_{1}=1-\sum_{k=2}^{\infty} \mu_{k}
$$

From Theorem 1, $\sum_{k=2}^{\infty} \mu_{k} \leq 1$ and so $\mu_{1} \geq 0$. Since $\mu_{k} f_{k}(z)=\mu_{k} z+a_{k} z^{k}$, then

$$
\sum_{k=1}^{\infty} \mu_{k} f_{k}(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}=f(z)
$$

This completes the proof of Theorem 4.
Remarks. (i) Putting $\lambda=n=0, A=2 \alpha-1(0 \leq \alpha<1)$ and $B=1$ in all the above results, we obtain the corresponding results obtained by Srivastava and Owa [12];
(ii) Specializing the parameters λ, A, B and n, we obtain results corresponding to the classes $V R(\lambda, \alpha), V G_{n}(\alpha), V P^{*}(\alpha, \beta), V P^{*}(\alpha, \beta, \mu)$ and $V R(\lambda, A, B)$, mentioned in the introduction.

References

[1] H. S. Al-Amiri, On a subclass of close-to-convex functions with negative coefficients, Math. (Cluj), 31 (1989), no. 54, 1-7.
[2] O. Altintas, A subclass of analytic functions with negative coefficients, Hacettepe Bull. Natur. Sci. Engrg., 19 (1990), 15-24.
[3] J. Dziok, Certain inequalities for classes of analytic functions with varying argument of coefficients, Math. Inequal. Appl., 14 (2011), no. 2, 389-398.
[4] R. M. El-Ashwah, M. K. Aouf, A. A. M. Hassan and A. H. Hassan, Certain new classes of analytic functions with varying arguments, J. Complex Anal., (2013), Art. ID 95820, 1-5.
[5] R. M. El-Ashwah, M. K. Aouf, A. A. M. Hassan and A. H. Hassan, Multivalent functions with varying arguments, J. Classical Anal., (2013), (To appear).
[6] V. P. Gupta and P. K. Jain, Certain classes of univalent functions with negative coefficients II, Bull. Austral. Math. Soc., 15 (1976), 467-473.
[7] S. Owa and M. K. Aouf, On subclasses of univalent functions with negative coefficients II, Pure Appl. Math. Sci., 29 (1989), no. 1:2, 131-139.
[8] N. Ravikumar and S. Latha, Riemman-Liouvlle fractinal derviative with varying arguments, Mat. Vesnik, 1 (2012), no. 64, 17-23.
[9] G. S. Salagean, Subclasses of univalent function, Lecture Notes in Math. (Springer-Verlag) 1013 (1983), 368-372.
[10] S. M. Sarangi and B. A. Uralegaddi, The radius of convexity and starlikeness for certain classes of analytic functions with negative coefficients I, Rend. Acad. Naz. Lincei, 65 (1978), 38-42.
[11] H. Silverman, Univalent functions with varying arguments, Houston J. Math., 17(1981), 283-287.
[12] H. M. Srivastava and S. Owa, Certain classes of analytic functions with varying arguments, J. Math. Anal. Appl., 136 (1988), no. 1, 217-228.
M. K. Aouf, Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura 35516, Egypt

E-mail address: mkaouf127@yahoo.com
R. M. El-Ashwah, Department of Mathematics, Faculty of Science, University of Damietta, New Damietta 34517, Egypt

E-mail address: r_elashwah@yhoo.com
F. M. Abdulkarem, Department of Mathematics, Faculty of Science, University of Damietta, New Damietta 34517, Egypt

E-mail address: fammari76@gmail.com

