ON CERTAIN SUBCLASS OF p-VALENT FUNCTIONS DEFINED BY THE JUNG-KIM-SRIVASTAVA INTEGRAL OPERATOR

T. M. SEOUDY

Abstract

The purpose of the present paper is to introduce certain subclass of p-valent functions by using the Jung-Kim-Srivastava integral operator in the open unit disc and to obtain the sufficient conditions for this subclass.

1. Introduction

Let \mathcal{A}_{p} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}=\{1,2, \ldots\}) \tag{1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disc $U=\{z:|z|<1\}$. We write $\mathcal{A}_{1}=\mathcal{A}$.

A function $f \in \mathcal{A}_{p}$ is said to be in the class $S_{p}^{*}(\eta)$ of p-valent starlike functions of order η, if it satisfies the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\eta \quad(0 \leq \eta<p ; z \in U) \tag{2}
\end{equation*}
$$

Motivated essentially by Jung et al. [3], Shams et al. [5] introduced the integral operator $I_{p}^{\alpha}: \mathcal{A}_{p} \rightarrow \mathcal{A}_{p}$ as follows (see also Aouf et al. [1]):

$$
I_{p}^{\alpha} f(z)= \begin{cases}\frac{(p+1)^{\alpha}}{z \Gamma(\alpha)} \int_{0}^{z}\left(\log \frac{z}{t}\right)^{\alpha-1} f(t) d t & (\alpha>0 ; p \in \mathbb{N}) \tag{3}\\ f(z) & (\alpha=0 ; p \in \mathbb{N})\end{cases}
$$

For $f \in \mathcal{A}_{p}$ given by (1), then from (3), we deduce that

$$
\begin{equation*}
I_{p}^{\alpha} f(z)=z^{p}+\sum_{n=k}^{\infty}\left(\frac{p+1}{n+1}\right)^{\alpha} a_{p+n} z^{p+n} \quad(\alpha \geq 0 ; p \in \mathbb{N}) \tag{4}
\end{equation*}
$$

Using the above relation, it is easy to verify the identity:

$$
\begin{equation*}
z\left(I_{p}^{\alpha} f(z)\right)^{\prime}=(p+1) I_{p}^{\alpha-1} f(z)-I_{p}^{\alpha} f(z) \tag{5}
\end{equation*}
$$

[^0]We note that the one-parameter family of integral operator $I_{1}^{\alpha}=I^{\alpha}$ was defined by Jung et al. [3].
Definition 1. A function $f \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{S}_{p}^{*}(\alpha, \eta)$ if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I_{p}^{\alpha} f(z)}{I_{p}^{\alpha+1} f(z)}\right\}>\frac{\eta}{p}(0 \leq \eta<p ; p \in \mathbb{N} ; \alpha \geq 0 ; z \in U) \tag{6}
\end{equation*}
$$

Putting $p=1$ in (6), then the class $\mathcal{S}_{1}^{*}(\alpha, \eta)$ reduces to the class $\mathcal{S}^{*}(\alpha, \eta)$, which is defined by:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I^{\alpha} f(z)}{I^{\alpha+1} f(z)}\right\}>\eta(0 \leq \eta<1 ; \alpha \geq 0 ; z \in U) \tag{1.7}
\end{equation*}
$$

In the present paper, our aim is to determine sufficient conditions for a function $f \in \mathcal{A}_{p}$ to be a member of the class $\mathcal{S}_{p}^{*}(\alpha, \eta)$.

2. Main Results involving the operator I_{p}^{α}

We begin by recalling the following result (Jack's Lemma), which we shall apply in proving our results below.
Lemma 1 ([2] and see also [4]). Suppose $w(z)$ be a not constant analytic function in U with $w(0)=0$. If $|w(z)|$ attains its maximum value at a point $z_{0} \in U$ on the circle $|z|=r<1$, then $z_{0} w^{\prime}\left(z_{0}\right)=\zeta w\left(z_{0}\right)$, where $\zeta \geq 1$ is some real number.
Theorem 1. If $f \in \mathcal{A}_{p}$ satisfies the following condition:

$$
\begin{equation*}
\left|\frac{I_{p}^{\alpha} f(z)}{I_{p}^{\alpha+1} f(z)}-1\right|^{\gamma}\left|\frac{I_{p}^{\alpha-1} f(z)}{I_{p}^{\alpha} f(z)}-1\right|^{\delta}<M_{p}(\alpha, \eta, \delta, \gamma) \quad(z \in U) \tag{7}
\end{equation*}
$$

for some real numbers η, δ and γ such that $0 \leq \eta<p, \delta+\gamma \geq 0, \alpha \geq 1$ and $p \in \mathbb{N}$, then $f \in \mathcal{S}_{p}^{*}(\alpha, \eta)$, where

$$
M_{p}(\alpha, \eta, \delta, \gamma)= \begin{cases}\left(1-\frac{\eta}{p}\right)^{\gamma}\left(1-\frac{\eta}{p}+\frac{1}{2(p+1)}\right)^{\delta} & \left(0 \leq \eta \leq \frac{p}{2}\right) \tag{8}\\ \left(1-\frac{\eta}{p}\right)^{\delta+\gamma}\left(\frac{p+2}{p+1}\right)^{\delta} & \left(\frac{p}{2} \leq \eta<p\right)\end{cases}
$$

Proof. Case (i) Let $0 \leq \eta \leq \frac{p}{2}$. Define a function $w(z)$ as

$$
\begin{equation*}
\frac{I_{p}^{\alpha} f(z)}{I_{p}^{\alpha+1} f(z)}=\frac{1+\left(1-\frac{2 \eta}{p}\right) w(z)}{1-w(z)} \quad(w(z) \neq 1 ; z \in U) \tag{9}
\end{equation*}
$$

Then w is analytic in $U, w(0)=0$ in U. Differentiating (9) logarithmically with respect to z and multiplying the resulting equation by z, we have

$$
\begin{equation*}
\frac{z\left(I_{p}^{\alpha} f(z)\right)^{\prime}}{I_{p}^{\alpha} f(z)}-\frac{z\left(I_{p}^{\alpha+1} f(z)\right)^{\prime}}{I_{p}^{\alpha+1} f(z)}=\frac{\left(1-\frac{2 \eta}{p}\right) z w^{\prime}(z)}{1+\left(1-\frac{2 \eta}{p}\right) w(z)}+\frac{z w^{\prime}(z)}{1-w(z)} \tag{10}
\end{equation*}
$$

By using (5), we obtain

$$
\begin{gather*}
(p+1) \frac{I_{p}^{\alpha-1} f(z)}{I_{p}^{\alpha} f(z)}-(p+1) \frac{I_{p}^{\alpha} f(z)}{I_{p}^{\alpha+1} f(z)}=\frac{2\left(1-\frac{\eta}{p}\right) z w^{\prime}(z)}{\left[1+\left(1-\frac{2 \eta}{p}\right) w(z)\right][(1-w(z)]}, \\
\frac{I_{p}^{\alpha-1} f(z)}{I_{p}^{\alpha} f(z)}=1+\frac{2\left(1-\frac{\eta}{p}\right) w(z)}{1-w(z)}+\frac{2\left(1-\frac{\eta}{p}\right) z w^{\prime}(z)}{(p+1)\left[1+\left(1-\frac{2 \eta}{p}\right) w(z)\right][(1-w(z)]} \\
\frac{2\left(1-\frac{\eta}{p}\right) w(z)}{I_{p}^{\alpha-1} f(z)} \tag{11}\\
I_{p}^{\alpha} f(z) \\
1-1=\frac{1-w(z)}{2\left(1-\frac{\eta}{p}\right) z w^{\prime}(z)} \\
(p+1)\left[1+\left(1-\frac{2 \eta}{p}\right) w(z)\right][(1-w(z)]
\end{gather*}
$$

and

$$
\frac{I_{p}^{\alpha} f(z)}{I_{p}^{\alpha+1} f(z)}-1=\frac{2\left(1-\frac{\eta}{p}\right) w(z)}{1-w(z)}
$$

Thus, we have

$$
\begin{aligned}
& \left|\frac{I_{p}^{\alpha} f(z)}{I_{p}^{\alpha+1} f(z)}-1\right|^{\gamma}\left|\frac{I_{p}^{\alpha-1} f(z)}{I_{p}^{\alpha} f(z)}-1\right|^{\delta} \\
= & \left|\frac{2\left(1-\frac{\eta}{p}\right) w(z)}{1-w(z)}\right|^{\gamma}\left|\frac{2\left(1-\frac{\eta}{p}\right) w(z)}{1-w(z)}+\frac{2\left(1-\frac{\eta}{p}\right) z w^{\prime}(z)}{(p+1)\left[1+\left(1-\frac{2 \eta}{p}\right) w(z)\right][(1-w(z)]}\right|^{\prime} \\
= & \left|\frac{2\left(1-\frac{\eta}{p}\right) w(z)}{1-w(z)}\right|^{\gamma+\delta}\left|1+\frac{z w^{\prime}(z)}{(p+1)\left[1+\left(1-\frac{2 \eta}{p}\right) w(z)\right] w(z)}\right|
\end{aligned}
$$

Suppose that there exists a point $z_{0} \in U$ such that $\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$.
Then by using Lemma 1, we have $w\left(z_{0}\right)=e^{i \theta}(0<\theta \leq 2 \pi)$ and $z_{0} w^{\prime}\left(z_{0}\right)=\zeta w\left(z_{0}\right)$,
$\zeta \geq 1$. Therefore

$$
\begin{aligned}
& \left|\frac{I_{p}^{\alpha} f\left(z_{0}\right)}{I_{p}^{\alpha+1} f\left(z_{0}\right)}-1\right|^{\gamma}\left|\frac{I_{p}^{\alpha-1} f\left(z_{0}\right)}{I_{p}^{\alpha} f\left(z_{0}\right)}-1\right|^{\delta} \\
= & \left|\frac{2\left(1-\frac{\eta}{p}\right) w\left(z_{0}\right)}{1-w\left(z_{0}\right)}\right|^{\gamma+\delta}\left|1+\frac{\zeta w\left(z_{0}\right)}{(p+1)\left[1+\left(1-\frac{2 \eta}{p}\right) w\left(z_{0}\right)\right] w\left(z_{0}\right)}\right|^{\delta} \\
= & \frac{2^{\delta+\gamma}\left(1-\frac{\eta}{p}\right)^{\delta+\gamma}}{\left|1-e^{i \theta}\right|^{\delta+\gamma}}\left|1+\frac{\zeta}{(p+1)\left[1+\left(1-\frac{2 \eta}{p}\right) e^{i \theta}\right]}\right|^{\delta} \\
\geq & \left(1-\frac{\eta}{p}\right)^{\delta+\gamma}\left(1+\frac{\zeta}{2(p+1)\left(1-\frac{\eta}{p}\right)}\right)^{\delta} \\
\geq & \left(1-\frac{\eta}{p}\right)^{\delta+\gamma}\left(1+\frac{1}{2(p+1)\left(1-\frac{\eta}{p}\right)}\right)^{\delta} \\
= & \left(1-\frac{\eta}{p}\right)^{\gamma}\left(1-\frac{\eta}{p}+\frac{1}{2(p+1)}\right)^{\delta}
\end{aligned}
$$

which contradicts (7) for $0 \leq \eta \leq \frac{p}{2}$. Therefore, we must have $|w(z)|<1$ for all $z \in U$ and hence $f \in \mathcal{S}_{p}^{*}(\alpha, \eta)$.

Case (ii) When $\frac{p}{2} \leq \eta<p$. Let $w(z)$ be defined by

$$
\frac{I_{p}^{\alpha} f(z)}{I_{p}^{\alpha+1} f(z)}=\frac{\frac{\eta}{p}}{\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w(z)} \quad(z \in U)
$$

where $w(z) \neq \frac{\eta}{p-\eta}$ in U. Then $w(z)$ is analytic in U and $w(0)=0$. Proceeding as in Case (i) and using (5), we have

$$
\begin{gathered}
\frac{z\left(I_{p}^{\alpha} f(z)\right)^{\prime}}{I_{p}^{\alpha} f(z)}-\frac{z\left(I_{p}^{\alpha+1} f(z)\right)^{\prime}}{I_{p}^{\alpha+1} f(z)}=\frac{\left(1-\frac{\eta}{p}\right) z w^{\prime}(z)}{\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w(z)} \\
(p+1) \frac{I_{p}^{\alpha-1} f(z)}{I_{p}^{\alpha} f(z)}-(p+1) \frac{I_{p}^{\alpha} f(z)}{I_{p}^{\alpha+1} f(z)}=\frac{\left(1-\frac{\eta}{p}\right) z w^{\prime}(z)}{\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w(z)}
\end{gathered}
$$

$$
\begin{gathered}
\frac{I_{p}^{\alpha-1} f(z)}{I_{p}^{\alpha} f(z)}=\frac{\frac{\eta}{p}}{\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w(z)}+\frac{\left(1-\frac{\eta}{p}\right) z w^{\prime}(z)}{(p+1)\left[\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w(z)\right]}, \\
\frac{I_{p}^{\alpha-1} f(z)}{I_{p}^{\alpha} f(z)}-1=\frac{\left(1-\frac{\eta}{p}\right) w(z)}{\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w(z)}+\frac{\left(1-\frac{\eta}{p}\right) z w^{\prime}(z)}{(p+1)\left[\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w(z)\right]},
\end{gathered}
$$

and

$$
\frac{I_{p}^{\alpha} f(z)}{I_{p}^{\alpha+1} f(z)}-1=\frac{\left(1-\frac{\eta}{p}\right) w(z)}{\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w(z)} .
$$

Then we have

$$
\begin{aligned}
& \left|\frac{I_{p}^{\alpha} f(z)}{I_{p}^{\alpha+1} f(z)}-1\right|^{\gamma}\left|\frac{I_{p}^{\alpha-1} f(z)}{I_{p}^{\alpha} f(z)}-1\right|^{\delta} \\
= & \left|\frac{\left(1-\frac{\eta}{p}\right) w(z)}{\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w(z)}\right|^{\gamma}\left|\frac{\left(1-\frac{\eta}{p}\right) w(z)}{\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w(z)}+\frac{\left(1-\frac{\eta}{p}\right) z w^{\prime}(z)}{(p+1)\left[\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w(z)\right]}\right|^{\delta} \\
= & \left|\frac{\left(1-\frac{\eta}{p}\right) w(z)}{\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w(z)}\right|^{\gamma+\delta}\left|1+\frac{z w^{\prime}(z)}{(p+1) w(z)}\right|^{\delta} .
\end{aligned}
$$

Suppose that there exists a point $z_{0} \in U$ such that $\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$, then by using Lemma 1 , we obtain $w\left(z_{0}\right)=e^{i \theta}$ and $z_{0} w^{\prime}\left(z_{0}\right)=\zeta w\left(z_{0}\right), \zeta \geq 1$. Therefore

$$
\begin{aligned}
\left|\frac{I_{p}^{\alpha} f\left(z_{0}\right)}{I_{p}^{\alpha+1} f\left(z_{0}\right)}-1\right|^{\gamma}\left|\frac{I_{p}^{\alpha-1} f\left(z_{0}\right)}{I_{p}^{\alpha} f\left(z_{0}\right)}-1\right|^{\delta} & =\left|\frac{\left(1-\frac{\eta}{p}\right) w\left(z_{0}\right)}{\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) w\left(z_{0}\right)}\right|^{\gamma+\delta}\left|1+\frac{\zeta w\left(z_{0}\right)}{(p+1) w\left(z_{0}\right)}\right|^{\delta} \\
& \geq \frac{\left(1-\frac{\eta}{p}\right)^{\gamma+\delta}}{\left|\frac{\eta}{p}-\left(1-\frac{\eta}{p}\right) e^{i \theta}\right|}\left|1+\frac{\zeta}{p+1}\right|^{\delta} \\
& \geq\left(1-\frac{\eta}{p}\right)^{\gamma+\delta}\left(1+\frac{1}{p+1}\right)^{\delta} \\
& =\left(1-\frac{\eta}{p}\right)^{\gamma+\delta}\left(\frac{p+2}{p+1}\right)^{\delta}
\end{aligned}
$$

which contradicts (7) for $\frac{p}{2} \leq \eta<p$. Therefore, we must have $|w(z)|<1$ for all $z \in U$ and hence $f \in \mathcal{S}_{p}^{*}(\alpha, \eta)$. This completes the proof of Theorem 1.

Putting $p=1$ in Theorem 1, we obtain the following corollary.
Corollary 1. If the function $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left|\frac{I^{\alpha} f(z)}{I^{\alpha+1} f(z)}-1\right|^{\gamma}\left|\frac{I^{\alpha-1} f(z)}{I^{\alpha} f(z)}-1\right|^{\delta}<\mathcal{K}(\alpha, \eta, \delta, \gamma) \quad(z \in U) \tag{12}
\end{equation*}
$$

for some real numbers η, δ and γ such that $0 \leq \eta<1, \delta+\gamma \geq 0$ and $\alpha \geq 1$, then $f \in \mathcal{S}^{*}(\alpha, \eta)$, where $\mathcal{K}(\alpha, \eta, \delta, \gamma)$ is given by

$$
\mathcal{K}(\alpha, \eta, \delta, \gamma)= \begin{cases}(1-\eta)^{\gamma}\left(1-\eta+\frac{1}{4}\right)^{\delta} & \left(0 \leq \eta \leq \frac{1}{2}\right) \tag{13}\\ (1-\eta)^{\delta+\gamma}\left(\frac{3}{2}\right)^{\delta} & \left(\frac{1}{2} \leq \eta<1\right)\end{cases}
$$

References

[1] M. K. Aouf, T. Bulboaca and A. O. Mostafa, Subordination properties of subclasses of p-valent functions involving certain integral operator, Publ. Math. Debrecen 37/3-4(2008), 401-416.
[2] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc., 3 (1971), 469-474.
[3] T. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147.
[4] S. S. Miller and P. T. Mocanu, Second-order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
[5] S. Shams, S. R. Kulkarni and Jay M. Jahangir, Subordination properties for $p-$ valent functions defined by integral operators, Internat. J. Math. Math. Sci. Vol. 2006, Art. ID 94572, 1-3.
T. M. Seoudy

Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt

E-mail address: tms00@fayoum.edu.eg

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. p-valent function, analytic function, starlike function, integral operator.

 Submitted March 26, 2013.

