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PRICING CORPORATE DEFAULTABLE BOND USING

DECLARED FIRM VALUE

HYONG-CHOL O, JONG-JUN JO AND CHOL-HO KIM

Abstract. We study the pricing problem for corporate defaultable bond from

the viewpoint of the investors outside the firm that could not exactly know
about the information of the firm. We consider the problem for pricing of
corporate defaultable bond in the case when the firm value is only declared
in some fixed discrete time and unexpected default intensity is determined by

the declared firm value. Here we provide a partial differential equation model
for such a defaultable bond and give its pricing formula. Our pricing model
is derived to solving problems of partial differential equations with random

constants (default intensity) and terminal values of binary types. Our main
method is to use the solving method of a partial differential equation with a
random constant in every subinterval and to take expectation to remove the
random constants.

1. Introduction

There are two main approaches to pricing defaultable corporate bonds; one is
the structural approach and the other one is the reduced form approach.

In the structural method, we think that the default event occurs when the firm
value is not enough to repay debt, that is, when the firm value reaches a certain
lower threshold (called default barrier) from the above. Such a default can be ex-
pected and thus we call it expected default.

In the reduced-form approach, the default is treated as an unpredictable event
governed by default intensity process. In this case, the default event can occur
without any correlation with the firm value and such a default is called unexpected
default. In the reduced-form approach, if the default probability in time interval
[t, t+∆t] is λ∆t, then λ is called a default intensity.

If an investor knows all information about the firm value and default barrier in
every time, then it is better for him to use the structural approach. If an investor
can not exactly know about the firm value or default barrier, then he needs to use
reduced form model.

Nowadays, the use of unified models of structural approach and reduced-form
approach is a trend [2, 3, 4, 5, 7, 9]. For example, using unified models of structural
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approach and reduced-form approach, Realdon [9] studied a pricing of corporate
bonds in the case with constant default intensity and gave pricing formulae of the
bond using PDE method. Cathcart et al. [4] studied a pricing of corporate bonds
in the case when the default intensity is a linear function of the interest rate. They
gave a semi-analytical pricing formula. Cathcart et al.[5] presented a valuation
model that combines features of both the structural and reduced-form approaches
for modeling default risk. In [5] the default intensity is a linear function of the
state variable and the interest rate and they found that term structures of credit
spreads generated using the middle-way approach were more in line with empiri-
cal observations. Other authors studied the pricing model of defaultable bonds in
which the default intensity is given as a stochastic process [2, 3, 7, 9, 10]. In [7],
the authors provided analytical pricing formula of corporate defaultable bond with
both expected and unexpected defaults in the case when stochastic default inten-
sity follows one of 3 special cases of Wilmott model [10]. Bi et al. [3] provided the
similar result with [7] in the case when stochastic default intensity follows CIR-like
model. Ballestra et al. [2] proposed a new model to price defaultable bonds which
incorporates features of both structural and reduced-form models of credit risk
where default intensity is described by an additional stochastic differential equa-
tion coupled with the process of the firm’s asset value, and provided a closed-form
approximate solution to their model.

In the papers [2, 3, 4, 5, 7, 9], they tried to express the price of the bond in terms
of the firm value or the related signal variable to the firm value and the values of
default intensity and defaul barrier at any time in the whole lifetime of the bond.

On the other hand, every company announces its management data once in a
certain term (for example, every quarter or every six months) and the announced
data reflect the firm’s financial circumstances. It is difficult for investors outside
of the firm to know the firm’s financial data except for these discrete announcing
dates.

According to this circumstance, in this paper we study the pricing problem for
defaultable corporate bond from the viewpoint of the investors outside the firm
that could only know the time-discretely announced information of the firm. We
assume that we only know the firm value and the default barrier at several fixed
discrete announcing dates and we dont know about any information of the firm
value in another time. We assume that the default intensity between the adjoined
two announcing dates is determined by its announced firm value at the former an-
nouncing date and it is not changed in that time interval. And we assume that
the firm value follows a geometric Brownian motion. (This problem was studied in
[8] but it included an error in deriving the pricing formula.) Such an approach is
a kind of study of defaultable bond under insufficient information about the firm
and it is interesting to note that Agliardi et al. [1] studied bond pricing problem
under imprecise information with the technique of fuzzy mathematics.

In this paper, when pricing corporate defaultable bond, we use the reduced form
approach on every time interval between the adjoined two announcing dates and
use the structural approach at the announcing dates. And although we take the
unexpected default intensity as a constant, but we assume that the unexpected
default intensity between the adjoined two announcing dates depends on its an-
nounced firm value at the former announcing date. Thus we try to use all available
information we can get. We suppose such an approach would comparatively be



EJMAA-2014/2(1) PRICING CORPORATE DEFAULTABLE BOND ... 3

reasonable.
Characteristics of our model are 1) the starting point is the viewpoint of in-

vestors outside of the firm that could not exactly know the firm value and default
information; 2) our model is one of structural-reduced form unified model.

In our model, the short rate follows a generalized Hull-White model. The de-
fault event occurs in expected manner when the firm value reaches a certain lower
threshold - the default barrier at one of the announcing dates or in unexpected
manner at the first jump time of a Poisson process with intensity, respectively.
Then our pricing problem is derived to a solving problem of PDE with random
constant default intensity and terminal value of binary type in every subinterval
between the two adjoined announcing dates.

Our main method to solve this problem is to use the solving method of a partial
differential equation with a random constant in every subinterval between the two
adjoined announcing dates and to take expectation to remove the random constant.

The remainder of the article is organized as follows: in section 2 we provide our
modeling on corporate bond problem and give the pricing formula. In section 3 we
prove the pricing formula.

2. Modeling and the Pricing Formula

Assumptions
1) A firm issues a corporate bond with maturity T and maturity face value 1.
2) Let 0 = t0 < t1 < · · · < tN − 1 < tN = T . At every time ti, the firm value

Vi = V (ti) is revaluated and announced. The firm value V (t) follows a geometric
Brown motion

dV (t) = (µ− b)V (t)dt+ sV V (t)dW1(t)

under the risk neutral martingale measure. (µ, b and sV are constants and W1(t)
is an 1-dimensional standard Wiener process.) The firm continuously pays out
dividend in rate b for a unit of firm value.

3) The unexpected default probability in the interval [t, t+∆t]∩ [ti, ti+1) is λi∆t,
and the default intensity λi is a known deterministic function of the firm value Vi

at the time ti. For example, if we can assume that λi = λ(Vi) = ln(1+ 1
Vi
), then λi

goes to 0 when V goes to infinity. This can be compatible with the real situations.
4) Short rate satisfies the following condition under the risk neutral martingale

measure:
drt = ar(r, t)dt+ sr(t)dW2(t), ar(r, t) = a1(t)− a2(t)r. (1)

Here W2(t) is an 1-dimensional standard Wiener process.
5) The unexpected default recovery Rud is given by Ru · Z(r, t) (exogenous re-

covery). Here recovery rate 0 ≤ Ru ≤ 1 is a constant and Z(r, t) is the price of the
default free zero coupon bond.

6) The expected default barrier is only given at the time ti. Expected default
event occurs when V (ti) ≤ Ki. Here Ki is a constant and the expected default
recovery Red is given by Re · Z(r, t), where recovery rate 0 ≤ Re ≤ 1 is a constant.

Method of Modeling
For simplicity, we assume that N = 2. From assumption 3), after the time t1

the unexpected default intensity λ1 = λ(V1) in the subinterval (t1, T ] is a known
constant and there is no any expected default in the open interval (t1, T ). And
at the time t = T expected default event occurs when V2 < K2. So under the
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condition that the firm value V1 at the time t1 is already known, the bond price
C1(r, t;V2|V1) in the interval (t1, T ] (when we regard the firm value V2 at the time
t2 = T as a known quantity) can be seen as a derivative of short rate with the
constant default intensity λ(V1) and it satisfies the following reduced-form model
[10]:

∂C1

∂t
+

s2r(t)

2

∂2C1

∂r2
+ ar(r, t)

∂C1

∂r
− rC1 + λ(V1)(RuZ(r, t)− C1) = 0, (2)

C1(r, t2) = C1(r, t2;V2|V1) =

{
1 if V2 > K2,
Re if V2 ≤ K2.

(3)

Here Z(r, t) is default free zero coupon bond price and V2 at the time t < T is,
in fact, an unknown random parameter. We solve the problem (2), (3) to get the
function C1(r, t;V2|V1).

From the assumption 2) we can get the distribution of V2 under the condition
that V1 is known, and thus taking expectation in C1(r, t;V2|V1) on V2 we can get
our bond price C(r, t;V1) in the interval (t1, T ].

In the interval [0, t1] the unexpected default intensity λ(V0) is a known constant
and at the time t = t1 expected default event occurs when V1 < K1. So for every
fixed firm value V1 (at the time t1) the bond price C0(r, t;V1|V0) in the interval
[0, t1] satisfies the following reduced-form model:

∂C0

∂t
+

s2r(t)

2

∂2C0

∂r2
+ ar(r, t)

∂C0

∂r
− rC0 + λ(V0)(RuZ(r, t)− C0) = 0, (4)

C0(r, t1) = C0(r, t1;V1|V0) =

{
C(r, t1;V1) if V1 > K1,
ReZ(r, t1) if V1 ≤ K1.

(5)

Here V1 at the time t < t1 is in fact an unknown random parameter, too.
If we solve the problem (4), (5) to get the function C0(r, t;V1|V0) and take ex-

pectation on V1, then we can get our bond price C(r, t;V0) in the interval [0, t1).
V2 in the problem (4), (5) and V1 in the problem (2), (3) are random constants

independent on the variables r and t of our equation. Thus the problem (2), (3)
and the problem (4), (5) are terminal problems of partial differential equations
with random parameters. And the terminal value conditions (3) and (5) are the
functions of binary type that alternatively take two values on conditions.

The bond price C(r, t;V0) in the interval [0, t1) depends on not only the short
rate r and t but also the initial firm value V0 (at t = 0) and default barriers K1,K2.

The Pricing Formula
We have the following pricing formula in the time interval [0, t1):

C(r, t;V0,K1,K2) =

= Z(r, t){e−λ(V0)(t1−t)[RuN2(α1, α2 : A) +RuReN2(α1,−α2 : Ã) + I22 + I24]

+ [1− e−λ(V0)(t1−t)]RuN(α1) + [Ru + (1−Ru)e
−λ(V0)(t1−t)]ReN(−α1)}. (6)
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Here Z(r, t) is the price of risk free bond given in the next section and

N2(a, b : A) =

√
detA

2π

∫ a

−∞

∫ b

−∞
e−

1
2 ξ

⊥·Aξdxdy, ξ = (x, y)⊥,

α1 =
1

sV
√
t1

[
ln

V0

K1
+ (µ− b− s2V

2
)t1

]
,

α2 =
1

sV
√
t2 − t1

[
ln

V0

K2
+ (µ− b− s2V

2
)t2

]
,

A =

 t2
t2−t1

√
t1

t2−t1√
t1

t2−t1
1

 , Ã =

 t2
t2−t1

−
√

t1
t2−t1

−
√

t1
t2−t1

1

 ,

N(a) =
1√
2π

∫ a

−∞
e−

1
2x

2

dx,

I22 = (1−Ru)
1√
2π

∫ α1

−∞
F (x)N

(
α2 + x

√
t1

t2 − t1

)
e−

x2

2 dx,

I24 = (1−Ru)Re
1√
2π

∫ α1

−∞
F (x)N

(
−α2 − x

√
t1

t2 − t1

)
e−

x2

2 dx,

Here

F (x) = exp

{
−(t2 − t1)λ

(
V0e

(
µ−b− s2V

2

)
t1+sV x

√
t1

)}
,

A proof of the formula (6) is provided in appendix.

3. Appendix: Proof of the Pricing Formula

Here we prove the formula (6).
Under the assumption 4) in the domain K = {(r, t)|r ∈ R, t ∈ [0, T ]}, the price

Z(r, t) of risk free bond satisfies the following problem:

∂Z

∂t
+

s2r(t)

2

∂2Z

∂r2
+ ar(r, t)

∂Z

∂r
− rZ = 0, Z(r, T ) = 1. (7)

The solution is given by
Z(r, t) = eA(t)−B(t)r, (8)

Here A(t) and B(t) are differently given dependant on the specific models (including
Vasicek, Ho-Lee and Hull-Whitemodels) of short rate [10]. For example, if the short
rate satisfies the Vasicek model, that is, if the coefficients a1(t), a2(t), sr(t) in (1)
are all constants a1, a2, sr, then A(t) and B(t) are given as follows [10]:

B(t) =
1− e−a2(T−t)

a2
, A(t) = −

∫ T

t

[a2B(u)− 1

2
s2rB

2(u)]du.

Solving the problem (2) and (3)
In (2) and (3) we use the unknown function transformation C1(r, t) = u1(t)Z(r, t)

and consider the equation (7) and the relation (8), then we have the following
equation with u1(t) as an unknown function:

du1

dt
− λ(V1)u1 + λ(V1)Ru = 0, (t1 < t < t2 = T ),

u1(T ) =

{
1 if V2 > K2,
Re if V2 ≤ K2.



6 HYONG-CHOL O, JONG-JUN JO AND CHOL-HO KIM EJMAA-2014/2(1)

It is an initial value problem of an ordinary differential equation and the solution
is easily given by

u1(t) =

{
Ru + (1−Ru)e

−λ(V1)(t2−t) if V2 > K2,
Ru + (Re −Ru)e

−λ(V1)(t2−t) if V2 ≤ K2.

Thus the solution to (2) and (3) is given by

C1(r, t;V2|V1) =

{
Z(r, t)[Ru + (1−Ru)e

−λ(V1)(t2−t)] if V2 > K2,
Z(r, t)[Ru + (Re −Ru)e

−λ(V1)(t2−t)] if V2 ≤ K2.
(9)

The price of the Bond in the time interval (t1, T ]
From the assumption 2) we have

Vt = Vs exp

[
(µ− b− s2V

2
)(t− s) + sV (W1t −W1s)

]
,

Prob{W1t −W1s ∈ A} =

∫
A

1√
2π(t− s)

exp

[
− x2

2(t− s)

]
dx.

Thus we have

Prob{V2 > K2} =

∫ ∞

− 1
sV

[ln
V1
K2

+(µ−b−
s2
V
2 )(t2−t1)]

1√
2π(t2 − t1)

exp

[
− x2

2(t2 − t1)

]
dx

=

∫ 1

sV
√

t2−t1
[ln

V1
K2

+(µ−b− s2V
2 )(t2−t1)]

−∞

1√
2π

exp

[
−x2

2

]
dx.

If in the above expression we use the cumulated distribution function N(a) =
1√
2π

∫ a

−∞ e−
1
2x

2

dx of standard normal distribution and the notation of

d−(x/K, µ, T − t) =
ln x

K + (µ− b− s2V
2 )(T − t)

sV
√
T − t

,

then we can get Prob{V2 > K2} = N [d−(V1/K2, µ, t2 − t1)] and similarly we have
Prob{V2 ≤ K2} = N [−d−(V1/K2, µ, t2 − t1)].

We take expectation in (9) to remove the random constant V2, then we have the
price C(r, t : V1) of our bond in the interval [t1, T ]:

C(r, t : V1) = Z(r, t)
[
Ru + (1−Ru)e

−λ(V1)(t2−t)
]{

N

[
d−

(
V1

K2
, µ, t2 − t1

)]
+

+ ReN

[
−d−

(
V1

K2
, µ, t2 − t1

)]}
In particular, if we denote

f(V1) =
[
Ru + (1−Ru)e

−λ(V1)(t2−t1)
]{

N

[
d−

(
V1

K2
, µ, t2 − t1

)]
+

+ ReN

[
−d−

(
V1

K2
, µ, t2 − t1

)]}
(10)

then at the time t1 we have

C(r, t1 : V1) = Z(r, t1)f(V1).
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Solving of (4) and (5)
Now we know the price C(r, t1 : V1) of our bond at the time t1 and thus the

problem (4) and (5) on the interval [0, t1] is written as follows:

∂C0

∂t
+

s2r(t)

2

∂2C0

∂r2
+ ar(r, t)

∂C0

∂r
− rC0 + λ(V0)(RuZ(r, t)− C0) = 0, (11)

C0(r, t1) =

{
Z(r, t1)f(V1) if V1 > K1,
ReZ(r, t1) if V1 ≤ K1.

(12)

V0 is known in the interval [0, t1], so λ(V0) is known constant. But V1 is a random
parameter in the interval [0, t1). For every fixed V1, when V1 ≤ K1, we use the
same method as the above to get the solution of (11) and (12):

C0(r, t;V1 ≤ K1|V0) = Z(r, t)[Ru + (Re −Ru)e
−λ(V0)(t1−t)], 0 ≤ t < t1. (13)

Similarly, when V1 > K1, we can get

C0(r, t;V1 > K1|V0) = Z(r, t)[Ru + (f(V1)−Ru)e
−λ(V0)(t1−t)], 0 ≤ t < t1. (14)

The price of the bond in time interval [0, t1]
We add (13) and (14) after taking expectation on V1 to remove it in (13) and

(14), then we have the price in the time interval [0, t1]. As (13) does not include
V1 and we already knew

Prob{V1 ≤ K1} = N [−d−(V0/K1, µ, t1)],

as the above, we easily get the expectation of (13):

E(C0(r, t;V1 ≤ K1|V0)) =

= ReZ(r, t)
[
Ru + (1−Ru)e

−λ(V0)(t1−t)
]
N

[
−d−

(
V0

K1
, µ, t1

)]
. (15)

Now we calculate the expectation E(C0(r, t;V1 > K1|V0)) of (14). Unlike (13),
C0(r, t;V1 > K1|V0) is a function of V1, and so we denote

g(V1) = g(r, t, V0;V1) := C0(r, t;V1 > K1|V0).

From the assumption 2),

V1 = V0 exp

[(
µ− b− s2V

2

)
t1 + sV W1t1

]
(16)

and thus g(V1) is written as

g(r, t, V0;V1) = g

(
r, t, V0;V0e

(
µ−b− s2V

2

)
t1+sV W1t1

)
.

And we note that Prob{W1t ∈ A} =
∫
A

1√
2πt

exp
[
−x2

2t

]
dx, and V1 > K1 ⇐⇒

W1t > − 1
sV

[
ln V0

K1
+
(
µ− b− s2V

2

)
t1

]
. Thus we have

E(C0(r, t;V1 > K1|V0)) =

=
1√
2πt1

∫ 1
sV

[
ln

V0
K1

+(µ−b− s2V
2 )t1

]
−∞

g

(
r, t, V0;V0e

(µ−b− s2V
2 )t1+sV x

)
e−

x2

2t1 dx (17)
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In order to calculate the integral of (17), we need to get the representation of the
function

G(x) = g

(
r, t, V0;V0e

(µ−b− s2V
2 )t1+sV x

)
in the integrand in (17). From the definition of g(r, t, V0;V1) and (14) we have

g(r, t, V0;V1) = RuZ(r, t)
[
1− e−λ(V0)(t1−t)

]
+ Z(r, t)e−λ(V0)(t1−t)f(V1)

In (??), if we write f(V1) as f(V1) = g21(V1)+ g22(V1)+ g23(V1)+ g24(V1), then we
have

g(r, t, V0;V1) = g1(r, t, V0)+Z(r, t)e−λ(V0)(t1−t)[g21(V1)+g22(V1)+g23(V1)+g24(V1)]

Here

g1(r, t, V0) = RuZ(r, t)
[
1− e−λ(V0)(t1−t)

]
,

g21(V1) = RuN

[
d−

(
V1

K2
, µ, t2 − t1

)]
,

g22(V1) = (1−Ru)e
−λ(V1)(t2−t1)N

[
d−

(
V1

K2
, µ, t2 − t1

)]
, (18)

g23(V1) = RuReN

[
−d−

(
V1

K2
, µ, t2 − t1

)]
,

g24(V1) = Re(1−Ru)e
−λ(V1)(t2−t1)N

[
−d−

(
V1

K2
, µ, t2 − t1

)]
.

In (16) we denote x = W1t1 , then V1 = V0 exp
[(

µ− b− s2V
2

)
t1 + sV x

]
and so we

can write

e−λ(V1)(t2−t1) = exp

{
−(t2 − t1)λ

(
V0e

(µ−b− s2V
2 )t1+sV x

)}
.

In particular, if the function λ(V ) is given by λ(V ) = ln(1 + 1
V ), then we have

e−λ(V1)(t2−t1) =

 V0e
(µ−b− s2V

2 )t1+sV x

1 + V0e(µ−b−
s2
V
2 )t1 + sV x

t2−t1

. (19)

Now we represent d−(V1/K2, µ, t2 − t1) in (18) as a function of x. If we denote

α2 =
ln V0

K2
+
(
µ− b− s2V

2

)
t2

sV
√
t2 − t1

, (20)

then we have

d−

(
V1

K2
, µ, t2 − t1

)
=

ln V1

K2
+ (µ− b− s2V

2 )(t2 − t1)

sV
√
t2 − t1

= α2 +
x√

t2 − t1
.
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Using this we get the representations of g21, g22, g23 and g24 in (18) in terms of x
(these are still writen as g2i):

g21(x) = Ru
1√
2π

∫ α2

−∞
e
− 1

2

(
y+ x√

t2−t1

)2

dy, (21)

g22(x) = (1−Ru) exp

[
−(t2 − t1)λ(V0e

(µ−b− s2V
2 )t1+sV x)

]
N

(
α2 +

x√
t2 − t1

)
,

(22)

g23(x) = Ru
1√
2π

∫ −α2

−∞
e
− 1

2

(
y− x√

t2−t1

)2

dy, (23)

g24(x) = Re(1−Ru) exp

[
−(t2 − t1)λ

(
V0e

(µ−b− s2V
2 )t1+sV x

)]
N

(
−α2 −

x√
t2 − t1

)
.

(24)

Now we calculate (17).

E(C0(r, t;V1 > K1|V0)) =

=
1√
2πt1

∫ 1
sV

[
ln

V0
K1

+

(
µ−b− s2V

2

)
t1

]
−∞

g

(
r, t, V0;V0e

(µ−b− s2V
2 )t1+sV x

)
e−

x2

2t1 dx

=
1√
2πt1

∫ 1
sV

[
ln

V0
K1

+

(
µ−b− s2V

2

)
t1

]
−∞

g1(r, t, V0)e
− x2

2t1 dx+

+ Z(r, t)e−λ(V0)(t1−t) 1√
2πt1

∫ ln
V0
K1

+

(
µ−b−

s2V
2

)
t1

sV

−∞
f

(
V0e

(µ−b− s2V
2 )t1+sV x

)
e−

x2

2t1 dx

= I1 + Z(r, t)e−λ(V0)(t1−t)I2. (25)

Here

I1 = RuZ(r, t)
[
1− e−λ(V0)(t1−t)

] 1√
2πt1

∫ 1
sV

[
ln

V0
K1

+

(
µ−b− s2V

2

)
t1

]
−∞

e−
x2

2t1 dx

= RuZ(r, t)
[
1− e−λ(V0)(t1−t)

]
N

[
d−

(
V0

K1
, µ, t1

)]
, (26)

I2 =
1√
2πt1

∫ 1
sV

[
ln

V0
K1

+

(
µ−b− s2V

2

)
t1

]
−∞

f

(
V0e

(µ−b− s2V
2 )t1+sV x

)
e−

x2

2t1 dx

=
1√
2πt1

∫ 1
sV

[
ln

V0
K1

+

(
µ−b− s2V

2

)
t1

]
−∞

[g21(x) + g22(x) + g23(x) + g24(x)] e
− x2

2t1 dx

= I21 + I22 + I23 + I24. (27)

Here we used the fact that g1(r, t, V0) does not depend on x and f = g21 + g22 +
g23 + g24. Now we calculate I2i. For simplicity of symbol, let denote

α1 =
1

sV

[
ln

V0

K1
+

(
µ− b− s2V

2

)
t1

]
= d−

(
V0

K1
, µ, t1

)
. (28)
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Then from (21), we have

I21 =
1√
2π

∫ α1

−∞
g21(x

√
t1)e

− x2

2 dx =
Ru

2π

∫ α1

−∞
dx

∫ α2

−∞
e
− x2

2 − 1
2

(
y+

x
√

t1√
t2−t1

)2

dy.

(29)
The exponent of the integrand of (29) can be written as a bivariate quadratic form
− 1

2ξ
⊥Aξ, where

A =

 t2
t2−t1

√
t1

t2−t1√
t1

t2−t1
1

 , detA = 1, ξ⊥ = (x, y). (30)

Thus I21 is represented by the cumulated distribution function N2 of the bivariate
normal distribution as follows:

I21 = Ru

√
detA

2π

∫ α1

−∞
dx

∫ α2

−∞
e−

1
2 ξ

⊥Aξdy = RuN2(α1, α2;A). (31)

Similarly, from (23), we have the representation of I23 by the cumulated distribution
function N2 of the bivariate normal distribution:

I23 = RuRe

√
det Ã

2π

∫ α1

−∞
dx

∫ −α2

−∞
e−

1
2 ξ

⊥Ãξdy = RuN2(α1,−α2; Ã). (32)

Here

Ã =

 t2
t2−t1

−
√

t1
t2−t1

−
√

t1
t2−t1

1

 , det Ã = 1. (33)

From (27) and (22) we directly get

I22 =
1√
2π

∫ α1

−∞
g22(x

√
t1)e

− x2

2 dx =

=
1−Ru√

2π

∫ α1

−∞
F (x)N

(
α2 + x

√
t1

t2 − t1

)
e−

x2

2 dx. (34)

Here

F (x) = exp

{
−(t2 − t1)λ

(
V0e

(
µ−b− s2V

2

)
t1+sV x

√
t1

)}
.

From (27) and (24) we directly get

I24 =
Re(1−Ru)√

2π

∫ α1

−∞
F (x)N

(
−α2 − x

√
t1

t2 − t1

)
e−

x2

2 dx. (35)

Substitute (31), (32),(34) and (35) into (27) to get I2. Then substitute I2 and I1
into (25) to get E(C0(r, t;V1 > K1|V0)) of (17). Then our bond price is given by

C(r, t;V0) = E(C0(r, t;V1 > K1|V0)) + E(C0(r, t;V1 ≤ K1|V0))

which gives the above formula (6).
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