UNIFIED PRESENTAION FOR MULTIVALENT HARMONIC FUNCTIONS

A. O. MOSTAFA AND M. K. AOUF

Abstract

In this paper we introduced a class defined by certain combination of starlike and convex multivalent harmonic functions and obtained growth and distortion theorems. Also convolution properties for functions in the class are obtained.

1. Introduction

A continuous function $f=u+i v$ is a complex-valued harmonic in a complex domain D if both u and v are harmonic in D. In any simply connected domain $D \subset \mathbb{C}$ we can write $f=h+\bar{g}$, where h and g are analytic in D. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in D (see Clunie and Sheil-Small [3]).

Denote by H the class of functions $f=h+\bar{g}$ which are harmonic univalent and sense-preserving in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ and f is normalized by $f(0)=h(0)=f_{z}(0)-1=0$.

For $m \in \mathbb{N}=\{1,2, \ldots\}, h$ and g analytic in U, denote by $H(m)$ the set of all multivalent harmonic functions $f=h+\bar{g}$ defined in U, where h and g defined by

$$
\begin{equation*}
h(z)=z^{m}+\sum_{n=2}^{\infty} a_{n+m-1} z^{n+m-1}, g(z)=\sum_{n=1}^{\infty} b_{n+m-1} z^{n+m-1},\left|b_{m}\right|<1 . \tag{1}
\end{equation*}
$$

The class $H(m)$ was studied by Ahuja and Jahangiri [1] and for $m=1$ was studied by Jahangiri et al. [5].

For, $m \geq 1,0 \leq \alpha<1$, Ahuja and Jahangiri [1, 2] defined the class of m-valent harmonic starlike functions of order $\alpha, S H(m, \alpha)$ which consisting of functions $f=$ $h+\bar{g} \in H(m)$ and satisfy the condition

$$
\begin{equation*}
\frac{\partial}{\partial \theta}\left(\arg \left(f\left(r e^{i \theta}\right)\right)\right) \geq m \alpha \tag{2}
\end{equation*}
$$

where $z=. r e^{i \theta}, 0 \leq \theta<2 \pi$ and $0 \leq r<1$. For $\alpha=0$ this class was studied by Sheil- Small [7].

[^0]Denote by $T H(m, \alpha)$ the class of functions $f=h+\bar{g} \in S H(m, \alpha)$ of the form
$h(z)=z^{m}-\sum_{n=2}^{\infty}\left|a_{n+m-1}\right| z^{n+m-1}, \quad g(z)=\sum_{n=1}^{\infty}\left|b_{n+m-1}\right| z^{n+m-1}, \quad\left|b_{m}\right|<1$.
The class of the form (3) was defined by Ahuja and Jahangiri [1] and for $m=1$ was studied by Silverman [8] (see also Sheil Small [7] and Silverman and Silvia [9]).

Ananolgous to $T H(m, \alpha)$ is the class $K H(m, \alpha)$ of m-valent harmonic convex functions of order $\alpha(0 \leq \alpha<1)$ consisting of functions $f=h+\bar{g}$ of the form (3) which satisfy

$$
\frac{\partial}{\partial \theta}\left(\arg \left(\frac{\partial}{\partial \theta} f\left(r e^{i \theta}\right)\right)\right) \geq m \alpha
$$

where $z=r e^{i \theta}, 0 \leq \theta<2 \pi$ and $0 \leq r<1$.
It is clear that

$$
f(z) \in K H(m, \alpha) \text { if and only if } \frac{1}{m} z f^{\prime}(z) \in T H(m, \alpha)
$$

For functions $f=h+\bar{g}$ of the form (3) Ahuja and Jahangiri [1, 2] proved the following lemmas (see also [4]).
Lemma 1. Let $f=h+\bar{g}$ be given by (3). Then $f \in T H(m, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)}\left|a_{n+m-1}\right|+\frac{n-1+m(1+\alpha)}{m(1-\alpha)}\left|b_{n+m-1}\right|\right) \leq 2 \tag{it4}
\end{equation*}
$$

where $a_{m}=1$ and $m \geq 1$.
Lemma 2. Let $f=h+\bar{g}$ be given by (3). Then $f \in K H(m, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n+m-1}{m}\left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)}\left|a_{n+m-1}\right|+\frac{n-1+m(1+\alpha)}{m(1-\alpha)}\left|b_{n+m-1}\right|\right) \leq 2 \tag{it5}
\end{equation*}
$$

where $a_{m}=1$ and $m \geq 1$.
In view of Lemma 1 and Lemma 2 and for $\beta \geq 0$, we define the new class $T^{*} S_{H}(m, \alpha, \beta)$ consisting of functions $f=h+\bar{g}$, where h and g are of the form (3) and satisfy:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m}\left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)}\left|a_{n+m-1}\right|+\frac{n-1+m(1+\alpha)}{m(1-\alpha)}\left|b_{n+m-1}\right|\right) \leq 2 \tag{6}
\end{equation*}
$$

We clearly see that

$$
T^{*} S_{H}(m, \alpha, 0)=T H(m, \alpha) \text { and } T^{*} S_{H}(m, \alpha, 1)=K H(m, \alpha)
$$

that is, that $T^{*} S_{H}(m, \alpha, \beta)$ can be written in the form:

$$
T^{*} S_{H}(m, \alpha, \beta)=(1-\beta) T H(m, \alpha)+\beta K H(m, \alpha)
$$

In this paper we obtain growth and distortion theorems and also convolution properties for functions in the class $T^{*} S_{H}(m, \alpha, \beta)$.

2. Main Results

Unless otherwise mentioned, we assume that $0 \leq \alpha<1, \beta \geq 0, a_{m}=1$ and $m \in \mathbb{N}$.

The following theorem gives a distortion property for functions belonging to the class $T^{*} S_{H}(m, \alpha, \beta)$.
Theorem 1. Let $f=h+\bar{g}$, where h and g are of the form (3) and belonging to the class $T^{*} S_{H}(m, \alpha, \beta)$, then for $\frac{1+\alpha}{1-\alpha}\left|b_{m}\right|<1$ and $0 \leq|z|=r<1$, we have

$$
\begin{equation*}
|f(z)| \leq\left(1+\left|b_{m}\right|\right) r^{m}+\frac{m^{2}(1-\alpha)}{(m+\beta)(1+m-m \alpha)}\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{m}\right|\right) r^{m+1} \tag{it7}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \geq\left(1-\left|b_{m}\right|\right) r^{m}-\frac{m^{2}(1-\alpha)}{(m+\beta)(1+m-m \alpha)}\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{m}\right|\right) r^{m+1} \tag{it8}
\end{equation*}
$$

The bounds in (7) and (8) are sharp for the functions

$$
f(z)=\left(1+b_{m}\right) \bar{z}^{m}+\left(\frac{m^{2}(1-\alpha)}{(m+\beta)(1+m-m \alpha)}-\frac{m^{2}(1+\alpha)}{(m+\beta)(1+m-m \alpha)} b_{m}\right) \bar{z}^{m+1}
$$

and

$$
f(z)=\left(1-\left|b_{m}\right|\right) \bar{z}^{m}-\left(\frac{m^{2}(1-\alpha)}{(m+\beta)(1+m-m \alpha)}-\frac{m^{2}(1+\alpha)}{(m+\beta)(1+m-m \alpha)} b_{m}\right) \bar{z}^{m+1}
$$

respectively .
Proof. Since, $f \in T^{*} S_{H}(m, \alpha, \beta)$, we have

$$
\begin{aligned}
|f(z)| & \leq\left(1+\left|b_{m}\right|\right) r^{m}+\sum_{n=2}^{\infty}\left(\left|a_{n+m-1}\right|+\left|b_{n+m-1}\right|\right) r^{n+m-1} \\
& \leq\left(1+\left|b_{m}\right|\right) r^{m}+\sum_{n=2}^{\infty}\left(\left|a_{n+m-1}\right|+\left|b_{n+m-1}\right|\right) r^{m+1} \\
& \leq\left(1+\left|b_{m}\right|\right) r^{m}+\frac{m^{2}(1-\alpha)}{(m+\beta)(1+m-m \alpha)} \sum_{n=2}^{\infty} \frac{(m+\beta)(1+m-m \alpha)}{m^{2}(1-\alpha)}\left(\left|a_{n+m-1}\right|+\left|b_{n+m-1}\right|\right) r^{m+1} \\
& \leq\left(1+\left|b_{m}\right|\right) r^{m}+\frac{m^{2}(1-\alpha)}{(m+\beta)(1+m-m \alpha)} \sum_{n=2}^{\infty}\left(\frac{n-1+m(1-\alpha)}{m^{2}(1-\alpha)}\left|a_{n+m-1}\right|+\frac{n-1+m(1+\alpha)}{m^{2}(1-\alpha)}\left|b_{n+m-1}\right|\right) r^{m+1} \\
& \leq\left(1+\left|b_{m}\right|\right) r^{m}+\frac{m^{2}(1-\alpha)}{(m+\beta)(1+m-m \alpha)}\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{m}\right|\right) r^{m+1}(|z|=r<1)
\end{aligned}
$$

this proves (7). The proof of (8) is similarly and so we omit it. This complets the proof of Theorem 1.
Theorem 2. Let $f=h+\bar{g}$, where h and g are of the form (3) and belonging to the class $T^{*} S_{H}(m, \alpha, \beta)$, then for $\frac{1+\alpha}{1-\alpha}\left|b_{m}\right|<1$ and $0 \leq|z|=r<1$,

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq m\left(1+\left|b_{m}\right|\right) r^{m-1}+\frac{m^{2}(m+1)(1-\alpha)}{(m+\beta)(1+m-m \alpha)}\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{m}\right|\right) r^{m} \tag{it9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq m\left(1-\left|b_{m}\right|\right) r^{m-1}-\frac{m^{2}(m+1)(1-\alpha)}{(m+\beta)(1+m-m \alpha)}\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{m}\right|\right) r^{m} \tag{it10}
\end{equation*}
$$

The bounds in (9) and (10) are sharp.

Proof. The proof is similar to that of Theorem 1 and hence we omit it.
Putting $\beta=1$ in Theorems 1 and 2, we have the following result.
Corollary 1. Let $f=h+\bar{g}$, where h and g are of the form (3) and belonging to the class $K H(m, \alpha)$, then for $\frac{1+\alpha}{1-\alpha}\left|b_{m}\right|<1$ and $0 \leq|z|=r<1$, we have

$$
\begin{aligned}
& \left(1-\left|b_{m}\right|\right) r^{m}-\frac{m^{2}(1-\alpha)}{(m+1)(1+m-m \alpha)}\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{m}\right|\right) r^{m+1} \\
\leq & |f(z)| \leq\left(1+\left|b_{m}\right|\right) r^{m}+\frac{m^{2}(1-\alpha)}{(m+1)(1+m-m \alpha)}\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{m}\right|\right) r^{m+1}
\end{aligned}
$$

and

$$
\begin{aligned}
& m\left(1-\left|b_{m}\right|\right) r^{m-1}-\frac{m^{2}(m+1)(1-\alpha)}{(m+1)(1+m-m \alpha)}\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{m}\right|\right) r^{m} \\
\leq & \left|f^{\prime}(z)\right| \leq m\left(1+\left|b_{m}\right|\right) r^{m-1}+\frac{m^{2}(m+1)(1-\alpha)}{(m+1)(1+m-m \alpha)}\left(1-\frac{1+\alpha}{1-\alpha}\left|b_{m}\right|\right) r^{m}
\end{aligned}
$$

The bounds are sharp.
Let the functions $f_{j}(j=1,2)$ be defined by

$$
\begin{equation*}
f_{j}(z)=z^{m}-\sum_{n=2}^{\infty}\left|a_{n+m-1, j}\right| z^{n}+\sum_{n=1}^{\infty}\left|b_{n+m-1, j}\right| \bar{z}^{n}(z \in U) \tag{11}
\end{equation*}
$$

then the Hadamard prodct (or convolution) is defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z^{m}-\sum_{n=2}^{\infty}\left|a_{n+m-1,1}\right|\left|a_{n+m-1,2}\right| z^{n}+\sum_{n=1}^{\infty}\left|b_{n+m-1,1}\right|\left|b_{n+m-1,2}\right| \bar{z}^{n} \tag{12}
\end{equation*}
$$

The next theorem shows that the class $T^{*} S_{H}(m, \alpha, \beta)$ is closed under convolution.

Theorem 3. For $0 \leq \gamma \leq \alpha<1$, let $f_{1} \in T^{*} S_{H}(m, \alpha, \beta)$ and $f_{2} \in T^{*} S_{H}(m, \gamma, \beta)$. Then

$$
\left(f_{1} * f_{2}\right)(z) \in T^{*} S_{H}(m, \alpha, \beta) \subset T^{*} S_{H}(m, \gamma, \beta)
$$

Proof. In order to prove the theorem we must show that the coefficients in (12) must satisfy the condition (6). Now, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m}\left(\frac{n-1+m(1-\gamma)}{m(1-\gamma)}\left|a_{n+m-1,1}\right|\left|a_{n+m-1,2}\right|+\frac{n-1+m(1+\gamma)}{m(1-\gamma)}\left|b_{n+m-1,1}\right|\left|b_{n+m-1,2}\right|\right) \\
\leq & \sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m}\left(\frac{n-1+m(1-\gamma)}{m(1-\gamma)}\left|a_{n+m-1,1}\right|+\frac{n-1+m(1+\gamma)}{m(1-\gamma)}\left|b_{n+m-1,1}\right|\right) \\
\leq & \sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m}\left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)}\left|a_{n+m-1,1}\right|+\frac{n-1+m(1+\alpha)}{m(1-\alpha)}\left|b_{n+m-1,1}\right|\right) \leq 2 .
\end{aligned}
$$

This completes the proof of Theorem 3.
The next theorem shows that the class $T^{*} S_{H}(m, \alpha, \beta)$ is closed under convex combination.

Theorem 4. The class $T^{*} S_{H}(m, \alpha, \beta)$ is closed under convex combination.
Proof. Let $f_{j}(j=1,2, \ldots)$ be defined by (11) belongs to the class $T^{*} S_{H}(m, \alpha, \beta)$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m}\left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)}\left|a_{n+m-1, j}\right|+\frac{n-1+m(1+\alpha)}{m(1-\alpha)}\left|b_{n+m-1, j}\right|\right) \leq 2 \tag{13}
\end{equation*}
$$

Let, for $0 \leq t_{j} \leq 1, \sum_{j=1}^{\infty} t_{j}=1$, the convex combination of f_{j} be in the form

$$
\begin{equation*}
\sum_{j=1}^{\infty} t_{j} f_{j}=z^{m}-\sum_{n=2}^{\infty} \sum_{j=1}^{\infty} t_{j}\left|a_{n+m-1, j}\right| z^{n}+\sum_{n=1}^{\infty} \sum_{j=1}^{\infty} t_{j}\left|b_{n+m-1, j}\right| \bar{z}^{n} \tag{14}
\end{equation*}
$$

Using (13), we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m}\left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)} \sum_{j=1}^{\infty} t_{j}\left|a_{n, j}\right|+\frac{n-1+m(1+\alpha)}{m(1-\alpha)} \sum_{j=1}^{\infty} t_{j}\left|b_{n, j}\right|\right) \\
= & \sum_{j=1}^{\infty} t_{j}\left(\sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m}\left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)}\left|a_{n+m-1, j}\right|+\frac{n-1+m(1+\alpha)}{m(1-\alpha)}\left|b_{n+m-1, j}\right|\right)\right) \\
\leq & 2 \sum_{j=1}^{\infty} t_{j}=2 .
\end{aligned}
$$

This leads to $\sum_{j=1}^{\infty} t_{j} f_{j} \in T^{*} S_{H}(m, \alpha, \beta)$. This completes the proof of Theorem 4.
Remarks. (i) Taking $\beta=0$ in the above results, we obtain the results corresponding to the class $T H(m, \alpha)$ (see $[1,2])$;
(ii) Taking $\beta=1$ in Theorems 3 and 4, we obtain the results corresponding to the class $K H(m, \alpha)$;
(iii) Taking $m=1$ in the above results, we obtain the results of Joshi and Darus [6].

Acknowledgements

The authors would like to thank the referees of the paper for their helpful suggestions.

References

[1] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic starlike functions, Ann.Univ. Mariae Curie-Sklodowska, Sect. A, 55 (2001), no. 1,1-13.
[2] O.P. Ahuja and J.M. Jahangiri, Errata to "Multivalent harmonic starlike functions" [Ann.Univ. Mariae Curie-Sklodowska, Sect. A 55(2001), no. 1, 1-13], Ann.Univ. Mariae Curie-Sklodowska, Sect. A, 56 (2002), no. 1, 105.
[3] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9(1984), 3-25.
[4] H. O. Guney and O. P. Ahuja, Inequalities involving multipliers for multivalent harmonic functions, J. Inequal. Pure Appl. Math., 7 (2006), no. 5, Art. 190, 1-9.
[5] J.M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Sălăgean harmonic univalent functions, South. J. Pure Appl. Math. , 2(2002), 77-82.
[6] S. B. Joshi and M. Darus, Unified treatment for harmonic univalent functions, Tamsui Oxford J. Math. Sci., 24 (2008), no. 3, 225-232.
[7] T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc., 42 (1990), no. 2, 237-248.
[8] H. Silverman, Harmonic univalent functions with negative coe cients, J. Math. Anal. Appl., 220 (1998), 283-289.
[9] H. Silverman and E.M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math., 28 (1999), 275-284.
A. O. Mostafa, Department of Mathematics, Faculty of Science, Mansoura UniverSity, Mansoura 35516, Egypt

E-mail address: adelaeg254@yahoo.com
M. K. Aouf, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

E-mail address: mkaouf127@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Starlike, convex, multivalent, harmonic, convolution.
 Submitted Aug. 3, 2014.

