Electronic Journal of Mathematical Analysis and Applications, Vol. 2(1) Jan. 2014, pp. 85-90. ISSN: 2090-792X (online) http://fcag-egypt.com/Journals/EJMAA/

UNIFIED PRESENTAION FOR MULTIVALENT HARMONIC FUNCTIONS

A. O. MOSTAFA AND M. K. AOUF

ABSTRACT. In this paper we introduced a class defined by certain combination of starlike and convex multivalent harmonic functions and obtained growth and distortion theorems. Also convolution properties for functions in the class are obtained.

1. INTRODUCTION

A continuous function f = u + iv is a complex-valued harmonic in a complex domain D if both u and v are harmonic in D. In any simply connected domain $D \subset \mathbb{C}$ we can write $f = h + \overline{g}$, where h and g are analytic in D. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that |h'(z)| > |g'(z)| in D (see Clunie and Sheil-Small [3]).

Denote by H the class of functions $f = h + \overline{g}$ which are harmonic univalent and sense-preserving in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ and f is normalized by $f(0) = h(0) = f_z(0) - 1 = 0$.

For $m \in \mathbb{N} = \{1, 2, ...\}$, h and g analytic in U, denote by H(m) the set of all multivalent harmonic functions $f = h + \overline{g}$ defined in U, where h and g defined by

$$h(z) = z^m + \sum_{n=2}^{\infty} a_{n+m-1} z^{n+m-1}, \ g(z) = \sum_{n=1}^{\infty} b_{n+m-1} z^{n+m-1}, \ |b_m| < 1.$$
(1)

The class H(m) was studied by Ahuja and Jahangiri [1] and for m = 1 was studied by Jahangiri et al. [5].

For, $m \ge 1, 0 \le \alpha < 1$, Ahuja and Jahangiri [1, 2] defined the class of m-valent harmonic starlike functions of order α , $SH(m, \alpha)$ which consisting of functions $f = h + \overline{g} \in H(m)$ and satisfy the condition

$$\frac{\partial}{\partial \theta} \left(\arg(f(re^{i\theta})) \right) \ge m\alpha, \tag{2}$$

where $z = .re^{i\theta}$, $0 \le \theta < 2\pi$ and $0 \le r < 1$. For $\alpha = 0$ this class was studied by Sheil- Small [7].

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Starlike, convex, multivalent, harmonic, convolution. Submitted Aug. 3, 2014.

Denote by $TH(m, \alpha)$ the class of functions $f = h + \overline{g} \in SH(m, \alpha)$ of the form

$$h(z) = z^m - \sum_{n=2}^{\infty} |a_{n+m-1}| \, z^{n+m-1}, \qquad g(z) = \sum_{n=1}^{\infty} |b_{n+m-1}| \, z^{n+m-1}, \quad |b_m| < 1.$$
(3)

The class of the form (3) was defined by Ahuja and Jahangiri [1] and for m = 1 was studied by Silverman [8] (see also Sheil Small [7] and Silverman and Silvia [9]).

Ananolgous to $TH(m, \alpha)$ is the class $KH(m, \alpha)$ of m-valent harmonic convex functions of order $\alpha(0 \le \alpha < 1)$ consisting of functions $f = h + \overline{g}$ of the form (3) which satisfy

$$\frac{\partial}{\partial \theta} \left(\arg(\frac{\partial}{\partial \theta} f(re^{i\theta})) \right) \geq m\alpha$$

where $z = re^{i\theta}, 0 \le \theta < 2\pi$ and $0 \le r < 1$.

It is clear that

$$f(z) \in KH(m, \alpha)$$
 if and only if $\frac{1}{m}zf'(z) \in TH(m, \alpha)$.

For functions $f = h + \overline{g}$ of the form (3) Ahuja and Jahangiri [1, 2] proved the following lemmas (see also [4]).

Lemma 1. Let $f = h + \overline{g}$ be given by (3). Then $f \in TH(m, \alpha)$ if and only if

$$\sum_{n=1}^{\infty} \left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)} \left| a_{n+m-1} \right| + \frac{n-1+m(1+\alpha)}{m(1-\alpha)} \left| b_{n+m-1} \right| \right) \le 2, \quad \text{(it4)}$$

where $a_m = 1$ and $m \ge 1$.

Lemma 2. Let $f = h + \overline{g}$ be given by (3). Then $f \in KH(m, \alpha)$ if and only if

$$\sum_{n=1}^{\infty} \frac{n+m-1}{m} \left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)} \left| a_{n+m-1} \right| + \frac{n-1+m(1+\alpha)}{m(1-\alpha)} \left| b_{n+m-1} \right| \right) \le 2, \quad (it5)$$

where $a_m = 1$ and $m \ge 1$.

In view of Lemma 1 and Lemma 2 and for $\beta \geq 0$, we define the new class $T^*S_H(m, \alpha, \beta)$ consisting of functions $f = h + \overline{g}$, where h and g are of the form (3) and satisfy:

$$\sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m} \left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)} \left| a_{n+m-1} \right| + \frac{n-1+m(1+\alpha)}{m(1-\alpha)} \left| b_{n+m-1} \right| \right) \le 2.$$
 (6)

We clearly see that

$$T^*S_H(m,\alpha,0) = TH(m,\alpha)$$
 and $T^*S_H(m,\alpha,1) = KH(m,\alpha)$,

that is, that $T^*S_H(m, \alpha, \beta)$ can be written in the form:

$$T^*S_H(m,\alpha,\beta) = (1-\beta)TH(m,\alpha) + \beta KH(m,\alpha).$$

In this paper we obtain growth and distortion theorems and also convolution properties for functions in the class $T^*S_H(m, \alpha, \beta)$. EJMAA-2014/2(1)

2. Main results

Unless otherwise mentioned, we assume that $0 \leq \alpha < 1, \beta \geq 0, a_m = 1$ and $m \in \mathbb{N}$.

The following theorem gives a distortion property for functions belonging to the class $T^*S_H(m, \alpha, \beta)$.

Theorem 1. Let $f = h + \overline{g}$, where h and g are of the form (3) and belonging to the class $T^*S_H(m, \alpha, \beta)$, then for $\frac{1+\alpha}{1-\alpha} |b_m| < 1$ and $0 \le |z| = r < 1$, we have

$$|f(z)| \le (1+|b_m|)r^m + \frac{m^2(1-\alpha)}{(m+\beta)(1+m-m\alpha)} \left(1 - \frac{1+\alpha}{1-\alpha}|b_m|\right)r^{m+1} \quad \text{(it7)}$$

and

$$|f(z)| \ge (1 - |b_m|)r^m - \frac{m^2(1 - \alpha)}{(m + \beta)(1 + m - m\alpha)} \left(1 - \frac{1 + \alpha}{1 - \alpha} |b_m|\right) r^{m+1}.$$
 (it8)

The bounds in (7) and (8) are sharp for the functions

$$f(z) = (1+b_m)\overline{z}^m + \left(\frac{m^2(1-\alpha)}{(m+\beta)(1+m-m\alpha)} - \frac{m^2(1+\alpha)}{(m+\beta)(1+m-m\alpha)}b_m\right)\overline{z}^{m+1}$$

and

$$f(z) = (1 - |b_m|)\overline{z}^m - \left(\frac{m^2(1-\alpha)}{(m+\beta)(1+m-m\alpha)} - \frac{m^2(1+\alpha)}{(m+\beta)(1+m-m\alpha)}b_m\right)\overline{z}^{m+1},$$

respectively.

Proof. Since, $f \in T^*S_H(m, \alpha, \beta)$, we have

$$\begin{aligned} f(z)| &\leq (1+|b_{m}|)r^{m} + \sum_{n=2}^{\infty} (|a_{n+m-1}| + |b_{n+m-1}|)r^{n+m-1} \\ &\leq (1+|b_{m}|)r^{m} + \sum_{n=2}^{\infty} (|a_{n+m-1}| + |b_{n+m-1}|)r^{m+1} \\ &\leq (1+|b_{m}|)r^{m} + \frac{m^{2}(1-\alpha)}{(m+\beta)(1+m-m\alpha)} \sum_{n=2}^{\infty} \frac{(m+\beta)(1+m-m\alpha)}{m^{2}(1-\alpha)} (|a_{n+m-1}| + |b_{n+m-1}|)r^{m+1} \\ &\leq (1+|b_{m}|)r^{m} + \frac{m^{2}(1-\alpha)}{(m+\beta)(1+m-m\alpha)} \sum_{n=2}^{\infty} \left(\frac{n-1+m(1-\alpha)}{m^{2}(1-\alpha)} |a_{n+m-1}| + \frac{n-1+m(1+\alpha)}{m^{2}(1-\alpha)} |b_{n+m-1}|\right) r^{m+1} \\ &\leq (1+|b_{m}|)r^{m} + \frac{m^{2}(1-\alpha)}{(m+\beta)(1+m-m\alpha)} \sum_{n=2}^{\infty} \left(\frac{1-1+m(1-\alpha)}{m^{2}(1-\alpha)} |a_{n+m-1}| + \frac{n-1+m(1+\alpha)}{m^{2}(1-\alpha)} |b_{n+m-1}|\right) r^{m+1} \\ &\leq (1+|b_{m}|)r^{m} + \frac{m^{2}(1-\alpha)}{(m+\beta)(1+m-m\alpha)} \left(1 - \frac{1+\alpha}{1-\alpha} |b_{m}|\right) r^{m+1} (|z| = r < 1), \end{aligned}$$

this proves (7). The proof of (8) is similarly and so we omit it. This complets the proof of Theorem 1.

Theorem 2. Let $f = h + \overline{g}$, where h and g are of the form (3) and belonging to the class $T^*S_H(m, \alpha, \beta)$, then for $\frac{1+\alpha}{1-\alpha}|b_m| < 1$ and $0 \le |z| = r < 1$,

$$|f'(z)| \le m(1+|b_m|)r^{m-1} + \frac{m^2(m+1)(1-\alpha)}{(m+\beta)(1+m-m\alpha)} \left(1 - \frac{1+\alpha}{1-\alpha}|b_m|\right)r^m$$
(it9)

and

$$|f'(z)| \ge m(1-|b_m|)r^{m-1} - \frac{m^2(m+1)(1-\alpha)}{(m+\beta)(1+m-m\alpha)} \left(1 - \frac{1+\alpha}{1-\alpha}|b_m|\right)r^m.$$
(it10)

The bounds in (9) and (10) are sharp.

Proof. The proof is similar to that of Theorem 1 and hence we omit it.

Putting $\beta = 1$ in Theorems 1 and 2, we have the following result.

Corollary 1. Let $f = h + \overline{g}$, where h and g are of the form (3) and belonging to the class $KH(m, \alpha)$, then for $\frac{1+\alpha}{1-\alpha}|b_m| < 1$ and $0 \le |z| = r < 1$, we have

$$(1 - |b_m|)r^m - \frac{m^2(1-\alpha)}{(m+1)(1+m-m\alpha)} \left(1 - \frac{1+\alpha}{1-\alpha} |b_m|\right) r^{m+1}$$

$$\leq |f(z)| \leq (1 + |b_m|)r^m + \frac{m^2(1-\alpha)}{(m+1)(1+m-m\alpha)} \left(1 - \frac{1+\alpha}{1-\alpha} |b_m|\right) r^{m+1}$$

and

$$m(1-|b_m|)r^{m-1} - \frac{m^2(m+1)(1-\alpha)}{(m+1)(1+m-m\alpha)} \left(1 - \frac{1+\alpha}{1-\alpha} |b_m|\right) r^m$$

$$\leq |f'(z)| \leq m(1+|b_m|)r^{m-1} + \frac{m^2(m+1)(1-\alpha)}{(m+1)(1+m-m\alpha)} \left(1 - \frac{1+\alpha}{1-\alpha} |b_m|\right) r^m.$$

The bounds are sharp.

Let the functions f_j (j = 1, 2) be defined by

$$f_j(z) = z^m - \sum_{n=2}^{\infty} |a_{n+m-1,j}| \, z^n + \sum_{n=1}^{\infty} |b_{n+m-1,j}| \, \overline{z}^n \, (z \in U), \tag{11}$$

then the Hadamard prodct (or convolution) is defined by

$$(f_1 * f_2)(z) = z^m - \sum_{n=2}^{\infty} |a_{n+m-1,1}| |a_{n+m-1,2}| z^n + \sum_{n=1}^{\infty} |b_{n+m-1,1}| |b_{n+m-1,2}| \overline{z}^n.$$
(12)

The next theorem shows that the class $T^*S_H(m, \alpha, \beta)$ is closed under convolution.

Theorem 3. For $0 \le \gamma \le \alpha < 1$, let $f_1 \in T^*S_H(m, \alpha, \beta)$ and $f_2 \in T^*S_H(m, \gamma, \beta)$. Then

$$(f_1 * f_2)(z) \in T^*S_H(m, \alpha, \beta) \subset T^*S_H(m, \gamma, \beta).$$

Proof. In order to prove the theorem we must show that the coefficients in (12) must satisfy the condition (6). Now, we have

$$\sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m} \left(\frac{n-1+m(1-\gamma)}{m(1-\gamma)} \left| a_{n+m-1,1} \right| \left| a_{n+m-1,2} \right| + \frac{n-1+m(1+\gamma)}{m(1-\gamma)} \left| b_{n+m-1,1} \right| \left| b_{n+m-1,2} \right| \right)$$

$$\leq \sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m} \left(\frac{n-1+m(1-\gamma)}{m(1-\gamma)} \left| a_{n+m-1,1} \right| + \frac{n-1+m(1+\gamma)}{m(1-\gamma)} \left| b_{n+m-1,1} \right| \right)$$

$$\leq \sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m} \left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)} \left| a_{n+m-1,1} \right| + \frac{n-1+m(1+\alpha)}{m(1-\alpha)} \left| b_{n+m-1,1} \right| \right) \leq 2.$$

This completes the proof of Theorem 3.

The next theorem shows that the class $T^*S_H(m, \alpha, \beta)$ is closed under convex combination.

Theorem 4. The class $T^*S_H(m, \alpha, \beta)$ is closed under convex combination.

Proof. Let f_j (j = 1, 2, ...) be defined by (11) belongs to the class $T^*S_H(m, \alpha, \beta)$, then

$$\sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m} \left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)} \left| a_{n+m-1,j} \right| + \frac{n-1+m(1+\alpha)}{m(1-\alpha)} \left| b_{n+m-1,j} \right| \right) \le 2.$$
(13)

Let, for $0 \le t_j \le 1$, $\sum_{j=1}^{\infty} t_j = 1$, the convex combination of f_j be in the form

$$\sum_{j=1}^{\infty} t_j f_j = z^m - \sum_{n=2}^{\infty} \sum_{j=1}^{\infty} t_j |a_{n+m-1,j}| z^n + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} t_j |b_{n+m-1,j}| \overline{z}^n.$$
(14)

Using (13), we have

$$\sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m} \left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)} \sum_{j=1}^{\infty} t_j |a_{n,j}| + \frac{n-1+m(1+\alpha)}{m(1-\alpha)} \sum_{j=1}^{\infty} t_j |b_{n,j}| \right)$$

=
$$\sum_{j=1}^{\infty} t_j \left(\sum_{n=1}^{\infty} \frac{m+\beta(n-1)}{m} \left(\frac{n-1+m(1-\alpha)}{m(1-\alpha)} |a_{n+m-1,j}| + \frac{n-1+m(1+\alpha)}{m(1-\alpha)} |b_{n+m-1,j}| \right) \right)$$

$$\leq 2\sum_{j=1}^{\infty} t_j = 2.$$

This leads to $\sum_{j=1}^{\infty} t_j f_j \in T^*S_H(m, \alpha, \beta)$. This completes the proof of Theorem 4. **Remarks.** (i) Taking $\beta = 0$ in the above results, we obtain the results correspond-

ing to the class $TH(m, \alpha)$ (see [1,2]); (ii) Taking $\beta = 1$ in Theorem 2 and 4 we obtain the results corresponding

(ii) Taking $\beta = 1$ in Theorems 3 and 4, we obtain the results corresponding to the class $KH(m, \alpha)$;

(iii) Taking m = 1 in the above results, we obtain the results of Joshi and Darus [6].

Acknowledgements

The authors would like to thank the referees of the paper for their helpful suggestions.

References

- O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic starlike functions, Ann.Univ. Mariae Curie-Sklodowska, Sect. A, 55 (2001), no. 1,1–13.
- [2] O.P. Ahuja and J.M. Jahangiri, Errata to "Multivalent harmonic starlike functions" [Ann.Univ. Mariae Curie-Sklodowska, Sect. A 55(2001), no. 1, 1-13], Ann.Univ. Mariae Curie-Sklodowska, Sect. A, 56 (2002), no. 1, 105.
- [3] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9(1984), 3-25.
- [4] H. O. Guney and O. P. Ahuja, Inequalities involving multipliers for multivalent harmonic functions, J. Inequal. Pure Appl. Math., 7 (2006), no. 5, Art. 190, 1-9.
- [5] J.M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Sălăgean harmonic univalent functions, South. J. Pure Appl. Math., 2(2002), 77-82.
- [6] S. B. Joshi and M. Darus, Unified treatment for harmonic univalent functions, Tamsui Oxford J. Math. Sci., 24 (2008), no. 3, 225-232.
- [7] T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc., 42 (1990), no. 2, 237-248.
- [8] H. Silverman, Harmonic univalent functions with negative coe cients, J. Math. Anal. Appl., 220 (1998), 283-289.

[9] H. Silverman and E.M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math., 28 (1999), 275-284.

A. O. Mostafa, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

 $E\text{-}mail\ address: \texttt{adelaeg254@yahoo.com}$

M. K. Aouf, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

 $E\text{-}mail\ address:\ \texttt{mkaouf127@yahoo.com}$

90