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L∞-SOLUTIONS FOR SOME DEGENERATE
QUASILINEAR ELLIPTIC EQUATIONS

A.C. CAVALHEIRO

Abstract. In this paper we are interested in the existence of solutions for
Dirichlet problem associated to the degenerate quasilinear elliptic equations

−
n∑

j=1

Dj [ω(x)Aj(x, u,∇u)] + ω(x)g(x, u(x),∇u(x))

+ H(x, u,∇u) ω(x) = f(x), on Ω

in the setting of the weighted Sobolev spaces W1,p
0 (Ω, ω).

1. Introduction

In this paper we prove the existence of (weak) solutions in the weighted Sobolev
spaces W1,p

0 (Ω, ω) for the Dirichlet problem

(P )
{

Lu(x) = f(x), on Ω
u(x) = 0, on ∂Ω

where L is the partial differential operator

Lu(x) = −div
[
ω(x)A(x, u,∇u)

]
+ g(x, u,∇u)ω(x) + H(x, u,∇u) ω(x) (1.1)

where Ω is a bounded open set in RN (N ≥ 2), ω is a weight function, and the
functions A : Ω×R×RN →RN , g : Ω×R×RN →R and H : Ω×R×RN→R are
Carathéodory functions.

By a weight, we shall mean a locally integrable function ω on RN such that
ω(x) > 0 for a.e. x∈RN . Every weight ω gives rise to a measure on the measurable
subsets on RN through integration. This measure will be denoted by µ. Thus,
µ(E) =

∫
E

ω(x) dx for measurable sets E⊂RN .
In general, the Sobolev spaces Wk,p(Ω) without weights occur as spaces of solu-

tions for elliptic and parabolic partial differential equations. For degenerate partial
differential equations, i.e., equations with various types of singularities in the coef-
ficients, it is natural to look for solutions in weighted Sobolev spaces (see [3], [4],
[5] and [7]).
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A class of weights, which is particulary well understood, is the class of Ap-weights
(or Muckenhoupt class) that was introduced by B. Muckenhoupt (see [10]). These
classes have found many usefull applications in harmonic analysis (see [12] and
[13]). Another reason for studying Ap-weights is the fact that powers of distance to
submanifolds of RN often belong to Ap (see [8]). There are, in fact, many interesting
examples of weights (see [7]) for p-admissible weights).

Equations like (1.1) have been studied by many authors in the non-degenerate
case (i.e. with ω(x)≡ 1) (see e.g. [1] and the references therein). The degenerate
case with different conditions haven been studied by many authors. In [4] Drabek,
Kufner and Mustonen proved that under certain condition, the Dirichlet problem
associated with the equation −div(a(x, u,∇u)) = h, h∈ [W 1,p

0 (Ω, ω)]∗ has at least
one solution u∈W 1,p

0 (Ω, ω), and in [3] the author proved the existence of solution
when the nonlinear term H(x, η, ξ) is equal to zero.

Firstly, we prove an L∞ estimate for the bounded solutions of (P ): we assume
that f/ω ∈Lq(Ω, ω), with r/(r− 1) < q < ∞ (where r > 1 as in Theorem 2.4) and
we prove that any u∈W 1,p

0 (Ω, ω)∩L∞(Ω) that solves (P ) satisfies ‖u‖L∞(Ω)≤C,
where C depends only of the data, i.e., Ω, N, p, q, α1, α2, C0, C1 and ‖f/ω‖Lq(Ω,ω).
After that, we prove the existence of solution for problem (P ) if f/ω ∈Lq(Ω, ω),
with p ′r/(r − 1) < q < ∞.

Note that, in the proof of our main result, many ideas have been adapted from
[1],[2] and [9].

The following theorem will be proved in section 3.

Theorem 1.1 Let ω be an Ap-weight, 1 < p < ∞. Suppose that
(H1) x 7→A(x, η, ξ) is measurable in Ω for all (η, ξ)∈R×RN

(η, ξ) 7→A(x, η, ξ) is continuous in R×RN for almost all x∈Ω.
(H2) [A(x, η, ξ)−A(x, η′, ξ′)].(ξ − ξ′) > 0, whenever ξ, ξ′∈RN , ξ 6= ξ′;
(H3) A(x, η, ξ).ξ≥α1|ξ|p, with 1 < p < ∞, where α1 > 0;
(H4) | A(x, η, ξ)| ≤K1(x) + h1(x)|η|p/p′ + h2(x)|ξ|p/p′ , where K1, h1 and h2 are
positive functions, with h1 and h2 ∈L∞(Ω), and K1 ∈Lp′(Ω, ω) ( 1/p + 1/p′ = 1).
(H5) x 7→g(x, η, ξ) is measurable in Ω for all (η, ξ)∈R×RN

(η, ξ) 7→g(x, η, ξ) is continuous in R×RN for almost all x∈Ω.
(H6) | g(x, η, ξ)| ≤K2(x) + h3(x)|η|p/p′ + h4(x)|ξ|p/p′ , where K2, h3 and h4 are
positive functions, with h3, h4 ∈L∞(Ω) and K2 ∈Lp′(Ω, ω).
(H7) g(x, η, ξ)η≥α0|η|p, for all η ∈R, where α0 > 0.
(H8) x 7→H(x, η, ξ) is measurable in Ω for all (η, ξ)∈R×RN

(η, ξ) 7→H(x, η, ξ) is continuous in R×RN for almost all x∈Ω.
(H9) |H(x, η, ξ)| ≤C0 + C1|ξ|p, where C0 and C1 are positive constants.
(H10) f/ω ∈Lq(Ω, ω), with r/(r− 1) < q < ∞ (where r > 1 as in Theorem 2.4).
Let u∈W 1,p

0 (Ω, ω)∩L∞(Ω) be a solution of problem (P ). Then there exists a con-
stant C > 0, which depends only on Ω, n, p, α1, α0, C0, C1 and ‖f/ω‖Lq(Ω,ω), such
that ‖u‖L∞(Ω)≤C.

The main result of this article is given in the next theorem, which is proved in
section 4.
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Theorem 1.2 Let us assume that (H1)− (H9) hold true and suppose that
(H11) f/ω ∈Lq(Ω, ω), with p ′r/(r − 1) < q < ∞;
(H12) H(x, η, ξ) η≥ 0, for all η ∈R.
Then there exists at least one solution u∈W 1,p

0 (Ω, ω)∩L∞(Ω) of the problem (P ).

Theorem 1.2 will be proved by approximating problem (P ) with the following
problems

(Pm)
{ −div

[
ωA(x, u,∇u)

]
+ g(x, u,∇u)ω + Hm(x, u,∇u)ω = f(x), on Ω

u(x) = 0, on ∂Ω

where Hm(x, η, ξ) =
H(x, η, ξ)

1 +
1
m
|H(x, η, ε)|

, for m∈N. Note that |Hm| ≤ |H| and that

|Hm| ≤m.

2. Definitions and basic results

Let ω be a locally integrable nonnegative function in RN and assume that 0 <
ω(x) < ∞ almost everywhere. We say that ω belongs to the Muckenhoupt class
Ap, 1 < p < ∞, or that ω is an Ap-weight, if there is a constant C = Cp,ω such
that

(
1
|B|

∫

B

ω(x) dx

)(
1
|B|

∫

B

ω1/(1−p)(x) dx

)p−1

≤Cp,ω

for all balls B⊂RN , where |.| denotes the N -dimensional Lebesgue measure in RN .
If 1 < q≤ p, then Aq ⊂Ap (see [6],[7],[13] or [14] for more information about Ap-
weights). The weight ω satisfies the doubling condition if there exists a positive
constant C such that

µ(B(x, 2r))≤Cµ(B(x, r))

for every ball B = B(x, r)⊂RN , where µ(B) =
∫

B
ω(x) dx.If ω ∈Ap, then ω is

doubling (see Corollary 15.7 in [7]).
As an example of Ap-weight, the function ω(x) = |x|α, x∈RN , is in Ap if and only

if −N < α < N(p − 1) (see Corollary 4.4, Chapter IX in [13]). If ϕ∈BMO(RN )
then ω(x) = eα ϕ(x) ∈A2 for some α > 0 (see [12]).

Definition 2.1 Let ω be a weight, and let Ω⊂RN be open. For 0 < p < ∞, we
define Lp(Ω, ω) as the set of measurable functions f on Ω such that

‖f‖Lp(Ω,ω) =
( ∫

Ω

|f(x)|pω(x) dx

)1/p

< ∞.

Remark 2.2 If ω ∈Ap, 1 < p < ∞, then since ω−1/(p−1) is locally integrable, we
have Lp(Ω, ω)⊂L1

loc(Ω) for every open set Ω (see Remark 1.2.4 in [14]). It thus
makes sense to talk about weak derivatives of functions in Lp(Ω, ω). ¤

Definition 2.3 Let Ω⊂RN be open, 1 < p < ∞, and let ω be an Ap-weight,
1 < p < ∞. We define the weighted Sobolev space W 1,p(Ω, ω) as the set of functions
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u∈Lp(Ω, ω) with weak derivatives Dju∈Lp(Ω, ω), for j = 1, ..., N . The norm of u
in W 1,p(Ω, ω) is given by

‖u‖W 1,p(Ω,ω) =
( ∫

Ω

|u(x)|pω(x) dx +
N∑

j=1

∫

Ω

|Dju(x)|pω(x) dx

)1/p

. (2.1)

We also define W 1,p
0 (Ω, ω) as the closure of C∞0 (Ω) in W 1,p(Ω, ω), and

‖u‖W 1,p
0 (Ω,ω) =

( N∑

j=1

∫

Ω

|Dju(x)|pω(x) dx

)1/p

.

The dual space of W 1,p
0 (Ω, ω) is the space [W 1,p

0 (Ω, ω)]∗ = W−1,p ′(Ω, ω) (see [5]),

W−1,p ′(Ω, ω) = {T = f0 − divf : f = (f1, ..., fN ), fj/ω ∈Lp ′(Ω, ω), j = 0, ..., N}.
It is evident that the weight ω which satisfies 0 < c1≤ω(x)≤ c2 for x∈Ω (c1

and c2 positive constants), give nothing new (the space W1,p
0 (Ω, ω) is then identical

with the classical Sobolev space W1,p
0 (Ω)). Consequently, we shall interested above

all in such weight functions ω which either vanish somewhere in Ω̄ or increase to
infinity (or both).

In this paper we use the following four results.

Theorem 2.4 (The Weighted Sobolev Inequality) Let Ω be an open bounded set
in RN (N ≥ 2) and ω ∈Ap (1 < p < ∞). There exist constants CΩ and δ positive

such that for all u∈C∞0 (Ω) and all r satisfying 1≤ r≤ N

(N − 1)
+ δ,

‖u‖Lp∗ (Ω,ω)≤CΩ ‖∇u‖Lp(Ω,ω)

where p∗ = p r.
Proof. See Theorem 1.3 in [5]. ¤

The following lemma is due to Stampacchia (see [11], Lemme 4.1).

Lemma 2.5 Let α, β, C, k0 be real positive numbers, where β > 1. Let ϕ : R+→R+

be a decreasing function such that

ϕ(l)≤ C

(l − k)α
[ϕ(k)]β

for all l > k≥ k0. Then ϕ(k0 + d) = 0, where dα = C [ϕ(k0)]β−12α β/(β−1).

Lemma 2.6 If ω ∈Ap, then
( |E|
|B|

)p

≤Cp,ω
µ(E)
µ(B)

, whenever B is a ball in RN and

E is a measurable subset of B.

Proof. See Theorem 15.5 Strong doubling of Ap-weights in [7]. ¤

By Lemma 2.6, if µ(E) = 0 then |E| = 0.

Lemma 2.7 Let ω ∈Ap, 1 < p < ∞ and a sequence {un}, un ∈W 1,p
0 (Ω, ω) satisfies
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(i) un ⇀ u in W 1,p
0 (Ω, ω) and µ-a.e. in Ω;

(ii)
∫

Ω

〈A(x, un,∇un)−A(x, un,∇u),∇(un − u)〉ω dx→ 0 with n→∞.

Then un→u in W 1,p
0 (Ω, ω).

Proof. The proof of this lemma follows the line of Lemma 5 in [2]. ¤

Definition 2.8 We say that u∈W 1,p
0 (Ω, ω)∩L∞(Ω) is a (weak) solution of problem

(P) if

∫

Ω

ωA(x, u,∇u).∇ϕdx +
∫

Ω

g(x, u,∇u)ϕω dx +
∫

Ω

H(x, u,∇u) ϕω dx

=
∫

Ω

f ϕ dx, (2.2)

for all ϕ∈W 1,p
0 (Ω, ω)∩L∞(Ω).

3. Proof of Theorem 1.1

Set λ =
C1

α1
+ 1 and define for k > 0 the functions φ ∈C1(R) and Gk ∈W 1,∞(R)

by

φ(s) =
{

eλ s − 1, if s≥ 0,
− e−λ s + 1, if s≤ 0,

Gk(s) =





s− k, if s≥ k,
0, if − k≤ s≤k,
s + k, if s≤ − k.

If u∈W 1,p
0 (Ω, ω)∩L∞(Ω) is a solution of problem (P), define the set A(k) =

{x∈Ω : |u(x)| > k}.
We will use the test functions v(x) = φ(Gk(u(x))). We have

v(x) = φ((|u| − k)+) χA(k)sign(u),

∇v = φ′((|u| − k)+)χA(k)∇u,

where χA(k) is the characteristic function of the set A(k).
Since u∈W 1,p

0 (Ω, ω)∩L∞(Ω), we have that v ∈W 1,p
0 (Ω, ω)∩L∞(Ω).

Using the function v in (2.2) we obtain

∫

Ω

ωA(x, u,∇u).∇v dx +
∫

Ω

g(x, u,∇u)v ω dx +
∫

Ω

H(x, u,∇u) v ω dx

=
∫

Ω

f v dx. (3.1)

We have the following estimates.
(i) By (H3) we obtain
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∫

Ω

ωA(x, u,∇u).∇v dx =
∫

A(k)

φ′((|u| − k)+)A(x, u,∇u).∇uω dx

≥ α1

∫

A(k)

|∇u|pφ′((|u| − k)+)ω dx.

(ii) By (H7) we obtain

∫

Ω

g(x, u,∇u) v ω dx =
∫

A(k)

g(x, u,∇u)φ((|u| − k)+)ω dx

≥ α0

∫

A(k)

|u|p−1
φ((|u| − k)+)ω dx.

(iii) Using (H9) we obtain

∣∣∣∣
∫

Ω

H(x, u,∇u) v ω dx

∣∣∣∣ ≤
∫

Ω

|H(x, u,∇u)||v|ω dx

≤
∫

A(k)

(C0 + C1|∇u|p)φ((|u| − k)+)ω dx.

And we also have
∣∣∣∣
∫

Ω

f v dx

∣∣∣∣≤
∫

A(k)

|f |φ((|u| − k)+) dx.

Hence in (3.1) we obtain

α1

∫

A(k)

|∇u|pφ′((|u| − k)+)ω dx + α0

∫

A(k)

|u|p−1
φ((|u| − k)+) ω dx

≤
∫

A(k)

(C0 + C1|∇u|p)φ((|u| − k)+)ω dx +
∫

A(k)

|f |φ((|u| − k)+) dx.(3.2)

Since λ =
C1

α1
+ 1, we have for s≥ 0

α1φ
′(s)− C1φ(s) = α1λeλs − C1(eλs − 1)

= (α1λ− C1)eλs + C1 = α1eλs + C1

≥α1eλs =
α1

λp
[λeλs/p]p

=
α1

λp
[φ′(s/p)]p. (3.3)

Hence in (3.2) we obtain

∫

A(k)

[
α1|∇u|p φ′((|u| − k)+)− C1|∇u|p φ((|u| − k)+)

]
ω dx

+α0

∫

A(k)

|u|p−1
φ((|u| − k)+)ω dx

≤
∫

A(k)

(|f |+ C0 ω)φ((|u| − k)+) dx. (3.4)
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Using (3.3) and k < |u(x)| if x∈A(k), we obtain

α1

λp

∫

A(k)

∣∣∣∣φ′
(

(|u| − k)+

p

)
∇u

∣∣∣∣
p

ω dx + α0k
p−1

∫

A(k)

φ((|u| − k)+)ω dx

≤
∫

A(k)

(|f |+ C0 ω)φ((|u| − k)+) dx. (3.5)

Let us define the function ψk by ψk(x) = φ

(
(|u(x)| − k)+

p

)
. We have that

ψk ∈W 1,p
0 (Ω, ω) and

∇ψk =
1
p

φ′
(

(|u| − k)+

p

)
χA(k)sign(u)∇u. (3.6)

We have that
(a) For all s≥ 0, eλs − 1≥ (eλs/p − 1)p;
(b) There exist a constant C2 > 0 (C2 = C2(λ, p)) such that for all s≥ 1

eλs − 1≤C2(eλs/p − 1)p and λeλs≤C2 λ(eλs/p − 1)p.

This implies
(I1) φ((|u| − k)+) = eλ(|u|−k)+ − 1≥ (eλ(|u|−k)+/p − 1)p = |ψk|p a.e. on Ω;
(I2) If x∈A(k + 1) then
φ((|u| − k)+) = eλ(|u|−k)+ − 1≤C2(eλ(|u|−k)+/p − 1)p = C2|ψk|p and
φ′((|u| − k)+) = λ eλ(|u|−k)+ ≤C2 λ (eλ(|u|−k)+/p − 1)p = C2 λ |ψk|p.
Combining (I1) and (I2) with (3.5) and (3.6) we obtain

α1p
p

λp

∫

Ω

|∇ψk|pω dx + α0k
p−1

∫

Ω

|ψk|p ω dx

≤
∫

A(k)

(|f |+ C0 ω)φ((|u| − k)+) dx

≤
∫

A(k+1)

(|f |+ C0 ω) C2 |ψk|p dx

+
∫

A(k)−A(k+1)

(|f |+ C0 ω)φ((|u| − k)+) dx. (3.7)

Define the function h = |f | + C0ω. Since f/ω ∈Lq(Ω, ω) and µ(Ω) < ∞, we have
that h/ω ∈Lq(Ω, ω). Hence

∫

Ω

h |ψk|p dx =
∫

Ω

h

ω
|ψk|p ω1/q ω1/q′ dx

≤ ‖h/ω‖Lq(Ω,ω)‖ψk‖p

Lp q′ (Ω,ω)
. (3.8)

If x∈A(k)−A(k + 1), we have k < |u| < k + 1. Hence

φ((|u| − k)+) = eλ(|u|−k)+ − 1≤ eλ − 1

and we obtain
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∫

A(k)−A(k+1)

(|f |+ C0 ω)φ((|u| − k)+) dx ≤
∫

A(k)−A(k+1)

(eλ − 1)h dx

≤ eλ

∫

A(k)

h dx. (3.9)

By Theorem 2.4, (3.7) and (3.9) we have

α1 pp

λp

1
Cp

Ω

( ∫

Ω

|ψk|p
∗
ω dx

)p/p∗

+ α0 kp−1
0

∫

Ω

|ψk|p ω dx

≤C2

∫

Ω

h |ψk|p dx + eλ

∫

A(k)

h dx

Therefore, there exist positive constants C3 and C4 (depending only on Ω, α1, p,λ
and C2) such that

C3

( ∫

Ω

|ψk|p
∗
ω dx

)p/p∗

+ C4 α0 kp−1
0

∫

Ω

|ψk|p ω dx

≤
∫

Ω

h |ψk|p dx +
∫

A(k)

h dx (3.10)

Since r/(r − 1) < q then q ′ < r and p < p q ′ < p∗. For 0 < θ < 1 such that
1

p q ′
=

θ

p
+

1− θ

p∗
, using an interpolation inequality, Young’s inequality (with 0 < γ < ∞)

and Hölder’s inequality with exponents q and q′ we thus obtain

∫

Ω

h |ψk|p dx≤‖h/ω‖Lq(Ω,ω)‖ψk‖p

Lp q′ (Ω,ω)

≤‖h/ω‖Lq(Ω,ω)‖ψk‖θ p
Lp(Ω,ω)‖ψk‖(1−θ)p

Lp∗ (Ω,ω)

≤(1− θ)γ1/(1−θ)‖ψk‖p

Lp∗ (Ω,ω)
+ θ γ−1/θ‖h/ω‖1/θ

Lq(Ω,ω)‖ψk‖p
Lp(Ω,ω). (3.11)

Hence in (3.10) we obtain

C3

( ∫

Ω

|ψk|p
∗
ω dx

)p/p∗

+ C4 α0 kp−1
0

∫

Ω

|ψk|p ω dx

≤ (1− θ)γ1/(1−θ)‖ψk‖p

Lp∗ (Ω,ω)
+ θ γ−1/θ‖h/ω‖1/θ

Lq(Ω,ω)‖ψk‖p
Lp(Ω,ω)

+
∫

A(k)

h dx. (3.12)

Now, we can choose γ in order to have (1− θ) γ1/(1−θ) = C3/2 and k0 such that

C4α0k
p−1
0 = θ γ−1/θ‖h/ω‖1/θ

Lq(Ω,ω).

We obtain, from (3.12), that for every k≥ k0 it results
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C3

2

( ∫

Ω

|ψk|p
∗
ω dx

)p/p∗

≤
∫

A(k)

h dx≤‖h/ω‖Lq(Ω,ω) [µ(Ak)]1/q′ .

Hence for all k≥ k0 we have

∫

Ω

|ψk|p
∗
ω dx ≤

(
2
C3
‖h/ω‖Lq(Ω,ω)[µ(A(k))]1/q′

)p∗/p

=
(

2
C3

)p∗/p

‖h/ω‖p∗/p
Lq(Ω,ω)[µ(A(k))]p

∗/p q′

= C5[µ(A(k))]p
∗/p q′ .

Let us now take l > k≥ k0 we have

µ(A(l))
[
λ

(
l − k

p

)]p∗

≤µ(A(k))|φ((l − k)/p)|p∗

≤
∫

A(k)

|ψk|p
∗
ω dx

≤
∫

Ω

|ψk|p
∗
ω dx.

Therefore foll all l > k≥ k0 we obtain

(l − k)p∗µ(A(l)) ≤ pp∗

λp∗ C5[µ(A(k))]p
∗/p q′

= C6[µ(A(k))]p
∗/p q ′ .

that is, µ(A(l))≤ C6

(l − k)p∗ [µ(A(k))]p
∗/p q′ .

Let ϕ(k) = µ(A(k)). Since β = p∗/p q′ > 1, by Lemma 2.5 there exists a constant
C7 > 0 such that

µ(A(k)) = 0, ∀ k≥C7.

Using Lemma 2.6 we have |A(k)| = 0 for all k≥C7. Therefore any solution u of
problem (P ) satisfies the estimate ‖u‖L∞(Ω)≤C7.

¤

4. Proof of Theorem 1.2

Step 1. Let us define for m∈N the approximation

Hm(x, η, ξ) =
H(x, η, ξ)

1 +
1
m
|H(x, η, ξ)|

.

We have that |Hm(x, η, ξ)| ≤ |H(x, η, ξ)|, |Hm(x, η, ξ)| < m and Hm(x, η, ξ) satisfies
the conditions (H9) and (H12). We consider the approximate problem
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(Pm)
{ − div

[
ωA(x, u,∇u)

]
+ g(x, u,∇u)ω + Hm(x, u,∇u)ω = f(x) , on Ω

u(x) = 0, on ∂Ω

We say that u∈W 1,p
0 (Ω, ω) is (weak) solution of problem (Pm) if

∫

Ω

A(x, u,∇u).∇ϕω dx +
∫

Ω

g(x, u,∇u) ϕω dx

+
∫

Ω

Hm(x, u,∇u) ϕω dx =
∫

Ω

f ϕ dx, (4.1)

for all ϕ∈W 1,p
0 (Ω, ω). We will prove that there exists at least one solution um of

the problem (Pm).

For u, v, ϕ∈W 1,p
0 (Ω, ω) we define

B(u, v, ϕ) =
∫

Ω

ωA(x, u,∇v).∇ϕdx,

Bm(u, ϕ) =
∫

Ω

g(x, u,∇u)ϕω dx +
∫

Ω

Hm(x, u,∇u) ϕω dx,

T (ϕ) =
∫

Ω

f ϕ dx.

Then u∈W 1,p
0 (Ω, ω) is a (weak) solution of problem (Pm) if

B(u, u, ϕ) + Bm(u, ϕ) = T (ϕ), for all ϕ∈W 1,p
0 (Ω, ω).

Let a(u, v, ϕ) = B(u, v, ϕ) + Bm(u, ϕ).
(i) Using (H4) we obtain

|B(u, v, ϕ)| ≤
(
‖K1‖Lp′ (Ω,ω) + ‖h1‖L∞(Ω) ‖u‖p/p′

W 1,p
0 (Ω,ω)

+‖h2‖L∞(Ω)‖v‖p/p ′

W 1,p
0 (Ω,ω)

)
‖ϕ‖W 1,p

0 (Ω,ω).

(ii) Using (H6) and |Hm(x, η, ξ)| ≤m, we obtain

|Bm(u, ϕ)| ≤
(
‖K2‖Lp′ (Ω,ω) + ‖h3‖L∞(Ω)‖u‖p/p ′

W 1,p
0 (Ω,ω)

+ ‖h4‖L∞(Ω)‖u‖p/p ′

W 1,p
0 (Ω,ω)

+m [µ(Ω)]1/p ′
)
‖ϕ‖W 1,p

0 (Ω,ω)

Hence,

| a(u, v, ϕ)|
≤

(
‖K1‖Lp′ (Ω,ω) + (‖h1‖L∞(Ω) + ‖h3‖L∞(Ω) + ‖h4‖L∞(Ω)) ‖u‖p/p′

W 1,p
0 (Ω,ω)

+‖K2‖Lp ′ (Ω,ω) + ‖h2‖L∞(Ω)‖v‖p/p ′

W 1,p
0 (Ω,ω)

+ m [µ(Ω)]1/p ′
)
‖ϕ‖W 1,p

0 (Ω,ω).
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Since a(u, v, .) is linear and continuous for each (u, v)∈W 1,p
0 (Ω, ω)×W 1,p

0 (Ω, ω),
there exists a linear and continuous operator A(u, v) : W 1,p

0 (Ω, ω)→ [W 1,p
0 (Ω, ω)]∗

such that 〈A(u, v), ϕ〉 = a(u, v, ϕ). We set Ã(u) = A(u, u) for all u∈W 1,p
0 (Ω, ω).

The operator Ã : W 1,p
0 (Ω, ω) → [W 1,p

0 (Ω, ω)]∗ is semimonotone, that is, by similar
arguments as in the proof of Theorem 2 in [9] we have
(i) 〈A(u, u)−A(u, v), u− v〉≥ 0 for all u, v ∈W 1,p

0 (Ω, ω);
(ii) For each u∈W 1,p

0 (Ω, ω), the operator

v 7→A(u, v)

is hemicontinuous and bounded from W 1,p
0 (Ω, ω) to [W 1,p

0 (Ω, ω)]∗ and for each
v ∈W 1,p

0 (Ω, ω) the operator
u 7→A(u, v)

is hemicontinuous and bounded from W 1,p
0 (Ω, ω) to [W 1,p

0 (Ω, ω)]∗;
(iii) If un ⇀u in W 1,p

0 (Ω, ω) and 〈A(un, un)−A(un, u), un − u〉→ 0, then
A(un, u)⇀A(u, v) in [W 1,p

0 (Ω, ω)]∗ as n →∞ for all v ∈W 1,p
0 (Ω, ω);

(iv) If v ∈W 1,p
0 (Ω, ω), un⇀u in W 1,p

0 (Ω, ω) and A(un, v)⇀ ṽ in [W 1,p
0 (Ω, ω)]∗ then

〈A(un, v), un〉→ 〈ṽ, u〉 as n →∞;
(v) The operator Ã : W 1,p

0 (Ω, ω)→ [W 1,p
0 (Ω, ω)]∗ is bounded.

Hence the operator Ã : W 1,p
0 (Ω, ω)→[W 1,p

0 (Ω, ω)]∗ is pseudomonotone (see [15]).
(vi) By (H3), (H7) and (H12) we have

〈Ã(u), u〉≥α1

∫

Ω

|∇u|pω dx + α0

∫

Ω

|u|pω dx≥α1‖u‖p

W 1,p
0 (Ω,ω)

.

Since p > 1, we have

〈Ã(u), u〉
‖u‖W 1,p

0 (Ω,ω)

→∞ as ‖u‖W 1,p
0 (Ω,ω)→∞,

that is, the operator Ã is coercive. Then, by Theorem 27.B in [15], for each
T ∈ [W 1,p

0 (Ω, ω)]∗, the equation

Ãu = T, u∈W 1,p
0 (Ω, ω)

has a solution. Therefore, the problem (Pm) has a solution um ∈W 1,p
0 (Ω, ω).

Step 2. We will show that um ∈L∞(Ω) and ‖um‖L∞(Ω)≤C, where C is indepen-
dent of m. If u∈W 1,p

0 (Ω, ω) is a solution of problem (Pm) we define

un(x) =





u(x), if |u(x)| ≤n,
n, if u(x) > n,
−n, if u(x) < −n.

We have Diun = Diu if |u(x)| ≤n. For k > 0, let us define the function
ψn(x) = sign(un(x))max{|un(x)| − k, 0}. We have ψn ∈W 1,p

0 (Ω, ω)∩L∞(Ω).
Now consider the function

Φ(t) =





t + k, if t≤ − k,
0, if | t| ≤ k,
t− k, if t≥ k.
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We have that Φ is a Lipschitz function and Φ(0) = 0. Then Φ(ψn)∈W 1,p
0 (Ω, ω).

Moreover DiΦ(ψn) = Φ′(ψn)Diψn and

Φ′(un)∇un→Φ′(u)∇u, µ− a.e. in Ω.

We also have, for all measurable subset E⊂Ω
∫

E

|Φ′(un)∇un|p ω dx≤
∫

E

|∇un|p ω dx.

By applying the Vitali’s Convergence Theorem, with ψ = Φ(u), we obtain

∇ψn→∇ψ in Lp(Ω, ω). (4.2)

Since u∈W 1,p
0 (Ω, ω) is a solution of problem (Pm) and ψn ∈W 1,p

0 (Ω, ω)∩L∞(Ω),
we have

∫

Ω

A(x, u,∇u).∇ψn ω dx +
∫

Ω

g(x, u,∇u) ψn ω dx

+
∫

Ω

Hm(x, u,∇u)ψn ω dx =
∫

Ω

f ψn dx. (4.3)

Using (H4), (H6), |Hm(x, η, ξ)| ≤m and (4.2), we obtain in (4.3) as n→∞
∫

Ω

A(x, u,∇u).∇ψ ω dx +
∫

Ω

g(x, u,∇u) ψ ω dx

+
∫

Ω

Hm(x, u,∇u) ψ ω dx =
∫

Ω

f ψ dx.

Using ϕ = ψ χA(k) in (4.1) (where A(k) = {x∈Ω : |u(x)| > k}) we obtain

∫

A(k)

A(x, u,∇u).∇ψ ω dx +
∫

A(k)

g(x, u,∇u)ψ ω dx

+
∫

A(k)

Hm(x, u,∇u) ψ ω dx =
∫

A(k)

f ψ dx. (4.4)

Since

ψ = Φ(u) =





u + k, if u≤ − k
0, if |u| ≤ k
u− k, if u≥ k,

we obtain:
(i) By (H7) we have g(x, η, ξ) η≥ 0 for all η ∈R, and

∫

A(k)

g(x, u,∇u)ψ ω dx =
∫

{u≤−k}
g(x, u,∇u)(u + k)ω dx

+
∫

{u≥ k}
g(x, u,∇u)(u− k) ω dx≥ 0;

(ii) Using (H12) we have Hm(x, η, ξ) η≥ 0 for all η ∈R, and
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∫

A(k)

Hm(x, u,∇u)ψ ω dx =
∫

{u≤−k}
Hm(x, u,∇u)(u + k) ω dx

+
∫

{u≥ k}
Hm(x, u,∇u)(u− k)ω dx≥ 0.

We have ∇ψ = ∇u in A(k). Using (H3), (i) and (ii) we obtain in (4.4)

α1

∫

A(k)

|∇u|p ω dx≤
∫

A(k)

f ψ dx. (4.5)

By Theorem 2.1.14 in [14] there is a positive constant C such that
∫

Ω

|ψ|pω dx≤C

∫

Ω

|∇ψ|pω dx.

Then we obtain

∫

A(k)

f ψ dx ≤
( ∫

A(k)

∣∣∣∣
f

ω

∣∣∣∣
p ′

ω

)1/p ′( ∫

A(k)

|ψ|pω dx

)1/p

≤ C

( ∫

A(k)

∣∣∣∣
f

ω

∣∣∣∣
p ′

ω

)1/p ′( ∫

A(k)

|∇ψ|pω dx

)1/p

= C

( ∫

A(k)

∣∣∣∣
f

ω

∣∣∣∣
p ′

ω

)1/p ′( ∫

A(k)

|∇u|pω dx

)1/p

. (4.6)

Using (4.6) and Young’s inequality we obtain in (4.5) (for all ε > 0)

α1

∫

A(k)

|∇u|pω dx ≤ C

( ∫

A(k)

∣∣∣∣
f

ω

∣∣∣∣
p ′

ω

)1/p ′( ∫

A(k)

|∇u|pω dx

)1/p

≤ C

[
ε

∫

A(k)

|∇u|p ω dx + C(ε)
∫

A(k)

∣∣∣∣
f

ω

∣∣∣∣
p ′

ω dx

]
,

where C(ε) = (εp)−p ′/p/p ′. We can choose ε > 0 so that C ε = α1/2, and there
exists a constant C8 such that

∫

A(k)

|∇u|pω dx≤C8

∫

A(k)

∣∣∣∣
f

ω

∣∣∣∣
p ′

ω dx. (4.7)

Using the Sobolev’s inequality (Theorem 2.4) and Hölder’s inequality with expo-
nents q and q′ we obtain (since q > p ′r/(r − 1) > p ′)

( ∫

A(k)

(|u| − k)p∗ω dx

)p/p∗

=
( ∫

A(k)

|ψ|p∗ ω dx

)p/p∗

≤C

∫

A(k)

|∇ψ|pω dx = C

∫

A(k)

|∇u|pω dx

≤C C8

∫

A(k)

∣∣∣∣
f

ω

∣∣∣∣
p ′

ω dx ≤C9

( ∫

Ω

∣∣∣∣
f

ω

∣∣∣∣
q

ω dx

)p ′/q

[µ(Ω)]
1− p ′

q .
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Let us now take l > k > 0, and observe that A(l)⊂A(k). Then, from the previous
inequality, it follows that

µ(A(l)) (l − k)p∗ =
∫

A(l)

(l − k)p∗ω dx

≤
∫

A(l)

(|u| − k)p∗ω dx

≤
∫

A(k)

(|u| − k)p∗ω dx

≤ C9

( ∫

Ω

∣∣∣∣
f

ω

∣∣∣∣
q

ω dx

)p ′ p∗

q p [µ(A(k))]
(1− p ′

q
)
p∗

p .

Hence we obtain

µ(A(l))≤
C9

(∫

Ω

∣∣∣∣
f

ω

∣∣∣∣
q

ω dx

)p′ p∗

q p

(l − k)p∗ [µ(A(k))]

(
1− p′

q

) p∗

p .

Since
(
1 − p′

q

) p∗

p
> 1, by Lemma 2.5 there exists a constant C10 > 0 such that

µ(A(k)) = 0 for all k≥C10, and using Lemma 2.6 we obtain |A(k)| = 0. Therefore if
um is a solution of problem (Pm) we have ‖um‖L∞(Ω)≤C10 and C10 is independent
of m.

Step 3. Since um ∈W 1,p
0 (Ω, ω)∩L∞(Ω) and ‖um‖L∞(Ω)≤C10, then the sequence

{um} is relative compact in the strong topology of W 1,p
0 (Ω, ω) (by apply the analo-

gous results of [2] and Lemma 2.7). Then, by extracting a subsequence {umk
} which

strongly converges in W 1,p
0 (Ω, ω) (there exists u∈W 1,p

0 (Ω, ω) such that umk
→u in

W 1,p
0 (Ω, ω)), we have for all ϕ∈W 1,p

0 (Ω, ω)∩L∞(Ω)
∫

Ω

A(x, umk
,∇umk

).∇ϕω dx +
∫

Ω

g(x, umk
,∇umk

)ϕω dx

+
∫

Ω

Hmk
(x, umk

,∇umk
) ϕω dx

→
∫

Ω

A(x, u,∇u).∇ϕω dx +
∫

Ω

g(x, u,∇u)ϕω dx +
∫

Ω

H(x, u,∇u)ϕ ω dx.

Therefore u∈W 1,p
0 (Ω, ω)∩L∞(Ω) is the solution of problem (P ).

Example. Let Ω = {(x, y)∈R2 : x2 + y2 < 1}, and consider the weight function
ω(x, y) = (x2+y2)−1/2 (ω ∈A2), the functions A : Ω×R×R2→R2, g : Ω×R×R2→R
and H : Ω×R×R2→R defined by

A((x, y), η, ξ) = h2(x, y) ξ,

g((x, y), η, ξ) = η (cos2(xy) + 1),

H((x, y), η, ξ) = |ξ|2 sin2(xy). arctan(η),
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where h2(x, y) = 2ex2+y2
. Let us consider the partial differential operator

Lu(x, y) = −div
[
ω(x, y)A((x, y), u,∇u)

]
+ ω(x, y)g((x, y), u,∇u)

+ ω(x, y) H((x, y), η, ξ),

and f(x, y) = (x2 + y2)−1/3q cos(1/(x2 + y2)), with q > 2r/(r − 1) > 2. Therefore,
by Theorem 1.2, the problem

(P )
{

Lu(x, y) = f(x, y) on Ω
u(x, y) = 0, on ∂Ω

has a solution u∈W 1,2
0 (Ω, ω)∩L∞(Ω).
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