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Abstract. In this article, we study the problem of pricing defaultable bond
with discrete default intensity and barrier under constant risk free short rate

using higher order binary options and their integrals. In our credit risk model,

the risk free short rate is a constant and the default event occurs in an expected
manner when the firm value reaches a given default barrier at predetermined

discrete announcing dates or in an unexpected manner at the first jump time of
a Poisson process with given default intensity given by a step function of time

variable, respectively. We consider both endogenous and exogenous default re-

covery. Our pricing problem is derived to a solving problem of inhomogeneous
or homogeneous Black-Scholes PDEs with different coefficients and terminal

value of binary type in every subinterval between the two adjacent announcing

dates. In order to deal with the difference of coefficients in subintervals we use
a relation between prices of higher order binaries with different coefficients. In

our model, due to the inhomogenous term related to endogenous recovery, our

pricing formulae are represented by not only the prices of higher binary options
but also the integrals of them. So we consider a special binary option called

integral of i-th binary or nothing and then we obtain the pricing formulae of

our defaultable corporate bond by using the pricing formulae of higher binary
options and integrals of them.

1. Introduction

The study on defaultable corporate bond and credit risk is now one of the most
promising areas of cutting edge in financial mathematics. There are two main
approaches to modeling credit risk and pricing defaultable corporate bonds; one
is the structural approach and the other one is the reduced form approach. In the
structural method, we think that the default event occurs when the firm value is
not enough to repay debt, that is, the firm value reaches a certain lower threshold
(default barrier) from the above. Such a default can be expected and thus we
call it expected default. In the reduced-form approach, the default is treated as
an unpredictable event governed by a default intensity process. In this case, the
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default event can occur without any correlation with the firm value and such a
default is called unexpected default. In the reduced-form approach, if the default
probability in time interval [t, t + ∆t] is , then λ∆t is λ called default intensity
[9, 12, 13, 15].

The two approaches have got their own advantages and shortcomings ([3, 12])
and therefore the use of unified models of structural approach and reduced-form
approach is a trend. (See [3, 4, 6, 7, 9, 12, 13, 14].) Cathcart et al [6] studied
a pricing of corporate bonds in the case when the default intensity is a linear
function of the interest rate and gave semi-analytical pricing formulae. Cathcart
et al [7] studied a valuation model in the case when the default intensity (hazard
rate) is a linear function of the state variable and the interest rate. Realdon [14]
studied a pricing of corporate bonds in the case with constant default intensity
and gave pricing formulae of the bond using PDE method. Some authors studied
the pricing model of defaultable bonds in which the default intensity is given as
a stochastic process [3, 4, 12]. In [12], the authors provided analytical pricing
formula of corporate defaultable bond with both expected and unexpected default
in the case when stochastic default intensity follows Wilmott model where drift and
volatility are linear of state variables [15]. Bi et all [4] got the similar result with
[12] in the case when stochastic default intensity follows CIR-like model. Ballestra
et al [3] proposed a model to price defaultable bonds where default intensity follows
Vasicek-like model or CIR-like model coupled with the process of the firm’s asset
value and provided a closed-form approximate solution to their model. In [3, 4, 6,
7, 12, 14] expected default barrier is given in the whole lifetime of the bond.

On the other hand, in [9, 13] the author studied the pricing problem for default-
able corporate bond under the assumption that we only know the firm value and
the default barrier at 2 fixed discrete announcing dates, we don’t know about any
information of the firm value in another time and the default intensity between
the adjoined two announcing dates is a constant determined by its announced firm
value at the former announcing date. In that case we encountered a piecewise con-
stant default intensity. Generally, credit rankings estimated by credit estimation
organizations are discretely announced (once in three months, once in a half year
and etc.), which reflects the firms default intensity. The computational error in
[13] is corrected in [9]. The approach of [9, 13] is a kind of study of defaultable
bond under insufficient information about the firm and it is interesting to note
that Agliardi et al [2] studied bond pricing problem under imprecise information
with the technique of fuzzy mathematics. The approach of [9, 13] can be seen as
a unified model of structural model and reduced form model. Agliardi [1] studied
a structural model for defaultable bond with several (discrete) coupon dates where
the default can occur only when the firm value is not large enough to pay its debt
and coupon in those discrete coupon dates. In that case they encounter discrete
default barriers. Generally, default barrier reflects the firms debt and the investor
outside of the firm only can discretely know information of the firm including debt.

Speaking on default recovery, most of authors including [2, 3, 4, 6, 9, 12, 13] have
studied the case of exogenous default recovery which is independent on firm value
whereas [1] have studied the case of endogenous recovery which is related to firm
value, and [14] studied both cases of exogenous and endogenous recovery.

Here we study the problem of pricing defaultable bond with discrete default
intensity and barrier under constant risk free short rate using higher order binary
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options and their integrals. In our credit risk model, the default event occurs in an
expected manner when the firm value reaches a certain lower threshold - the default
barrier at predetermined discrete announcing dates or in an unexpected manner at
the first jump time of a Poisson process with given default intensity given by a
step function of time variable, respectively. We consider both endogenous and
exogenous default recovery. Our pricing problem is derived to a solving problem
of inhomogeneous or homogeneous Black-Scholes PDEs with different coefficients
and terminal value of binary type in every subinterval between the two adjacent
announcing dates. In order to deal with the difference of coefficients in subintervals
we use a relation between prices of higher order binaries with different coefficients.
In our model, due to the inhomogenous term related to endogenous recovery, our
pricing formulae are represented by not only the prices of higher binary options but
also the integrals of them. So we consider a special binary option called integral of
i-th binary or nothing and then we obtain the pricing formulae of our defaultable
corporate bond by using the pricing formulae of higher binary options and integrals
of them.

Our approach to model credit risk is similar with the one of [13, 9]. One of the
different points of our model from [9] is that we here consider arbitrary number
of announcing dates but [9] consider only 2 announcing dates. Another different
point from [9] is that we use constant risk free rate, the purpose of which is to
show the applicability of higher order binaries to the pricing of defaultable bonds
in the simplest way. Unlikely in [9] we here consider discrete default intensity
independent on firm value and it can be seen incompatible with reality but we
think our analytical pricing formulae can help the further study on the more realistic
situation with discrete default intensity dependent on firm value.

The remainder of the article is organized as follows. In section 2 we give some
preliminary knowledge on prices of higher order binary options and their integral
on the last expiry date. In section 3 we set our problem for corporate defaultable
bonds, provide the pricing formulae in both cases of endogenous and exogenous
default recovery and analyze the credit spread. In section 4 we derive the pricing
formulae using and higher order binary options and their integral.

2. Preliminaries and Notes on Binary Options and their Integrals

First, we introduce the concept of higher order bond and asset binaries with risk
free rate r, dividend rate q and volatility σ and their pricing formulae [5, 10, 11].

∂V

∂t
+
σ2

2
x2
∂2V

∂x
+ (r − q)x∂V

∂x
− rV = 0, 0 ≤ t < T, 0 < x <∞, (1)

V (x, T ) = x · 1(sx > sξ), (2)

V (x, T ) = 1(sx > sξ). (3)

The solution to the problem (1) and (2) is called the asset-or-nothing binaries (or
asset binaries) and denoted by Asξ(x, t;T ). The solution to the problem (1) and (3)

is called the cash-or-nothing binaries (or bond binaries) and denoted by Bsξ(x, t;T ).
Asset binary and bond binary are called the first order binary options. If necessary,
we will denote by Asξ(x, t;T ; r, q, σ) or Bsξ(x, t;T ; r, q, σ) where the coefficients r, q

and σ of Black-Scholes equation (1) are explicitly included in the notation.
Let assume that 0 < T0 < T1 < · · · < Tn−1 and the (n − 1)-th order (asset or

bond) binary options A
s1···sn−1

ξ1···ξn−1
(x, t;T1, · · · , Tn−1) and B

s1···sn−1

ξ1···ξn−1
(x, t;T1, · · · , Tn−1)
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are already defined. Let

V (x, T0) = A
s1···sn−1

ξ1···ξn−1
(x, T0;T1, · · · , Tn−1) · 1(s0x > s0ξ0), (4)

V (x, T0) = B
s1···sn−1

ξ1···ξn−1
(x, T0;T1, · · · , Tn−1) · 1(s0x > s0ξ0). (5)

The solution to the problem (1) and (4) is called the n-th order asset binaries and de-
noted by A

s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1). The solution to the problem (1) and (5)

is called the n-th order bond binaries and denoted byB
s0s1···sn−1

ξ0ξ1···ξn−1
(x, t;T0, T1, · · · , Tn−1).

Lemma 1. (The pricing formulae of higher order binary options) [5, 10, 11] The
prices of higher order bond and asset binaries with risk free rate r, dividend rate q
and volatility σ are as follows.

Asξ(x, t;T ; r, q, σ) = xe−q(T−t)N(sd+),

Bsξ(x, t;T ; r, q, σ) = e−r(T−t)N1(sd−), s = + or − . (6)

Here

N1(x) = (
√

2π)−1
∫ x

−∞
exp(−y2/2)dy,

d± = (σ
√
T − t)−1[ln(x/K) + (r − q ± σ2/2)(T − t)].

As1 s2K1K2
(x, t;T1, T2; r, q, σ) = xe−q(T2−t)N2(s1d

+
1 , s2d

+
2 ; s1s2ρ),

Bs1 s2K1K2
(x, t;T1, T2; r, q, σ) = e−r(T2−t)N2(s1d

−
1 , s2d

−
2 ; s1s2ρ), s1, s2 = + or − . (7)

Here

N2(a, b; ρ) =

∫ a

−∞

∫ b

−∞
(2π
√

1− ρ2)−1e
− y

2−2ρyz+z2

2(1−ρ2) dydz,

d±i = (σ
√
Ti − t)−1[ln(x/Ki) + (r − q ± σ2/2)(Ti − t)], i = 1, 2,

ρ =
√

(T1 − t)/(T2 − t).

If m > 2 and si = + or −, i = 1, · · · ,m, then we have

As1···smK1···Km(x, t;T1, · · · , Tm; r, q, σ) = xe−q(Tm−t)Nm(s1d
+
1 , · · · , smd+m;As1···sm),

Bs1···smK1···Km(x, t;T1, · · · , Tm; r, q, σ) = e−r(Tm−t)Nm(s1d
−
1 , · · · , smd−m;As1···sm). (8)

Here

Nm(a1, · · · , am;A) =

∫ a1

−∞
· · ·
∫ am

−∞
(
√

2π)−m
√

detA exp

(
−1

2
yTAy

)
dy,

d±i = (σ
√
Ti − t)−1[ln(x/Ki) + (r − q ± σ2/2)(Ti − t)], i = 1, · · · ,m,

As1···sm = (sisjaij)
m
i,j=1, y

T = (y1, · · · , ym), (9)

and the matrix (ai,j)
m
i,j=1 is given as follows:

a11 = (T2 − t)/(T2 − T1), amm = (Tm − t)/(Tm − Tm−1),

aii = (Ti − t)/(Ti − Ti−1) + (Ti − t)/(Ti+1 − Ti), 2 ≤ i ≤ m− 1,

ai,i+1 = ai+1,i = −
√

(Ti − t)(Ti+1 − t)/(Ti+1 − Ti), 1 ≤ i ≤ m− 1,

aij = 0 for another i, j = 1, · · · ,m. (10)
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Note that N2(a, b; ρ) is the cumulative distribution function of bivariate normal
distribution with a mean vector [0, 0] and a covariance matrix [1, ρ; ρ, 1] (symbols
in Matlab), and Nm(a1, · · · , am;A) is the cumulative distribution function of m-
variate normal distribution with zero mean vector and a covariance matrix A−1 =
(rij)

m
i,j=1 where rij =

√
(Ti − t)/(Tj − t), rji = rij , i ≤ j. Such special functions

can easily be calculated by standard functions supplied in software for mathematical
calculation (for example, Matlab). Note that (As1···sm)−1 = (sisjrij)

m
i,j=1.

Second, we consider a relation between prices of higher order binaries with dif-
ferent risk free rates and dividend rates. From the formulae (6), (7) and (8), we
can easily know that the following relations between prices of higher order binaries
with different risk free rates and dividend rates hold:

F s1···smK1···Km(x, t;T1, · · · , Tm; r1, r1 + b, σ) =

= e−(r1−r2)(Tm−t)F s1···smK1···Km(x, t;T1, · · · , Tm; r2, r2 + b, σ). (11)

Here F = A or F = B.
Next, we will discuss integrals of the prices of higher order binary options on

the last expiry date variable. Let consider (1) with the following two terminal
conditions:

V (x, T ) = f(x, τ), (12)

V (x, T ) = F (x) :=

∫ D

C

f(x, τ)dτ. (13)

Lemma 2. Assume that there exist non negative constants M and α such that
|f(x, τ)| ≤ M · xα ln x, x > 0 and f(x, τ) is a continuous function of τ ∈ [C, D].
Then the solution VF (x, t) to the problem (1) and (13) is given by the integral of
the solution Vf (x, t; τ) to the problem (1) and (12):

VF (x, t) =

∫ D

C

Vf (x, t; τ)dτ. (14)

Proof: If we use the proposition 1 at page 249 in [10] and the continuity of f
on τ , we can easily get (14).(QED)

Now let consider a special binary option called integral of i-th binary or nothing.

Corollary. Let g(τ) be a continuous function of τ ∈ [Ti−1, T ] and

V (x, T0) = 1(s0x > s0K0)

∫ T

Ti−1

g(τ)F
s1···si−1 si
K1···Ki−1Ki

(x, T0;T1, · · · , Ti−1, τ)dτ. (15)

Then the solution of (1) and (15) is given as follows:

V (x, t) =

∫ T

Ti−1

g(τ)F
s0 s1···si−1 si
K0K1···Ki−1Ki

(x, t;T0, T1, · · · , Ti−1, τ)dτ, t < T0. (16)

Here F = A or F = B.
Proof: We will prove only for bond binary in the case when i = 1. The proofs

for other cases are the same. By the proposition 1 at page 249 in [10], the solution
to (1) with

V (x, T0) = 1(s0x > s0K0)

∫ T

T0

g(τ)Bs1K1
(x, T0; τ)dτ
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is given as follows:

U(x, t) =

=
e−r(T0−t)

σ
√

2π(T0 − t)

∫ ∞
0

1

z
e
−

[ln x
z
+(r−q−σ2

2
)(T0−t)]2

2σ2(T0−t) 1(s0z > s0K0)

∫ T

T0

g(τ)Bs1K1
(z, T0; τ)dτdz

=

∫ T

T0

g(τ)
e−r(T0−t)

σ
√

2π(T0 − t)

∫ ∞
0

1

z
e
−

[ln x
z
+(r−q−σ2

2
)(T0−t)]2

2σ2(T0−t) Bs1K1
(z, T0; τ)1(s0z > s0K0)dzdτ

=

∫ T

T0

g(τ)Bs0 s1K0K1
(x, t;T0, τ)dτ. (QED)

3. The Problem of Defaultable Bonds and The Pricing Formulae

3.1. The Problem with Endogenous Recovery. Let Assume the followings:
1) Short rate r is a constant.
2) 0 = t0 < t1 < · · · < tN1

< tN = T are announcing dates and T is the maturity
of our corporate bond with face value 1 (unit of currency). For every i = 0, · · · , N−1
the unexpected default probability in the interval [t, t+ dt]∩ (ti, ti+1) is λidt. Here
the default intensity λi is a constant.

3) The firm value V (t) follows a geometric Brownian motion

dV (t) = (r − b)dtV (t)dt+ sV · V (t)dW (t) (17)

under the risk neutral martingale measure. Here the volatility sV of the firm value
is a constant and the firm continuously pays out dividend in rate b (constant) for a
unit of firm value. Like in [12], the firm value Vt is assumed to consist of m shares
of stock S and n sheets of corporate bonds Ct:

Vt = mSt + nCt. (18)

4) The expected default barrier is only given at time ti and the expected default
event occurs when

V (ti) ≤ Kie
−r(T−ti), i = 1, · · · , N. (19)

Here Ki is a constant reflecting the quantity of debt and e−r(T−ti) is default free
zero coupon bond price.

5) The default recovery Rd is given as the form of endogenous face value

Rd = min{e−r(T−t), R · V/n}. (20)

Here recovery rate 0 ≤ R ≤ 1 is a constant.
6) In the subinterval (ti, ti+1), the price of our corporate bond is given by a

sufficiently smooth function Ci(V, t) (i = 0, · · · , N − 1).
Problem: Find the representation of the price function Ci(V, t) (i = 0, · · · , N−

1) under the above assumptions.

The Pricing Model. According to [15], under the above assumptions the price
C of defaultable bond with a constant default intensity λ and default recovery Rd
satisfies the following PDE:

∂C

∂t
+
s2V
2
V 2 ∂

2C

∂V 2
+ (r − b)V ∂C

∂V
− (r + λ)C + λRd = 0.
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Therefore if we let CN (V, t) ≡ 1 , then the price model of our bond is given as
follows:

∂Ci
∂t

+
s2V
2
V 2 ∂

2Ci
∂V 2

+ (r − b)V ∂Ci
∂V
− (r + λi)Ci + λi min{e−r(T−t), RV

n
} = 0, ti < t < ti+1,

Ci(ti+1) = Ci+1(ti+1)1(V > Ki+1e
−r(T−ti+1)) + min{e−r(T−ti+1),

RV

n
}1(V ≤ Ki+1e

−r(T−ti+1)).

(21)

Here i = 0, 1, · · · , N − 1.

The Pricing Formulae. Under the assumptions 1)– 6), we have the following
pricing formulae:

Theorem 1. (endogenous recovery) i) Assume that Ki ≤ n/R, i = 1, · · · , N .
Under the assumptions 1)–6), the price of our bond, that is, the solution of (21) is
represented as follows:

Ci(V, t) = e−r(T−t)ui(V/e
−r(T−t), t), ti ≤ t < ti+1, i = 0, · · · , N − 1. (22)

Here

ui(x, t) = e−λi(ti+1−t)
{
e−

∑N−1
k=i+1 λk(tk+1−tk)B+ ··· +

Ki+1···KN (x, t; ti+1, · · · , tN )+

+
R

n

N−1∑
m=i

e−
∑m
k=i+1 λk(tk+1−tk)A+ ··· + −

Ki+1···KmKm+1
(x, t; ti+1, · · · , tm, tm+1)

+

N−1∑
m=i+1

λme
−

∑m−1
k=i+1 λk(tk+1−tk)

∫ tm+1

tm

e−λm(τ−tm)
[
B+ ··· + +
Ki+1···Km n

R
(x, t; ti+1, · · · , tm, τ)

+
R

n
A+ ··· + −
Ki+1···Km n

R
(x, t; ti+1, · · · , tm, τ)

]
dτ

}
+ λi

∫ ti+1

t

e−λi(τ−t)
[
B+
n
R

(x, t; τ ; 0, b, sV ) +
R

n
A−n
R

(x, t; τ ; 0, b, sV )

]
dτ. (23)

ii) Assume that Ki > n/R, i = 1, · · · , N . Under the assumptions 1)–6), the price
of our bond, that is, the solution of (21) is represented by (22) with the following
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ui(x, t):

ui(x, t) =

= e−λi(ti+1−t)

{
N−1∑
m=i

e−
∑m
k=i+1 λk(tk+1−tk)

[
B+ ··· + +
Ki+1···Km n

R
(x, t; ti+1, · · · , tm, tm+1)

+
R

n
A+ ··· + −
Ki+1···Km n

R
(x, t; ti+1, · · · , tm, tm+1)

]
−
N−2∑
m=i

e−
∑m
k=i+1 λk(tk+1−tk)B+ ··· + +

Ki+1···KmKm+1
(x, t; ti+1, · · · , tm, tm+1)

+

N−1∑
m=i+1

λme
−

∑m−1
k=i+1 λk(tk+1−tk)

∫ tm+1

tm

e−λm(τ−tm)
[
B+ ··· + +
Ki+1···Km n

R
(x, t; ti+1, · · · , tm, τ)

+
R

n
A+ ··· + −
Ki+1···Km n

R
(x, t; ti+1, · · · , tm, τ)

]
dτ

}
+ λi

∫ ti+1

t

e−λi(τ−t)
[
B+
n
R

(x, t; τ ; 0, b, sV ) +
R

n
A−n
R

(x, t; τ ; 0, b, sV )

]
dτ. (24)

Here Bs1···smK1···Km(x, t; t1, · · · , tm) and As1···smK1···Km(x, t; t1, · · · , tm) are respectively the
prices of m-th order bond and asset binaries with 0-risk free rate, b-dividend rate
and sV -volatility. (See lemma 1.)

The proof is not difficult but somewhat complicated. We will prove it in the
section 4.

Remark 1. In this theorem, the financial meaning of ui(x, t) is that it is the
relative price of our bond in a subinterval with respect to the risk free zero coupon
bond. We can derive the pricing formulae of our bond under other assumptions on
the relations between Ki(i = 1, · · · , N) and n/R using the same method.

3.2. The Problem with Exogenous Recovery. Instead of the assumption 5)
let assume the following:

7) The default recovery Rd is given as the form of exogenous face value

Rd = Re−r(T−t) (0 ≤ R ≤ 1 is a constant.) (25)

Then under the assumptions 1), 2), 3), 4), 6) and 7) the pricing model of our bond
is given as follows:

∂Ci
∂t

+
s2V
2
V 2 ∂

2Ci
∂V 2

+ (r − b)V ∂Ci
∂V
− (r + λi)Ci + λiRe

−r(T−t) = 0, ti < t < ti+1,

Ci(ti+1) = Ci+1(ti+1)1(V > Ki+1e
−r(T−ti+1)) +Re−r(T−ti+1)1(V ≤ Ki+1e

−r(T−ti+1)).
(26)

Here i = 0, 1, · · · , N − 1 and CN (V, t) ≡ 1.

Theorem 2. (exogenous recovery) Under the assumptions 1), 2), 3), 4), 6) and
7) the price of our bond, that is, the solution of (26) is represented as follows:

Ci(V, t) = Wi(V/e
−r(T−t), t)e−r(T−t) + [1−Wi(V/e

−r(T−t), t)]Re−r(T−t),

ti ≤ t < ti+1, i = 0, · · · , N − 1. (27)
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Here

Wi(x, t) = e−λi(ti+1−t)−
∑N−1
k=i+1 λk(tk+1−tk)B+ ··· +

Ki+1···KN (x, t; ti+1, · · · , tN ; 0, b, sV ).

(28)

The proof is done by the same way with that of theorem 1. See the section 4.
Remark 2. The financial meaning of the pricing formulae (27) is similar with

that of [12]: the price of our defaultable bond at time t can be seen as a probabilistic
mean value of the current value e−r(T−t) of the bond in the case when there is no
default after time t and the value Re−r(T−t) of the bond in the case when default
occurs after time t. So Wi(V/e

−r(T−t), t) is the survival probability after the time
t ∈ [ti, ti+1), that is, the probability with which no default event occurs in the
interval (t, T ] and 1 − Wi(V/e

−r(T−t), t) is the ruin probability after the time
t ∈ [ti, ti+1), that is, the probability with which default event occurs in the interval
(t, T ] when ti ≤ t < ti+1. The formulae (27) can be written as follows:

Ci(V, t) = Re−r(T−t)+(1−R)Wi(V/e
−r(T−t), t)e−r(T−t),

ti ≤ t < ti+1, i = 0, · · · , N − 1. (29)

The financial meaning of (29) is as follows: the first term of (29) is the current
price of the part to be given to bond holder regardless of default occurs or not, and
the second term is the allowance dependent on the survival probability after time
t. If after some moment t, the default is certain (W = 0), then the price of the
bond at t is exactly the current price of default recovery Re−r(T−t). If the default
recovery rate is zero, that is, R = 0, then the ratio of the defaultable bond price
and default free zero coupon bond price is the very the survival probability after
time t. If the default recovery rate is full, that is, R = 1, then default event does
not effect to the bond price and defaultable bond price is the same with default
free zero coupon bond price.

4. The Numerical Results

4.1. Illustration of the Effect of Parameters on the Bond Price. In this
subsection we illustrate the effect of several parameters including recovery rate R,
volatility sV of firm value, x = V/e−r(T−t) (relative price of firm value), default
boundary K and default intensity λ on the price of the defaultable bonds. Let
N = 2, t1 = 3, t2 = 6 (annum).

Basic data for calculation are as follows: Short rate r = 0.1; Firm value: dividend
rate b = 0.05, volatility sV = 1.0, x = V/e−r(T−t) = 200; λ0 = 0.002, λ1 = 0.005
are respectively default intensities in the intervals (0, t1), (t1, t2); K1 = K2 = 100
is default barrier at time t1, t2; recovery rate R = 0.5.

We will analyze (t, C)-plot changing one of R, sV , x,K and λ under keeping the
remainder of data on as the above. See the following figures 1–9.

Note that figure 1 shows that increase of recovery rate results in increase of bond
price. Figure 2 shows that increase of volatility of firm value results in decrease of
bond price. The reason is that when sV increases, the firm value fluctuates more
seriously and there are more risks of default, which results in decrease of bond
price. Figure 3 shows that increase of firm value results in increase of bond price.
Figures 4–9 show the effect of default barrier and default intensity on bond price.
In particular, in the figure 5 (or 8) we can see the mixed effect of increase of K1

(or λ0) and decrease of K2 (or λ1) in the subinterval [0, 3].
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Figure 1. Plot (t : C) when R = 0.2, 0.5, 0.95

Figure 2. Plot (t : C) when sV = 0.5, 1.0, 1.5
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Figure 3. Plot (t : C) when x = V/e−r(T−t) = 200, 350, 500

Figure 4. Plot (t : C) when (K1,K2) = (50, 50), (100, 100), (150, 150)
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Figure 5. Plot (t : C) when (K1,K2) = (50, 150), (100, 100), (150, 50)

Figure 6. Plot (t : C) when K1 = 100,K2 = 50, 100, 150
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Figure 7. Plot (t : C) when (λ0, λ1) = (0.001, 0.002), (0.01, 0.02), (0.1, 0.2)

Figure 8. Plot (t : C) when (λ0, λ1) = (0.001, 0.2), (0.01, 0.02), (0.1, 0.002)
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Figure 9. Plot (t : C) when λ0 = 0.01, λ1 = 0.002, 0.02, 0.2

4.2. Credit Spread Analysis. In this subsection, we illustrate the effect of several
parameters including recovery rate R, volatility sV of firm value, x = V/e−r(T−t),
default boundary K and default intensity λ on credit spreads. The credit spread is
defined using the difference between the yields of the defaultable bond C and the
default-free bond e−r(T−t) and is given by the following expression:

CS = − ln[C/e−r(T−t)]

T − t
.

For simplicity, we only consider the case of exogenous default recovery (theorem
2). Then, the credit spread is differently given in every subinterval as follows:

CSi = − ln[R+ (1−R)Wi(V/e
−r(T−t), t)]

T − t
, ti ≤ t < ti+1, i = 0, · · · , N − 1. (30)

Let N = 2, t1 = 3, t2 = T = 6 (annum) as in the above.
Basic data for calculation of CS are as follows: Short rate r = 0.1; Firm value:

dividend rate b = 0.05, volatility sV = 1.0, x = V/e−r(T−t) = 200; λ0 = 0.002, λ1 =
0.005 are respectively default intensities in the intervals (0, t1), (t1, t2); K1 = K2 =
100 is default barrier at time t1, t2; recovery rate R = 0.5.

We will analyze (t, CS)-plot changing one of R, sV , x,K and λ under keeping
the remainder of data on as the above. In what follows, the figure 10 shows that
increase of recovery rate results in decrease of credit spread. Figure 11 shows that
increase of volatility of firm value results in increase of credit spread. The reason
is that when sV increases, the firm value fluctuates more seriously and there are
more risks of default, which results in increase of credit spread. Figure 12 shows
that increase of firm value results in decrease of credit spread. Figures 13–18 show
the effect of default barrier and default intensity on credit spread. In particular,
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in the figure 14 (or 16) we can see the mixed effect of increase of K1 (or λ0) and
decrease of K2 (or λ1) in the subinterval [0, 3].

Figure 10. Plot (t : CS) when R = 0.2, 0.5, 0.95

Figure 11. Plot (t : CS) when sV = 0.5, 1.0, 1.5
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Figure 12. Plot (t : CS) when x = V/e−r(T−t) = 200, 350, 500

Figure 13. Plot (t : CS) when (K1,K2) = (50, 50), (100, 100), (150, 150)
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Figure 14. Plot (t : CS) when (K1,K2) = (50, 150), (100, 100), (150, 50)

Figure 15. Plot (t : CS) when K1 = 100,K2 = 50, 100, 150
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Figure 16. Plot(t : CS) when (λ0, λ1) = (0.001, 0.002), (0.01, 0.02), (0.1, 0.2)

Figure 17. Plot(t : CS) when (λ0, λ1) = (0.001, 0.2), (0.01, 0.02), (0.1, 0.002)
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Figure 18. Plot (t : CS) when λ0 = 0.01, λ1 = 0.002, 0.02, 0.2

5. Appendix: Proofs of Theorems

The Proof of Theorem 1. i) In (21), we use change of numeraire

x =
V

e−r(T−t)
, ui(x, t) = − Ci(V, t)

e−r(T−t)
, ti ≤ t < ti+1, i = 0, · · · , N − 1. (31)

Substituting (31) into (21) we get

∂ui
∂t

+
s2V
2
x2
∂2ui
∂x2

− bx∂ui
∂x
− λiui + λi min{1, R

n
x} = 0, ti < t < ti+1, x > 0,

ui(x, ti+1) = ui+1(x, ti+1)1(x > Ki+1) + min{1, R
n
x}1(x ≤ Ki+1), i = 0, · · · , N − 1.

(32)

Here uN (x, t) ≡ 1. From the assumption

Ki ≤ n/R, i = 1, · · · , N (33)

If V (ti) ≤ Kie
−r(T−ti), that is, if the default event occurs at time ti, then min{e−r(T−ti), RV (ti)/n} =

RV (ti)/n and we have

min{1, R
n
x}1(x ≤ Ki+1) =

R

n
x · 1(x ≤ Ki+1). (34)

Then the problem (32) is changed into the following one.

∂ui
∂t

+
s2V
2
x2
∂2ui
∂x2

− bx∂ui
∂x
− λiui + λi min{1, R

n
x} = 0, ti < t < ti+1, x > 0,

ui(x, ti+1) = ui+1(ti+1)1(x > Ki+1) +
R

n
x · 1(x ≤ Ki+1), i = 0, · · · , N − 1. (35)
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When i = N − 1, (35) is as follows:

∂uN−1
∂t

+
s2V
2
x2
∂2uN−1
∂x2

− bx∂uN−1
∂x

− λN−1uN−1 + λN−1 min{1, R
n
x} = 0,

tN−1 < t < T, x > 0,

uN−1(x, T ) = 1(x > KN ) +
R

n
x · 1(x ≤ KN ), x > 0. (36)

This is a terminal value problem for an inhomogenous Black-Scholes equation with
coefficients r = λN−1, q = λN−1 + b, σ = sV . Let LN−1 be the Black-Scholes
partial differential operator with coefficients r = λN−1, q = λN−1 + b, σ = sV , that
is,

LN−1u =
∂u

∂t
+
s2V
2
x2
∂2u

∂x2
− bx∂u

∂x
− λN−1u.

Then the solution of (36) is provided by sum of the solutions U1 and U2 to the two
following problems:

LN−1U1 = 0, tN−1 < t < T, x > 0,

U1(x, T ) = 1(x > KN ) +
R

n
x · 1(x ≤ KN ), x > 0. (37)

LN−1U2 + λN−1 min{1, R
n
x} = 0, tN−1 < t < T, x > 0,

U2(x, T ) = 0, x > 0. (38)

The terminal payoff of (37) is linear combination of the terminal payoffs of bond
and asset binaries (refer to section 2) and thus the solution to (37) is given as
follows:

U1 = B+
KN

(x, t;T ;λN−1, λN−1+b, sV )+
R

n
A−KN (x, t;T ;λN−1, λN−1+b, sV ), tN−1 ≤ t < T.

The problem (38) is a 0-terminal value problem of an inhomogeneous equation and
thus we can use the Duhamel’s principle to solve it. Fix τ ∈ (tN−1, T ] and let
W (x, t; τ) be the solution to the following terminal value problem:

LN−1W = 0, tN−1 < t < τ, x > 0,

W (x, τ ; τ) = λN−1 min{1, R
n
x}, x > 0.

Since λN−1 min{1, Rn x} = λN−1
[
1(x > n/R) + R

n x · 1(x < n/R)
]
, the solution is

given as follows:

W (x, t; τ) = λN−1

[
B+
n/R(x, t; τ ;λN−1, λN−1 + b, sV ) +

+
R

n
A−n/R(x, t; τ ;λN−1, λN−1 + b, sV )

]
, tN−1 ≤ t < τ, x > 0.

Then the solution U2 to (38) is given as follows:

U2 =

∫ T

t

W (x, t; τ)dτ =

= λN−1

∫ T

t

[
B+
n/R(x, t; τ ;λN−1, λN−1 + b, sV ) +

+
R

n
A−n/R(x, t; τ ;λN−1, λN−1 + b, sV )

]
dτ, tN−1 ≤ t < T, x > 0.
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Thus the solution to (36) is provided by uN−1(x, t) = U1 + U2, that is,

uN−1(x, t) =

= B+
KN

(x, t;T ;λN−1, λN−1 + b, sV ) +
R

n
A−KN (x, t;T ;λN−1, λN−1 + b, sV )+

+ λN−1

∫ T

t

[
B+
n/R(x, t; τ ;λN−1, λN−1 + b, sV ) +

+
R

n
A−n/R(x, t; τ ;λN−1, λN−1 + b, sV )

]
dτ, tN−1 ≤ t < T, x > 0. (39)

For our further purpose, using the relations (11) we rewrite (39) by the price of
bond and asset binaries with the coefficients r = 0, q = b, σ = sV :

uN−1(x, t) = e−λN−1(T−t)
[
B+
KN

(x, t;T ; 0, b, sV ) +
R

n
A−KN (x, t;T ; 0, b, sV )

]
+

+ λN−1

∫ T

t

e−λN−1(τ−t)
[
B+
n/R(x, t; τ ; 0, b, sV ) +

R

n
A−n/R(x, t; τ ; 0, b, sV )

]
dτ,

tN−1 ≤ t < T, x > 0. (40)

Now solve (35) when i = N − 2. In this case (35) is as follows:

∂uN−2
∂t

+
s2V
2
x2
∂2uN−2
∂x2

− bx∂uN−2
∂x

− λN−2uN−1 + λN−2 min{1, R
n
x} = 0,

tN−2 < t < tN−1, x > 0,

uN−2(x, tN−1) = uN−1(x, tN−1)1(x > KN−1) +
R

n
x · 1(x ≤ KN−1). (41)

This is a terminal value problem of the inhomogeneous Black-Scholes equation with
coefficients r = λN−2, q = λN−2 + b, σ = sV .

Remark 3. If we consider (39), then the expiry payoff of (41) is the linear
combination of first order binaries or zero and integrals of first order binaries or
zero and therefore you could think that it is natural to solve (41) using the pricing
formulae of second order binaries and their integrals. But we must note that the
coefficients of (41) are different from those of (36) and (39) and thus we can’t
directly apply the pricing formulae of second order binaries here. Fortunately, the
differences between risk free rates and dividend rates in adjacent subintervals are
all a constant −b and volatility is not changed in whole time interval and thus we
can carefully use the pricing formulae of second order binaries with (11) together
to give a representation of the solution to (41).

If we rewrite the terminal payoff of (41) into prices of binaries with the coefficients
r = λN−2, q = λN−2 + b, σ = sV using (11), then from (39) we get:

uN−1(x, tN−1) = e−(λN−1−λN−2)(T−tN−1)
[
B+
KN

(x, t;T ;λN−2, λN−2 + b, sV ) +

+
R

n
A−KN (x, t;T ;λN−2, λN−2 + b, sV )

]
+

+ λN−1

∫ T

t

e−(λN−1−λN−2)(τ−tN−1)
[
B+
n/R(x, t; τ ;λN−2, λN−2 + b, sV ) +

+
R

n
A−n/R(x, t; τ ;λN−2, λN−2 + b, sV )

]
dτ.

Let LN−2 be the Black-Scholes partial differential operator with coefficients r =
λN−2, q = λN−2 + b, σ = sV . Then the solution to (41) is the sum U1 + U2 + U3
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of the solutions to the following three problems:

LN−2U1 = 0, tN−2 < t < tN−1, x > 0,

U1(x, tN−1) = e−(λN−1−λN−2)(T−tN−1)
[
B+
KN

(x, tN−1;T ;λN−2, λN−2 + b, sV ) +

+
R

n
A−KN (x, tN−1;T ;λN−2, λN−2 + b, sV )

]
1(x > KN−1)+

+
R

n
x · 1(x ≤ KN−1), (42)

LN−2U2 = 0, tN−2 < t < tN−1, x > 0,

U2(x, tN−1) =

= λN−1

∫ T

tN−1

e−(λN−1−λN−2)(τ−tN−1)
[
B+
n
R

(x, tN−1; τ ;λN−2, λN−2 + b, sV ) +

+
R

n
A−n
R

(x, tN−1; τ ;λN−2, λN−2 + b, sV )
]
dτ · 1(x > KN−1). (43)

LN−2U3 + λN−2 min{1, R
n
x} = 0, tN−2 < t < tN−1, x > 0,

U3(x, tN−1) = 0, x > 0. (44)

Using the prices of first and second order binaries (6) and (7), the solution to (42)
is given as follows:

U1(x, t) =

= e−(λN−1−λN−2)(T−tN−1)
[
B+ +
KN−1KN

(x, t; tN−1, T ;λN−2, λN−2 + b, sV ) +

+
R

n
A+ −
KN−1KN

(x, t; tN−1, T ;λN−2, λN−2 + b, sV )
]

+

+
R

n
A−KN−1

(x, t; tN−1;λN−2, λN−2 + b, sV ), tN−2 ≤ t < tN−1. (45)

From the corollary of Lemma 2, the solution to (43) is given as follows:

U2(x, t) =

= λN−1

∫ T

tN−1

e−(λN−1−λN−2)(τ−tN−1)
[
B + +
KN−1

n
R

(x, t, tN−1, τ ;λN−2, λN−2 + b, sV ) +

+
R

n
A + −
KN−1

n
R

(x, t; tN−1, τ ;λN−2, λN−2 + b, sV )
]
dτ, tN−2 ≤ t < tN−1. (46)

(44) is a 0-terminal value problem of an inhomogeneous equation just like (38), so
its solution is given by

U3(x, t) = λN−2

∫ tN−1

t

[
B+
n/R(x, t; τ ;λN−2, λN−2 + b, sV ) +

+
R

n
A−n/R(x, t; τ ;λN−2, λN−2 + b, sV )

]
dτ, tN−2 ≤ t < tN−1. (47)
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Thus we obtain the representation of uN−2(x, t) = U1 + U2 + U3, that is,

uN−2(x, t) =

= e−(λN−1−λN−2)(T−tN−1)
[
B+ +
KN−1KN

(x, t; tN−1, T ;λN−2, λN−2 + b, sV ) +

+
R

n
A+ −
KN−1KN

(x, t; tN−1, T ;λN−2, λN−2 + b, sV )
]

+

+
R

n
A−KN−1

(x, t; tN−1;λN−2, λN−2 + b, sV )

+ λN−1

∫ T

tN−1

e−(λN−1−λN−2)(τ−tN−1)
[
B + +
KN−1

n
R

(x, t, tN−1, τ ;λN−2, λN−2 + b, sV ) +

+
R

n
A + −
KN−1

n
R

(x, t; tN−1, τ ;λN−2, λN−2 + b, sV )
]
dτ

+ λN−2

∫ tN−1

t

[
B+
n/R(x, t; τ ;λN−2, λN−2 + b, sV ) +

+
R

n
A−n/R(x, t; τ ;λN−2, λN−2 + b, sV )

]
dτ, tN−2 ≤ t < tN−1. (48)

For our further purpose, using the relations (11) we rewrite (48) by the price of
bond and asset binaries with the coefficients r = 0, q = b, σ = sV to get

uN−2(x, t) =

= e−λN−2(T−t)−(λN−1−λN−2)(T−tN−1)
[
B+ +
KN−1KN

(x, t; tN−1, T ; 0, b, sV ) +

+
R

n
A+ −
KN−1KN

(x, t; tN−1, T ; 0, b, sV )
]

+

+ e−λN−2(tN−1−t)R

n
A−KN−1

(x, t; tN−1; 0, b, sV )+

+ λN−1

∫ T

tN−1

e−λN−2(τ−t)−(λN−1−λN−2)(τ−tN−1)
[
B + +
KN−1

n
R

(x, t, tN−1, τ ; 0, b, sV ) +

+
R

n
A + −
KN−1

n
R

(x, t; tN−1, τ ; 0, b, sV )
]
dτ+

+ λN−2

∫ tN−1

t

e−λN−2(τ−t)
[
B+
n
R

(x, t; τ ; 0, b, sV ) +
R

n
A−n
R

(x, t; τ ; 0, b, sV )
]
dτ,

tN−2 ≤ t < tN−1. (49)

By induction we can obtain the representations of all ui(x, t)(i = 0, · · · , N − 1).
If in every representation of ui(x, t) we replace the higher order binaries with the
coefficients r = λi, q = λi + b, σ = sV into the higher order binaries with the
coefficients r = 0, q = b, σ = sV using the relation (11) and arrange the exponents
properly, we soon obtain (23). If we return to the original variable V and the un-
known function C using (31), then we soon obtain (22).

The proof of ii) is simillar with the proof of i) and we will give the sketch. From
the assumption Ki > n/R, i = 1, 2, · · · , N . Then we have

min

{
1,
R

n
x

}
· 1{x ≤ Ki+1} =

R

n
x · 1

{
x ≤ n

R

}
+ 1

{
x >

n

R

}
− 1{x > Ki}. (50)
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Then the problem (32) is changed into the following one.

∂ui
∂t

+
s2V
2
x2
∂2ui
∂x2

− bx∂ui
∂x
− λiui + λi min{1, R

n
x} = 0, ti < t < ti+1, x > 0,

ui(x, ti+1) = [ui+1(ti+1)− 1] · 1(x > Ki+1) +
R

n
x · 1

{
x ≤ n

R

}
+ 1

{
x >

n

R

}
.

(51)

Here i = 0, · · · , N − 1. This problems can be solved in the same way with the
method of solving (35). The details are omitted. (QED)

The proof of Theorem 2. In (26), if we use change of numeraire (31), then
we have

∂ui
∂t

+
s2V
2
x2
∂2ui
∂x2

− bx∂ui
∂x
− λiui + λiR = 0, ti < t < ti+1, x > 0,

ui(x, ti+1) = ui+1(x, ti+1)1(x > Ki+1) +R · 1(x ≤ Ki+1), i = 0, · · · , N − 1. (52)

Here uN (x, t) ≡ 1. We use the change of unknown function

ui = (1−R)Wi +R, i = 0, · · · , N − 1. (53)

Then the problem (52) is changed into the following one.

∂Wi

∂t
+
s2V
2
x2
∂2Wi

∂x2
− bx∂Wi

∂x
− λiWi = 0, ti < t < ti+1, x > 0,

Wi(x, ti+1) = Wi+1(x, ti+1)1(x > Ki+1), x > 0, i = 0, · · · , N − 1. (54)

Here WN (x, t) ≡ 1. These equations are simpler than ones in theorem 1 (note that
(54) are homogenous Black-Scholes equations) and we can easily solve them with
the same method in the above to get (28) and (27).

6. Conclusions

In this paper we studied the pricing of defaultable bond with discrete default
intensity and barrier under constant risk free short rate using higher order binary
options ([5, 10, 11]) and their integrals. We considered both endogenous and ex-
ogenous default recovery. Our pricing problem is derived to a solving problem
of inhomogeneous or homogeneous Black-Scholes PDEs with different coefficients
and terminal value of binary type in every subinterval between the two adjacent
announcing dates. See (21) and (26). In order to deal with the difference of co-
efficients in subintervals we used a relation (11) between prices of higher order
binaries with different coefficients. In our model, due to the inhomogenous term
related to endogenous recovery, our bond prices are represented by not only the
prices of higher binary options but also the integrals of them. See the formulae
(23) and (24)(3.8). So first we provided the pricing formulae (corollary of lemma
2) of a special binary option called integral of i-th binary or nothing and then we
obtain the pricing formulae of our defaultable corporate bond by using the pricing
formulae of higher binary options and integrals of them and provided illasration of
the effect of parameters on the price of corporate bond and the credit spread.
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