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HARMONIC UNIVALENT FUNCTIONS WITH VARYING
ARGUMENTS DEFINED BY USING INTEGRAL OPERATOR

M. K. AOUF, R. M. EL-ASHWAH AND F. M. ABDULKAREM

ABSTRACT. In this paper we define and investigate a new class of harmonic func-
tions by using an integral operator with varying arguments. We obtain coefficients
inequalities, extreme points and distortion theorem.

1. INTRODUCTION

A continuous complex-valued function f = u—+iv which is defined in a simply-connected
complex domain D is said to be harmonic in D if both v and v are real harmonic in D .
In any simply-connected domain we can write

f=h+3 (L1)

where h and g are analytic in D. We call h the analytic part and g the co-analytic part of
f- A necessary and sufficient condition for f to be locally univalent and sense-preserving
in D is that |h'(2)| > |g (2)], z € D (see [A]).

Denote by Su the class of functions f of the form that are harmonic univalent
and sense-preserving in the unit disc U = {z € C : |z| < 1} for which f(0) = f.(0)—1=0.
Then for f = h+ g € Sy we may express the analytic functions h and g as follows:

h(z) =z+ Zakzk, g(z) = Zbkzk, |b1] < 1. (1.2)
k=2 k=1

In 1984 Clunie and Shell-Small [[4] investigated the class Sg as well as its geometric
subclasses and obtained some coefficient bounds. Since then, there have been several
related papers on Sy and its subclasses (see [[9], [I1], [15] and [16]).

The integral operator Iy is defined as follows (see [2], with p = 1, also see [7], with £ = 0):
(i) I°f(2) = f(2);

(i) I3 f(2) = 1217 [Fe372 f(t)dt;

(iii) I3 f(2) = 22178 432007 f () (A > 0n e N = {1,2,3,..})

In this paper we now define the integral operator for harmonic univalent functions f(z)
such that h(z) and g(z) are given by as follows:

INf(2) = IXh(z) + (=1)"139(2), (1.3)
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where
Ih(z) =2+ Y [1+ Ak — 1] "arz" and IXg(2) = > _[1+A(k — 1 "bx2" (|ba] < 1).
k=2 k=1

With the help of the modified integral operator Iy we let Gg(m,n, A;7, p) be the family
of harmonic functions f = h + g, which satisfy the condition

[1e% I;Lf(z) i

— > .

Re{(l—i—pe )I;\"f(z) pe >y (1.4)
(xeR0<y<1;p>0A>0meN, neNg=NU{0};m>n;z€U),

where I} f is defined by (1.3).

we note that:

(i) Takingm =n+1,p=0,A=1,Gu (n+ 1,n;1,7,0) = H (n,y) (m € Njn € Np;0 <~ < 1)
(see Cotirla [5]);

(ii) Taking A =1, Gu(m,n,1;v,p) = Gu(m,n;~, p) (see El-Ashwah et al. [6]);

(iii) Taking m =n+ 1, p = 0, Gu(m,n, X;7,0) = Hx(n;v) (n € No; A > 0;0 < v < 1)
(see Seoudy [14], with p = 1);

(iv) Taking A = 1, then Gu(m,n,1,v,p) = H (m,n;v) (see Giiney and Sakar [§]).

Also we note that, by the special choices of «, 7, p, m and n, we obtain:

(i) Taking p = 0, then Gu(m,n, A,v,0) = H (m,n, A\;y) = {f € Sy :

Re{z[gf(?)} >B(A>0;OSV<1;m€N%”€N°;m>";Z€U)};
I3 f(2)

(il) Ga(n+1,n,X;7v,p) = Gu (n, \;v,p) = {f €Sy : Re{(l—!—pem) I"Tf(z)
A

—pew‘}27(046R;0§'y<l;pZO;/\ZO;nENo;ZGU)};

(i) Gu(1,0,X7,0) = Gu(A\v,p)= {f € Sw : Re { (1+pem) I{}?i) ﬁ,em} >y
A

(aeR;OS’y<1;p20;)\20;z€U)}.

Definition 1 [I0]. Let Vi denoted the class of functions f = h+g for which h and g are
of the form (|1.2) and there exist a real number ¢ so that, mod 27,

arg(ax) + (k—1)¢p =n and arg(by) + (k—1)¢p =0, k> 2.

We also let Vg = HN Vi .

Some subclasses of harmonic univalent functions with varying arguments were itroduced
and studied by various authors (see [I] and [13]).

Also we now define the subclass Vir(m, n, A; v, p) consists of harmonic functions fn, = h+g,
in Gu(m,n, A;,p) such that h and g, are of the form:

h(z) =2+ axz" | ga(z) = bk2" (u] < 1). (1.5)

and there exist a real number ¢ such that, mod 2,

arg(ar) + (k—1)¢p=m, k> 2 and arg(by) + (k+1)¢ = (n— )7, k> 1. (1.6)
Also we note that, by the special choices of «, v, m and n, we obtain:
(i) Taking p = 0, Vg(m,n, A;7v,0) = Vg (m,n, A;8) (m € Nyn € No; A > 0;0 <y < 1);
(ii) Vg(n +1,n, A7, p) = Vi (n, A;7,p) (n € No; A > 0);
(it)) VE(1,0, A7, p) = Vi (A7, p)-
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2. GEOMETRIC PROPERTIES OF THE CLASSES Gg(m,n, \;v,p) AND Vig(m,n, A;7,p)

Unless otherwise mentioned, we assume in the reminder of this paper that, a € R,
0<~y<1,p>0,A2>0,meN neNy, m>nand z € U. We begin with a sufficient
coefficients condition for functions in the class Gu(m,n, A;v, p).

Theorem 1. Let f = h+ g be such that h and g are given by and if

{(1+p[1+>\ nI= *(7+P)[1+/\(’€*1)]_m‘ak|
1—7v
LA FAR =D = )" (b p) L+ A= D™ ]y gy
1—7 ’ .

where a1 = 1. Then f € Gu(m,n, \;v,p).

Proof. To prove that f € Gu(m,n, \;v,p). We only need to show that if (2.1)) holds, then
the condition (|1.4) is satisfied, then. Our aim is to show that

(2.2)

(L4 pe') B f(2) = peILf(2) | _ . Al2)
Re{ 7 } ~BG) =

Using the fact that Re {w} >« if and only if |1 — v+ w| > |1+ — w|, it suffices to show
that

|A(2) + (1 =7)B(2)| — [A(z) = (1 +7)B(2)| > 0, (2.3)
:ﬁ;r; égzi)n:th(el 1:;2;2 {);f — ere;ﬁ ifn(z) and B(z) = I f(2). Substituting for A(z)
(14 pe™) B F(2) = pe I £(2) + (1= I F(2)|
- ‘(1 + pe')IN f(z) — pe' IV f(z) — (1 — v)Ii”f(z)(
z+§ (L4 Ak = D] ™ (1) [1 + Ak — D] ™)

2

+pe' ([L+ Ak — D] "=[1+ Ak — 1)]™)]arz"
D> (v FAE-D]"= ()" A+ Ak -]
k=1

+pe' ([L+ Ak — D))"= (=)™ " [1+A(k — 1)]7")] W!

2= [T+ Ak =D 7"= () [+ Ak - 1))
(LA AR =D)L+ Ak = D)) a2
)" Y A+ L+ AR =D "= (=)™ L+ Ak = 1)]7")

pe® ([ Ak = D] = (=17 [ Ak = 1)) bz
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oo

> 2=l =2 [A+ AR +Ak =D = (v +p = DL+ Ak = )7 |ar] 2"

k=2

D AL+ AR =D = (=)™ 7" (v +p = DL+ AR = 1) [bs] [

k=1
Izl =D [+ )L+ AR = DT = (v + p+ D) [L+ Ak = 1] Jak |2]*
DA+ +AE =D = (D)™ (v 4 p+ DL+ AR = D] fox][2]*
k=1

pei ([L+ Atk — 1)) 7™ = (=1)™ " [1 + Ak — 1)]”‘)]@7’

> { [ [T+ p)[L+ Ak =D ™" = (y+p) [L+ Ak — 1)]™] |ax|

—2

Y [+ + AR =D = ()" (y+p) [L+ A —1)] "] Ibkl} }
k=1
> 0, this by using (2.1] .

The harmonic univalent functions

i — k
f(2) = 2+ G nee DGO Tk
k=2

1—~
+;<1+p>[1+w—1>1*"—< S R R (2:4)

where > 7, [zk|+ 2 pey |yx| = 1, shows that the coefficient bound given by (2.1)) is sharp.
This completes the proof of Theorem 1. O

In the following theorem, it is shown that the condition (2.1) is also necessary for function
fn=h+ gn , where h and g, are of the form (|1.5).

Theorem 2. Let fr, = h+gn, where h and g, are given by (-) Then fn € Vg(m,n, X;7, p),
if and only if the coefficient condition (W holds.

Proof. Since Vg(m,n,A;7v,p) € Gu(m,n,X;7,p), we only need to prove the “only if”
part of the theorem. For functions f, = h + gn, where h and g, are given by (1.5)), the
inequality (1.4) with f = f, is equivalent to

o J (L) 3052 14 Ak = D] "axz + (—1)" S5 [1 -+ Ak = 1)] "Bz
[l Ak — D] Marzk + (—1)" o, [+ Ak — D],z

_Re (v + pe'®)[z + Yopeo[l+ Ak — D] ™arz® + (=1)" ppan) N (s 1)]7™b,z"] -0
2+ Y+ Ak — D] marzh + (=1)™ 3202 [T+ Ak — 1))~ biz"
The above condition holds for all values_of a € R and z € U. Upon choosing ¢ according
(1.6) and substituting a = 0 and z = 7e**(0 < 7 < 1), we must have
E

07
T [l A — ] fan] — (1) [ Ak — D] byl e 23
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where

L

E = (1-7)- ( [(A+ R+ Ak =1 " = (v+p) L+ A(E-1)]"] |ak|> e

£l
Il
0

<§:K1+MD+A%1H"(1Y1"w+pH1+MkD}mMm0rk{

k=1
If the inequality (2.1) does not hold, then E is negative for r sufficiently close to 1. Thus

there exists zo = 7o in (0,1) for which the quotient in (2.5) is negative. But this is a
contradiction, then the proof of Theorem 2 is completed. O

We now obtain the distortion theorem for functions in the class Vg(m,n, A; v, p).

Theorem 3. Let fn, = h+gn, where h and g, are given by (ref1.5) and fr, € V(m,n, X;7, p).
Then for |z| = r < 1, we have

11—~
RO S 0D | G A

_ (L+p) = (=D)"" (v +p) M} 2
A+pA+X " =(v+p A+A)"" ’

(2.6)

and

11—y
G 2 W=D | e

- (A+p) = (D" " (v +p) e
A+ p) A+ A" —( +p)A+N" “’1@ e

The equalities in (@ and are attained for the functions f given by

Fo) = (4D + | i ot

_ (14+p)-(=D" " (v+p) PR
(LT+p)A+N)"=(y+p) A +A)™ |b1|} ; (2.8)

and

Bold) = (== |

_ (1+p) = (=D)"" (v+p) PR
AI+p)A+N)=(r+p) A +A"™ “’1@ , (2.9)

1—~

where |b1] < Tt

Proof. We prove the first inequality.
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Let fn € Vg(m,n, X;v, p), we have

@ < @D+ S (ol + el "< (4 o) 772 3 (el + [oel)
k=2 k=2
< (1+|b1|)7‘+r2 (1+p)(1+/\)—”1:(’ty+p)(1+)\)_mZ(1+p)(1+>\)_nli(“7+p)(1+/\)_m (Jax| + |bx])
k=2
1—7v
s U oy G
.Tzz{(up)mx(k—m "1—_(J+p> L+ Ak=—DI™™
k=2
LN U e A ]
1—vy A+ -CED)"" (v +p) .2
S (e e R CEan [ VRl — o
1—v B (I+p)—-(=D""(v+p) .2
< (D™ | T G AT~ T e e ey ]

The proof of the second inequality is similar, thus it is left.
O

The bounds given in Theorem 3 for functions f, = h +g,, such that h and g, are given
by (1.5) also hold for functions f = h + g such that h and g are given by if the
coefficient condition is satisfied.

Next using the same technique used earlier by Aghalary [I] we obtain the extreme points
of the class Vg(m,n, \;v, p).

Theorem 4. The closed convex hull of the class Vi(m, n, A; 7y, p) denoted by clcoVg(m,n;~, p)
18

{f(z) =z+ Zakzk + Zbkzk € Gu(m,n, X\;7,p) :

k=2 k=1

3 {(1 AL FAGR D" — () LA =D]™

k=1 1—v

A+l +AE-D] " ==D)"""(v+p) [L+AE-D]™
1—7

+ ‘bk|:| <2

1—v
(1+1p)[1+k(k—1)]*"— Y [I+A(R—1)] ™

— v . i
= T A D T (o GapmaGonm - For by fized, [bif <
the extreme points of the class Vig(m,n, A;~, p) are

{z + Azt o+ az} U {m} : (2.10)

where a1=1. Set A= and

1—v
(A+p)—(=1)m =" (v+p)’

where k> 2 and |z| =1 — (1+p) 7(;i)7_ (’VJFP).

Proof. Any function f € Vg(m,n, \;7, p) may be expressed as

f(z) = Z+Z lax| €P*2F + b1z + Z |bi| €0k 2k

k=2 k=2
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where the coefficients satisfy the inequality (2.1]). Set
hi(2)=2, g1(2)=b1z, hi(z)=24Ae® 2", gr(2)=b1z4p,e* 2" k=2,3, ...,

|a| |bx|
Tk, Yk = Tk7 k :2,3,... and X1 = 1—22‘;2Xk,
Yi=1-3>7,Y%, we have

writing Xy =

f(z) = i (Xehn(2) + Vign(2) ) -

k=1
In particular, setting
fi(z) =z + bz,
and
fe(2) = 2 + Xexz® + biz 4 pyyz*,

we see that extreme points of the class Vig(m,n, A; v, p) are contained in {fx(z)}. To see
that f1(z) is not an extreme point, note that fi(z) may be written as

e = g{neea (1o G D= COE O R T ) 2
T R R A S

a convex linear combination of functions in the class Vg(m,n, A; 7, p). Next we will show
if both |z| # 0 and |y| # 0, then fi is not an extreme point. Without loss of generality,

||

assume |z| > |y|. Choose € > 0 small enough so that € < 7. Set A =1+ € and
B=1-

ET

| we then see that both

t1(2) = z + Mz A" + b1z + pyBzF

and

t2(2) = 2z + Mz (2 — A) 2" + biz + .y (2 — B) 2%,

are in the class Vig(m,n, A\;v, p) and note that

fule) = 5 (B1(2) + 1a(2))

The extremal coefficient bounds shows that functions of the form (2.10]) are the extreme
points for the classVg(m, n, A; 7, p), then the proof of Theorem 4 is completed. O

Finally we will examine the closure properties of the class Vi(m,n, A; v, p) under the
generalized Bernardi-Libera-Livingston integral operator (see [3} [12]) L.(f) which is de-
fined by
c+1

2z¢

Lo(f (2)) = /0 @) dE (¢ > —1), (2.11)

Theorem 5. Let f, = h+ gn € Vg(m,n, A7, p), where h and gn are given by ,
Then Lc(fn(2)) belongs to the class Vg(m,n, X;vy, p).
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Proof. From the representation of L.(fn(z)), it follows that

L) = 4 T (h(8) 4 7 (1)) de

z€ 0
C+1/z c—1 = k =
= t¢ t+ axt” + btk » dt

= z4 i/lkzk + inz’“,
k=2 k=1

where Ay = %a’“ B = zi}c bx. Therefore, we have,
i[(1+p)[1+/\(k71)]’"7('y+p)[1+/\(k71)]’mc+1‘ak|
= 1—7 c+k
Qo+ A -] ™" = ()" (y+p) I+ M -1)] ™ c+1
+ |bk|
1—7 c+k
~[A+p)[L+AXE—D] " = (v+p)[L+AME—1)]™
SZ{( P+ Ak —1)] : (v+p) I+ Ak —1)] x|
-7
k=1
1 14+ M- "= (-1)™" 1+ Xk=1)]™™
LAt + Ak 1) (1—)7 (v+p) 1+ Ak —1)] |bk|:| <o
and the proof of Theorem 5 is completed. O

Remark 1. (i) Puttingm =n+1 (n € No), p =0 and XA = 1 in the above results, we
obtain the corresponding results obtained by Cotirla [5]);

(i) Putting X\ = 1 in the above results, we obtain the corresponding results obtained by
El-Ashwah et al. [6];

(i) Puttingm = n+1 (n € No) and p = 0 in the above results, we obtain the corresponding
results obtained by Seoudy [[14], with p = 1];

(i) Putting X\ = 1 in the above results, we obtain the corresponding results obtained by
Giiney and Sakar [§].
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