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HARMONIC UNIVALENT FUNCTIONS WITH VARYING

ARGUMENTS DEFINED BY USING INTEGRAL OPERATOR

M. K. AOUF, R. M. EL-ASHWAH AND F. M. ABDULKAREM

Abstract. In this paper we de�ne and investigate a new class of harmonic func-
tions by using an integral operator with varying arguments. We obtain coe¢ cients
inequalities, extreme points and distortion theorem.

1. Introduction

A continuous complex-valued function f = u+iv which is de�ned in a simply-connected
complex domain D is said to be harmonic in D if both u and v are real harmonic in D .
In any simply-connected domain we can write

f = h+ g; (1.1)

where h and g are analytic in D. We call h the analytic part and g the co-analytic part of
f . A necessary and su¢ cient condition for f to be locally univalent and sense-preserving
in D is that jh0(z)j > jg0(z)j; z 2 D (see [4]).
Denote by SH the class of functions f of the form (1.1) that are harmonic univalent

and sense-preserving in the unit disc U = fz 2 C : jzj < 1g for which f(0) = fz(0)�1 = 0:
Then for f = h+ g 2 SH we may express the analytic functions h and g as follows:

h(z) = z +

1X
k=2

akz
k; g(z) =

1X
k=1

bkz
k; jb1j < 1. (1.2)

In 1984 Clunie and Shell-Small [[4] investigated the class SH as well as its geometric
subclasses and obtained some coe¢ cient bounds. Since then, there have been several
related papers on SH and its subclasses (see [[9], [11], [15] and [16]).
The integral operator In� is de�ned as follows (see [2], with p = 1; also see [7], with ` = 0):
(i) I0f(z) = f(z);
(ii) I1�f(z) =

1
�
z1�

1
�
R z
0
t
1
�
�2f(t)dt;

...
(iii) In� f(z) =

1
�
z1�

1
�
R z
0
t
1
�
�2In�1� f(t) (� � 0;n 2 N = f1; 2; 3; :::g)

In this paper we now de�ne the integral operator for harmonic univalent functions f(z)
such that h(z) and g(z) are given by (1.2) as follows:

In� f(z) = I
n
�h(z) + (�1)nIn� g(z); (1.3)
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where

In�h(z) = z +

1X
k=2

[1 + �(k � 1]�nakzk and In� g(z) =
1X
k=1

[1 + �(k � 1]�nbkzk (jb1j < 1):

With the help of the modi�ed integral operator In� we let GH(m;n; �; 
; �) be the family
of harmonic functions f = h+ g, which satisfy the condition

Re

��
1 + �ei�

� In� f(z)
Im� f(z)

� �ei�
�
� 
 (1.4)

(� 2 R; 0 � 
 < 1; � � 0;� � 0;m 2 N; n 2 N0 = N [ f0g ;m > n; z 2 U) ;
where In� f is de�ned by (1.3).

we note that:
(i) Takingm = n+1; � = 0; � = 1; GH (n+ 1; n; 1; 
; 0) = H (n; 
) (m 2 N;n 2 N0;0 � 
 < 1)
(see Cotirla [5]);
(ii) Taking � = 1; GH(m;n; 1; 
; �) = GH(m;n; 
; �) (see El-Ashwah et al. [6]);
(iii) Taking m = n + 1; � = 0; GH(m;n; �; 
; 0) = H�(n; 
) (n 2 N0;� > 0; 0 � 
 < 1)
(see Seoudy [14], with p = 1);
(iv) Taking � = 1; then GH(m;n; 1; 
; �) = H (m;n; 
) (see Güney and Sakar [8]).
Also we note that, by the special choices of �; 
; �; m and n, we obtain:

(i) Taking � = 0; then GH(m;n; �; 
; 0) = H (m;n; �; 
) =
n
f 2 SH :

Re

�
In� f(z)

Im� f(z)

�
> � (� > 0; 0 � 
 < 1;m 2 N;n 2 N0;m > n; z 2 U)

�
;

(ii) GH(n+1; n; �; 
; �) = GH (n; �; 
; �) =
�
f 2 SH : Re

��
1 + �ei�

� In� f(z)

In+1� f(z)

��ei�
o
� 
 (� 2 R; 0 � 
 < 1; � � 0;� � 0;n 2 N0; z 2 U)

o
;

(iii) GH(1; 0; �; 
; �) = GH (�; 
; �)=

�
f 2 SH : Re

��
1+�ei�

� f(z)

I1�f(z)
��ei�

�
�


(� 2 R; 0 � 
 < 1; � � 0;� � 0; z 2 U)
o
:

De�nition 1 [10]. Let VH denoted the class of functions f = h+ g for which h and g are
of the form (1.2) and there exist a real number � so that, mod 2�,

arg(ak) + (k � 1)� � � and arg(bk) + (k � 1)� � 0; k � 2:

We also let VH = H \ VH .
Some subclasses of harmonic univalent functions with varying arguments were itroduced
and studied by various authors (see [1] and [13]).
Also we now de�ne the subclass VH(m;n; �; 
; �) consists of harmonic functions fn = h+gn
in GH(m;n; �; 
; �) such that h and gn are of the form:

h(z) = z +

1X
k=2

akz
k ; gn(z) =

1X
k=1

bkz
k (jb1j < 1): (1.5)

and there exist a real number � such that, mod 2�,

arg(ak) + (k � 1)� � �; k � 2 and arg(bk) + (k + 1)� � (n� 1)�; k � 1: (1.6)

Also we note that, by the special choices of �; 
; m and n, we obtain:
(i) Taking � = 0; VH(m;n; �; 
; 0) = VH (m;n; �;�) (m 2 N;n 2 N0;� � 0; 0 < 
 � 1);
(ii) VH(n+ 1; n; �; 
; �) = VH (n; �; 
; �) (n 2 N0;� � 0);
(iii) VH(1; 0; �; 
; �) = VH (�; 
; �).
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2. Geometric properties of the classes GH(m;n; �; 
; �) and VH(m;n; �; 
; �)

Unless otherwise mentioned, we assume in the reminder of this paper that; � 2 R;
0 � 
 < 1; � � 0; � � 0; m 2 N; n 2 N0; m > n and z 2 U: We begin with a su¢ cient
coe¢ cients condition for functions in the class GH(m;n; �; 
; �):

Theorem 1. Let f = h+ g be such that h and g are given by (1.2) and if

1X
k=1

�
(1 + �)[1 + �(k � 1)]�n � (
 + �) [1 + �(k � 1)]�m

1� 
 jakj

+
(1 + �)[1 + �(k � 1)]�n � (�1)m�n (
 + �) [1 + �(k � 1)]�m

1� 
 jbkj
�
� 2; (2.1)

where a1 = 1. Then f 2 GH(m;n; �; 
; �).

Proof. To prove that f 2 GH(m;n; �; 
; �). We only need to show that if (2.1) holds, then
the condition (1.4) is satis�ed, then. Our aim is to show that

Re

(�
1 + �ei�

�
In� f(z)� �ei�Im� f(z)
Im� f(z)

)
= Re

A(z)

B(z)
� 
: (2.2)

Using the fact that Re fwg > 
 if and only if j1� 
 +wj > j1 + 
 �wj, it su¢ ces to show
that

jA(z) + (1� 
)B(z)j � jA(z)� (1 + 
)B(z)j � 0; (2.3)

where A(z) =
�
1 + �ei�

�
In� f(z)��ei�Im� f(z) and B(z) = Im� f(z): Substituting for A(z)

and B(z) in the left side of (2.3) we obtain

���(1 + �ei�)In� f(z)� �ei�Im� f(z) + (1� 
)Im� f(z)���
�
���(1 + �ei�)In� f(z)� �ei�Im� f(z)� (1� 
)Im� f(z)���

=

�����(2�
) z+
1X
k=2

[
�
[1 + �(k � 1)]�n+(1�
) [1 + �(k � 1)]�m

�
+�ei�

�
[1 + �(k � 1)]�n�[1 + �(k � 1)]�m

�
]akz

k

� (�1)n
1X
k=1

[
�
(
�1) [1 + �(k � 1)]�m� (�1)m�n [1 + �(k � 1)]�n

�
+�ei�

�
[1 + �(k � 1)]�m� (�1)m�n [1 + �(k � 1)]�n

�
] bkzk

���
�
�����
z�

1X
k=2

[
�
[1 + �(k � 1)]�n� (1+
) [1 + �(k � 1)]�m

�
+�ei�

�
[1 + �(k � 1)]�n�[1 + �(k � 1)]�m

�
]akz

k

+(�1)n
1X
k=1

[
�
(1+
) [1 + �(k � 1)]�m� (�1)m�n [1 + �(k � 1)]�n

�
+�ei�

�
[1 + �(k � 1)]�m� (�1)m�n [1 + �(k � 1)]�n

�
]bkzk

���
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� (2� 
) jzj �
1X
k=2

�
(1 + �)[1 + �(k � 1)]�n � (
 + �� 1)[1 + �(k � 1)]�m

�
jakj jzjk

�
1X
k=1

��(1 + �)[1 + �(k � 1)]�n � (�1)m�n (
 + �� 1)[1 + �(k � 1)]�m�� jbkj jzjk
�
 jzj �

1X
k=2

�
(1 + �)[1 + �(k � 1)]�n � (
 + �+ 1) [1 + �(k � 1)]�m

�
jakj jzjk

�
1X
k=1

��(1 + �)[1 + �(k � 1)]�n � (�1)m�n (
 + �+ 1) [1 + �(k � 1)]�m�� jbkj jzjk
+�ei�

�
[1 + �(k � 1)]�m� (�1)m�n [1 + �(k � 1)]�n

�
]bkzk

���
> 2

(
(1� 
)�

" 1X
k=2

�
(1 + �)[1 + �(k � 1)]�n � (
 + �) [1 + �(k � 1)]�m

�
jakj

+

1X
k=1

�
(1 + �)[1 + �(k � 1)]�n � (�1)m�n (
 + �) [1 + �(k � 1)]�m

�
jbkj
#)

� 0; this by using (2.1).

The harmonic univalent functions

f(z) = z +

1X
k=2

1�

(1+�)[1+�(k�1)]�n�(
+�)[1+�(k�1)]�m xkz

k

+

1X
k=1

1�

(1+�)[1+�(k�1)]�n�(�1)m�n(
+�)[1+�(k�1)]�m ykz

k; (2.4)

where
P1

k=2 jxkj+
P1

k=1 jykj = 1; shows that the coe¢ cient bound given by (2.1) is sharp.
This completes the proof of Theorem 1. �

In the following theorem, it is shown that the condition (2.1) is also necessary for function
fn = h+ gn , where h and gn are of the form (1.5).

Theorem 2. Let fn = h+gn; where h and gn are given by (1.5). Then fn 2 VH(m;n; �; 
; �);
if and only if the coe¢ cient condition (2.1) holds.

Proof. Since VH(m;n; �; 
; �) � GH(m;n; �; 
; �); we only need to prove the �only if�
part of the theorem. For functions fn = h + gn; where h and gn are given by (1.5), the
inequality (1.4) with f = fn is equivalent to

Re

(
(1 + �ei�)[z +

P1
k=2[1 + �(k � 1)]

�nakz
k + (�1)n

P1
k=1[1 + �(k � 1)]

�nbkz
k]

z +
P1

k=2[1 + �(k � 1)]�makzk + (�1)
mP1

k=1[1 + �(k � 1)]�mbkzk

)

�Re
(
(
 + �ei�)[z +

P1
k=2[1 + �(k � 1)]

�makz
k + (�1)n

P1
k=1[1 + �(k � 1)]

�mbkz
k]

z +
P1

k=2[1 + �(k � 1)]�makzk + (�1)
mP1

k=1[1 + �(k � 1)]�mbkzk

)
> 0:

The above condition holds for all values of � 2 R and z 2 U . Upon choosing � according
(1.6) and substituting � = 0 and z = rei�(0 < r < 1), we must have

E

1�
�P1

k=2[1 + �(k � 1)]�m jakj � (�1)
m+n�1P1

k=1[1 + �(k � 1)]�m jbkj
�
rk�1

> 0;

(2.5)
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where

E = (1� 
)�
 1X
k=2

�
(1 + �)[1 + �(k � 1)]�n � (
 + �) [1 + �(k � 1)]�m

�
jakj
!
rk�1

�
 1X
k=1

�
(1 + �)[1 + �(k � 1)]�n � (�1)m�n (
 + �) [1 + �(k � 1)]�m

�
jbkj
!
rk�1:

If the inequality (2.1) does not hold, then E is negative for r su¢ ciently close to 1. Thus
there exists z0 = r0 in (0; 1) for which the quotient in (2.5) is negative. But this is a
contradiction, then the proof of Theorem 2 is completed. �

We now obtain the distortion theorem for functions in the class VH(m;n; �; 
; �).

Theorem 3. Let fn = h+gn; where h and gn are given by (ref1.5) and fn 2 VH(m;n; �; 
; �).
Then for jzj = r < 1; we have

jfn(z)j � (1 + jb1j) r +
�

1� 

(1 + �)(1 + �)�n � (
 + �) (1 + �)�m

� (1 + �)� (�1)m�n (
 + �)
(1 + �)(1 + �)�n � (
 + �) (1 + �)�m jb1j

�
r2; (2.6)

and

jfn(z)j � (1� jb1j) r �
�

1� 

(1 + �)(1 + �)�n � (
 + �) (1 + �)�m

� (1 + �)� (�1)m�n (
 + �)
(1 + �)(1 + �)�n � (
 + �) (1 + �)�m jb1j

�
r2: (2.7)

The equalities in (2.6) and (2.7) are attained for the functions f given by

f1;�(z) = (1 + jb1j) z +
�

1� 

(1 + �)(1 + �)�n � (
 + �) (1 + �)�m

� (1 + �)� (�1)m�n (
 + �)
(1 + �)(1 + �)�n � (
 + �) (1 + �)�m jb1j

�
z2e�i�; (2.8)

and

f2;�(z) = (1� jb1j) z �
�

1� 

(1 + �)(1 + �)�n � (
 + �) (1 + �)�m

� (1 + �)� (�1)m�n (
 + �)
(1 + �)(1 + �)�n � (
 + �) (1 + �)�m jb1j

�
z2e�i�; (2.9)

where jb1j �
1� 


(1 + �)� (�1)m�n (
 + �) :

Proof. We prove the �rst inequality.
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Let fn 2 VH(m;n; �; 
; �), we have

jfn(z)j � (1+ jb1j) r+
1X
k=2

(jakj+ jbkj) rk� (1 + jb1j) r + r2
1X
k=2

(jakj+ jbkj)

� (1+ jb1j) r+r2
"

1�

(1+�)(1+�)�n�(
+�)(1+�)�m

1X
k=2

(1+�)(1+�)�n�(
+�)(1+�)�m
1�
 (jakj+ jbkj)

#

� (1 + jb1j) r +
1� 


(1 + �)(1 + �)�n � (
 + �) (1 + �)�m

� r2
1X
k=2

�
(1 + �)[1 + �(k � 1)]�n � (
 + �) [1 + �(k � 1)]�m

1� 
 jakj

+
(1 + �)[1 + �(k � 1)]�n � (�1)m�n (
 + �) [1 + �(k � 1)]�m

1� 
 jbkj
�

� (1 + jb1j) r +
1� 


(1 + �)(1 + �)�n � (
 + �) (1 + �)�m

�
1� (1 + �)� (�1)m�n (
 + �)

1� 
 jb1j
�
r2

� (1 + jb1j) r +
�

1� 

(1 + �)(1 + �)�n � (
 + �) (1 + �)�m � (1 + �)� (�1)m�n (
 + �)

(1 + �)(1 + �)�n � (
 + �) (1 + �)�m jb1j
�
r2:

The proof of the second inequality is similar, thus it is left.

�

The bounds given in Theorem 3 for functions fn = h + gn such that h and gn are given
by (1.5) also hold for functions f = h + g such that h and g are given by (1.2) if the
coe¢ cient condition (2.1) is satis�ed.
Next using the same technique used earlier by Aghalary [1] we obtain the extreme points
of the class VH(m;n; �; 
; �).

Theorem 4. The closed convex hull of the class VH(m;n; �; 
; �) denoted by clcoVH(m;n; 
; �)
is (

f(z) = z +

1X
k=2

akz
k +

1X
k=1

bkzk 2 GH(m;n; �; 
; �) :

1X
k=1

�
(1 + �)[1 + �(k � 1)]�n � (
 + �) [1 + �(k � 1)]�m

1� 
 jakj

+
(1 + �)[1 + �(k � 1)]�n � (�1)m�n (
 + �) [1 + �(k � 1)]�m

1� 
 jbkj
�
� 2

9=; ;
where a1=1: Set �k= 1�


(1+�)[1+�(k�1)]�n�(
+�)[1+�(k�1)]�m and

�k=
1�


(1+�)[1+�(k�1)]�n�(�1)m�n(
+�)[1+�(k�1)]�m : For b1 �xed, jb1j �
1�


(1+�)�(�1)m�n(
+�) ;

the extreme points of the class VH(m;n; �; 
; �) aren
z + �kxz

k + b1z
o
[
n
z + �kxz

k + b1z
o
; (2.10)

where k � 2 and jxj = 1� (1 + �)� (�1)m�n (
 + �)
1� 
 :

Proof. Any function f 2 VH(m;n; �; 
; �) may be expressed as

f(z) = z +

1X
k=2

jakj ei�kzk + b1z +
1X
k=2

jbkj ei�kzk;



234 M . K . AOUF, R . M . EL-ASHWAH AND F. M . ABDULKAREM EJMAA-2014/2(1)

where the coe¢ cients satisfy the inequality (2.1). Set

h1(z)=z; g1(z)=b1z; hk(z)=z+�ke
i�kzk; gk(z)=b1z+�ke

i�kzk; k=2; 3; :::,

writing Xk =
jakj
�k

; Yk =
jbkj
�k
; k = 2; 3; ::: and X1 = 1�

P1
k=2Xk;

Y1 = 1�
P1

k=2 Yk; we have

f(z) =

1X
k=1

�
Xkhk(z) + Ykgk(z)

�
:

In particular, setting

f1(z) = z + b1z;

and

fk(z) = z + �kxz
k + b1z + �kyz

k;�
k � 2; jxj+ jyj = 1� (1 + �)� (�1)m�n (
 + �)

1� 
 jb1j
�
;

we see that extreme points of the class VH(m;n; �; 
; �) are contained in ffk(z)g. To see
that f1(z) is not an extreme point, note that f1(z) may be written as

f1(z) =
1

2

�
f1(z) + �

�
1� (1 + �)[1 + �(k � 1)]�n � (�1)m�n (
 + �) [1 + �(k � 1)]�m

1� 
 jb1j
�
z2
�

+
1

2

�
f1(z)� �

�
1� (1 + �)[1 + �(k � 1)]�n � (�1)m�n (
 + �) [1 + �(k � 1)]�m

1� 
 jb1j
�
z2
�
;

a convex linear combination of functions in the class VH(m;n; �; 
; �). Next we will show
if both jxj 6= 0 and jyj 6= 0, then fk is not an extreme point. Without loss of generality,
assume jxj � jyj. Choose � > 0 small enough so that � < jxj

jyj . Set A = 1 + � and

B = 1�
��� �xy ��� ; we then see that both

t1(z) = z + �kxAz
k + b1z + �kyBz

k

and

t2(z) = z + �kx (2�A) zk + b1z + �ky (2�B) zk;

are in the class VH(m;n; �; 
; �) and note that

fk(z) =
1

2
(t1(z) + t2(z)) :

The extremal coe¢ cient bounds shows that functions of the form (2.10) are the extreme
points for the classVH(m;n; �; 
; �), then the proof of Theorem 4 is completed. �

Finally we will examine the closure properties of the class VH(m;n; �; 
; �) under the
generalized Bernardi-Libera-Livingston integral operator (see [3, 12]) Lc(f) which is de-
�ned by

Lc(f (z)) =
c+ 1

zc

Z z

0

tc�1f (t) dt (c > �1): (2.11)

Theorem 5. Let fn = h + gn 2 VH(m;n; �; 
; �); where h and gn are given by (1.5).
Then Lc(fn(z)) belongs to the class VH(m;n; �; 
; �).
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Proof. From the representation of Lc(fn(z)), it follows that

Lc(fn(z)) =
c+ 1

zc

Z z

0

tc�1 (h (t) + gn(t)) dt

=
c+ 1

zc

Z z

0

tc�1
(
t+

1X
k=2

akt
k +

1X
k=1

bktk

)
dt

= z +

1X
k=2

Akz
k +

1X
k=1

Bkzk;

where Ak = c+1
c+k

ak, Bk = c+1
c+k

bk: Therefore, we have,

1X
k=1

�
(1 + �)[1 + �(k � 1)]�n � (
 + �) [1 + �(k � 1)]�m

1� 

c+ 1

c+ k
jakj

+
(1 + �)[1 + �(k � 1)]�n � (�1)m�n (
 + �) [1 + �(k � 1)]�m

1� 

c+ 1

c+ k
jbkj
�

�
1X
k=1

�
(1 + �)[1 + �(k � 1)]�n � (
 + �) [1 + �(k � 1)]�m

1� 
 jakj

+
(1 + �)[1 + �(k � 1)]�n � (�1)m�n (
 + �) [1 + �(k � 1)]�m

1� 
 jbkj
�
� 2;

and the proof of Theorem 5 is completed. �

Remark 1. (i) Putting m = n + 1 (n 2 N0); � = 0 and � = 1 in the above results, we
obtain the corresponding results obtained by Cotirla [5]);
(ii) Putting � = 1 in the above results, we obtain the corresponding results obtained by
El-Ashwah et al. [6];
(iii) Putting m = n+1 (n 2 N0) and � = 0 in the above results, we obtain the corresponding
results obtained by Seoudy [[14], with p = 1];
(iv) Putting � = 1 in the above results, we obtain the corresponding results obtained by
Güney and Sakar [8].
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