SOME CLASSES OF MULTIVALENT HARMONIC FUNCTIONS DEFINED BY CONVOLUTION

ADELA O. MOSTAFA

Abstract

In this paper, new classes of multivalent harmonic functions defined by convolution are considered. Coefficient bounds, representation theorem and distortion bounds for functions of these classes are obtained.

1. Introduction

A continuous function $f=u+i v$ is a complex-valued harmonic in a complex domain D if both u and v are harmonic in D. In any simply connected domain $D \subset \mathbb{C}$ we can write $f=h+\bar{g}$, where h and g are analytic in D. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in D (see Clunie and Sheil-Small [1]).

Denote by H the class of functions $f=h+\bar{g}$ which are harmonic univalent and sense-preserving in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ and f is normalized by $f(0)=h(0)=f_{z}(0)-1=0$.

For $m \in \mathbb{N}=\{1,2, \ldots\}, h$ and g analytic in U, denote by $H(m)$ the set of all multivalent harmonic functions $f=h+\bar{g}$ defined in U, where h and g defined by

$$
\begin{equation*}
h(z)=z^{m}+\sum_{n=m+1}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=m}^{\infty} b_{n} z^{n}, \quad\left|b_{m}\right|<1 . \tag{1.1}
\end{equation*}
$$

Denote by $H=H(1)$.
Let F be a fixed multivalent harmonic function given by

$$
\begin{equation*}
F(z)=H(z)+\overline{G(z)}=z^{m}+\sum_{n=m+1}^{\infty}\left|A_{n}\right| z^{n}+\overline{\sum_{n=m}^{\infty}\left|B_{n}\right| z^{n}}, \quad\left|b_{m}\right|<1 \tag{1.2}
\end{equation*}
$$

Recall the Hadamard product (or convolution) of f and F by:

$$
\begin{equation*}
(f * F)(z)=z^{m}+\sum_{n=m+1}^{\infty} a_{n}\left|A_{n}\right| z^{n}+\overline{\sum_{n=m}^{\infty} b_{n}\left|B_{n}\right| z^{n}} \tag{1.3}
\end{equation*}
$$

[^0]Using the convolution (1.3) and for $0 \leq \gamma<1, k \geq 0, \theta \in R, 0 \leq \lambda \leq 1, z^{\prime}=$ $\frac{\partial}{\partial \theta}\left(z=r e^{i \theta}\right), m \geq 1$ and $f \in H(m)$, we define the subclass $S_{m} H(F, \bar{\lambda}, \gamma, \bar{k})$ by

$$
\begin{equation*}
\operatorname{Re}\left\{\left(1+k e^{i \theta}\right) \frac{z(f * F)^{\prime}(z)}{z^{\prime}\left[(1-\lambda) z^{m}+\lambda(f * F)(z)\right]}-k m e^{i \theta}\right\} \geq m \gamma \tag{1.4}
\end{equation*}
$$

Since $f^{\prime}(z)=\frac{\partial}{\partial \theta}\left(f\left(r e^{i \theta}\right)\right)=i\left(z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right),(1.4)$ is equivalent to:

$$
\begin{equation*}
\operatorname{Re}\left\{\left(1+k e^{i \theta}\right) \frac{\left[z(h * H)^{\prime}(z)-z \overline{(g * G)^{\prime}(z)}\right]}{(1-\lambda) z^{m}+\lambda[(h * H)(z)+\overline{(g * G)(z)}]}-k m e^{i \theta}\right\} \geq m \gamma \tag{1.5}
\end{equation*}
$$

For special choices of the fixed function F, we obtain the following new classes:
(i) For $A_{n}=B_{n}=\Gamma_{n}\left(\alpha_{1}\right)=\frac{\left(\alpha_{1}\right)_{n-m} \ldots\left(\alpha_{q}\right)_{n-m}}{\left(\beta_{1}\right)_{n-m} \ldots\left(\beta_{s}\right)_{n-m}(1)_{n-m}}, \alpha_{1}, \ldots \alpha_{q}, \beta_{1}, \ldots \beta_{s}$ are postive real numbers, the class $S_{m} H(F, \lambda, \gamma, k)$ reduces to

$$
\begin{equation*}
S_{m} H\left(\alpha_{1}, \lambda, \gamma, k\right)=\operatorname{Re}\left\{\left(1+k e^{i \theta}\right) \frac{z\left(H_{m, q, s}\left(\alpha_{1}\right)(f)(z)\right)^{\prime}}{z^{\prime}\left[(1-\lambda) z^{m}+\lambda H_{m, q, s}\left(\alpha_{1}\right)(f)(z)\right]}-k m e^{i \theta}\right\} \geq m \gamma \tag{1.6}
\end{equation*}
$$

where, $H_{m, q, s}\left(\alpha_{1}\right)$ is the modified Dziok-Srivastava operator (see [2] and [3]) which contains many other operators considered earlier for special values of the parameters $\alpha_{i}, \beta_{j}, q, s ;$
(ii) For $A_{n}=B_{n}=\left[\frac{m+l+\delta(n-m)}{m+l}\right]^{s}, \delta, l, s \geq 0$, the class $S_{m} H(F, \lambda, \gamma, k)$ reduces to

$$
\begin{equation*}
S_{m} H(\delta, l, s, \lambda, \gamma, k)=\operatorname{Re}\left\{\left(1+k e^{i \theta}\right) \frac{z\left(I_{m}^{s}(\delta, l)(f)^{\prime}(z)\right)^{\prime}}{\left.z^{\prime}\left[(1-\lambda) z^{m}+\lambda I_{m}^{s}(\delta, l)(f)\right)(z)\right]}-k m e^{i \theta}\right\} \geq m \gamma, \tag{1.7}
\end{equation*}
$$

where $I_{m}^{s}(\delta, l)$ is the modified Cătăs operator (see [4]) which contains many other operators considered earlier for special values of the parameters s, l, δ;
(iii) For $A_{n}=B_{n}=\left[\frac{m+l}{m+l+\delta(n-m)}\right]^{s}, \delta, l, s \geq 0$, the class $S_{m} H(F, \lambda, \gamma, k)$ reduces to

$$
\begin{equation*}
S_{m} H(\delta, l, s, \lambda, \gamma, k)=\operatorname{Re}\left\{\left(1+k e^{i \theta}\right) \frac{z\left(J_{m}^{s}(\delta, l)(f)(z)\right)^{\prime}}{z^{\prime}\left[(1-\lambda) z^{m}+\lambda\left(J_{m}^{s}(\delta, l)(f)\right)(z)\right]}-k m e^{i \theta}\right\} \geq m \gamma \tag{1.8}
\end{equation*}
$$

where $J_{m}^{s}(\delta, l)$ is the modified operator for the operator $J_{m}^{s}(\delta, l)$ introduced and studied by El-Ashwah and Aouf [5] and Aouf et al. [6], which contains in turn other operators considered earlier for special values of the parameters s, l, δ.

Also, for $F(z)=f(z)$, the class $S_{m} H(F, \lambda, \gamma, k)$ reduces to the class $G_{H}(k, m, \gamma, \lambda)$ introduced and studied by Ahuja et al. [7], which for $\lambda=k=1$, reduces to the class $R(m, \gamma)$ introduced and studied by Jahangiri et al. [8]. For $m=k=$ $1, S_{1} H(F, \lambda, \gamma, 1)=R_{H}(F, \lambda, \gamma)$ which was introduced and studied by Murugusundaramoorthy and Vijaya [9] and for $\lambda=1, m$ replaced by $p, S_{p} H(F, 1, \gamma, k)=$ $H_{F}(p, \gamma, k)$ with $t=1$ which was introduced and studied by Ahuja et al. [10].

Denote by $T H(m)$ the subclass of $H(m)$ consisting of functions $f(z)=h(z)+$ $\overline{g(z)}$, where

$$
\begin{equation*}
h(z)=z^{m}-\sum_{n=m+1}^{\infty}\left|a_{n}\right| z^{n}, \quad g(z)=\sum_{n=m}^{\infty}\left|b_{n}\right| z^{n},\left|b_{m}\right|<1 . \tag{1.9}
\end{equation*}
$$

Finally, we define the class $T S_{m} H(F, \lambda, \gamma, k)=S_{m} H(F, \lambda, \gamma, k) \cap T H(m)$.

In this paper we obtain necessary and sufficient coefficient bounds for functions in the class $T S_{m} H(F, \lambda, \gamma, k)$. A represntaion theorem, inclusion properties, and distortion bounds for functions of this class are also obtained.

2. Main Results

Unless otherwise mentioned, we assume that $0 \leq \gamma<1, k \geq 0, \theta \in R, 0 \leq \lambda \leq$ 1 and $m \in \mathbb{N}$.
We begin with a sufficient condition for functions in the class $S_{m} H(F, \lambda, \gamma, k)$.
Theorem 1. Let $f=h+\bar{g}$, where h and g be given by (1.1). Then $f \in$ $S_{m} H(F, \lambda, \gamma, k)$ if

$$
\begin{align*}
& \sum_{n=m+1}^{\infty}[n(k+1)-m \lambda(k+\gamma)]\left|a_{n} A_{n}\right|+\sum_{n=m}^{\infty}[n(k+1)-+m \lambda(k+\gamma)]\left|b_{n} B_{n}\right| \\
& \quad \leq \frac{1}{2}[m(1-\gamma)+1-|m(1-\gamma)-1|] \tag{2.1}
\end{align*}
$$

Proof. In view of (1.5), we need to prove that $\operatorname{Re}\{\zeta\}>m \gamma$, where

$$
\begin{equation*}
\zeta=\frac{\left(1+k e^{i \theta}\right)\left[z(h * H)^{\prime}(z)-z \overline{(g * G)^{\prime}(z)}\right]-m k e^{i \theta}\left\{(1-\lambda) z^{m}+\lambda[(h * H)(z)+\overline{(g * G)(z)}]\right\}}{(1-\lambda) z^{m}+\lambda[(h * H)(z)+\overline{(g * G)(z)}]}=\frac{\Phi(z)}{\Psi(z)}, \tag{2.2}
\end{equation*}
$$

Using the fact that $\operatorname{Re}\{\zeta\} \geqslant m \gamma$ if and only if $|1-m \gamma+\zeta| \geqslant|1+m \gamma-\zeta|$ in U, it suffices to show that

$$
\begin{equation*}
|\Phi(z)+\Psi(z)(1-m \gamma)|-|\Phi(z)-\Psi(z)(1+m \gamma)| \geqslant 0 \tag{2.3}
\end{equation*}
$$

Substituting for $\Phi(z)$ and $\Psi(z)$, we have

$$
\begin{aligned}
& |\Phi(z)+\Psi(z)(1-m \gamma)|-|\Phi(z)-\Psi(z)(1+m \gamma)| \\
= & \mid[1+m(1-\gamma)] z^{m}+\sum_{n=m+1}^{\infty}\left[n+(n-\lambda m) k e^{i \theta}+\lambda(1-m \gamma)\right] a_{n} A_{n} z^{n} \\
- & \sum_{n=m}^{\infty}\left[n+(n+\lambda m) k e^{i \theta}-\lambda(1-m \gamma)\right] \overline{b_{n} B_{n} z^{n}} \mid \\
- & \mid[m(1-\gamma)-1] z^{m}-\sum_{n=m+1}^{\infty}\left[n+(n-\lambda m) k e^{i \theta}-\lambda(1+m \gamma)\right] a_{n} A_{n} z^{n} \\
- & \sum_{n=m}^{\infty}\left[n+(n+\lambda m) k e^{i \theta}+\lambda(1+m \gamma)\right] \overline{b_{n} B_{n} z^{n}} \mid
\end{aligned}
$$

$$
\begin{aligned}
& \geq {[1+m(1-\gamma)-|m(1-\gamma)-1|]|z|^{m} } \\
&-2 \sum_{n=m+1}^{\infty}[n+(n-\lambda m) k-\lambda m \gamma]\left|a_{n} A_{n}\right||z|^{n} \\
&-2 \sum_{n=m}^{\infty}[n+(n+\lambda m) k+\lambda m \gamma]\left|b_{n} B_{n}\right||z|^{n} \\
& \geq {[1+m(1-\gamma)-|m(1-\gamma)-1|] . } \\
& \cdot\left\{1-\sum_{n=m+1}^{\infty} \frac{2[n+(n-\lambda m) k-\lambda m \gamma]}{[1+m(1-\gamma)-|m(1-\gamma)-1|]}\left|a_{n} A_{n}\right|\right. \\
&\left.-\frac{[n+(n+\lambda m) k+\lambda m \gamma]}{[1+m(1-\gamma)-|m(1-\gamma)-1|]}\left|b_{n} B_{n}\right|\right\} .
\end{aligned}
$$

By hypothesis (2.1), last expression is nonnegative. Thus the proof is completed. The coeficient bounds (2.1) is sharp for the function

$$
\begin{align*}
f(z)= & z^{m}+\sum_{n=m+1}^{\infty} \frac{[1+m(1-\gamma)-|m(1-\gamma)-1|]}{2[n+(n-\lambda m) k-\lambda m \gamma] A_{n}} X_{n} z^{n} \\
& +\sum_{n=m}^{\infty} \frac{[1+m(1-\gamma)-|m(1-\gamma)-1|]}{2[n+(n+\lambda m) k+\lambda m \gamma] B_{n}} \bar{y}_{n} \bar{z}^{n}, \tag{2.4}
\end{align*}
$$

where $\sum_{n=m+1}^{\infty}\left|x_{n}\right|+\sum_{n=m}^{\infty}\left|y_{n}\right|=1$, shows that the coefficient bound given by (2.1) is sharp.
Corollary 1. For $m \geq 1 /(1-\gamma)$, then $f \in S_{m} H(F, \lambda, \gamma, k)$ if

$$
\sum_{n=m+1}^{\infty}[n(k+1)-m \lambda(k+\gamma)]\left|a_{n} A_{n}\right|+\sum_{n=m}^{\infty}[n(k+1)+m \lambda(k+\gamma)]\left|b_{n} B_{n}\right| \leq 1
$$

Corollary 2. For $1 \leq m \leq 1 /(1-\gamma)$, then $f \in S_{m} H(F, \lambda, \gamma, k)$ if

$$
\begin{aligned}
& \sum_{n=m+1}^{\infty}[n(k+1)-m \lambda(k+\gamma)]\left|a_{n} A_{n}\right|+\sum_{n=m}^{\infty}[n(k+1)+m \lambda(k+\gamma)]\left|b_{n} B_{n}\right| \\
\leq & m(1-\gamma) .
\end{aligned}
$$

Theorem 2. Let $f=h+\bar{g}$ be given by (1.9). Then
(i) for $1 \leq m \leq 1 /(1-\gamma), f \in T S_{m} H(F, \lambda, \gamma, k)$ if and only if

$$
\begin{gather*}
\sum_{n=m+1}^{\infty}[n(k+1)-m \lambda(k+\gamma)]\left|a_{n} A_{n}\right|+\sum_{n=m}^{\infty}[n(k+1)+m \lambda(k+\gamma)]\left|b_{n} B_{n}\right| \\
\leq m(1-\gamma) \tag{2.5}
\end{gather*}
$$

(ii) for $m \geq 1 /(1-\gamma), f \in T S_{m} H(F, \lambda, \gamma, k)$ if and only if

$$
\begin{equation*}
\sum_{n=m+1}^{\infty}[n(k+1)-m \lambda(k+\gamma)]\left|a_{n} A_{n}\right|+\sum_{n=m}^{\infty}[n(k+1)+m \lambda(k+\gamma)]\left|b_{n} B_{n}\right| \tag{2.6}
\end{equation*}
$$

Proof. Since $S_{m} H(F, \lambda, \gamma, k) \subset T S_{m} H(F, \lambda, \gamma, k)$, we only need to prove the "only if " part of the theorem. For f of the form (1.9), then

$$
\operatorname{Re}\left\{\frac{\left(1+k e^{i \theta}\right)\left[z(h * H)^{\prime}(z)-z \overline{(g * G)^{\prime}(z)}\right]-m\left(k e^{i \theta}+\gamma\right)\left\{(1-\lambda) z^{m}+\lambda[(h * H)(z)+\overline{(g * G)(z)}]\right\}}{(1-\lambda) z^{m}+\lambda[(h * H)(z)+\overline{(g * G)(z)}]}\right\} \geq 0
$$

that is
$\operatorname{Re}\left\{\frac{m(1-\gamma) z^{m}-\sum_{n=m+1}^{\infty}\left[n\left(1+k e^{i \theta}\right)-\lambda m\left(k e^{i \theta}+\gamma\right)\right] a_{n} A_{n} z^{n}-\sum_{n=m}^{\infty}\left[n\left(1+k e^{i \theta}\right)+\lambda m\left(k e^{i \theta}+\gamma\right)\right] \overline{b_{n} B_{n} z^{n}}}{z^{z}-\sum_{n=m+1}^{\infty} \lambda a_{n} A_{n} z^{n}+\overline{\sum_{n=m}^{\infty} \lambda b_{n} B_{n} z^{n}}}\right\} \geq 0$.
The condition (2.7) must hold for all values of z in U. Upon choosing the values of z on the positive real axis where $0 \leq z=r<1$, and noting that $\operatorname{Re}\left\{-e^{i \theta}\right\} \geq$ $-\left|e^{i \theta}\right|=-1$, we have

If the condition (2.7) does not hold, then the numerator in (2.8) is negative for r sufficiently close to 1 . Hence, there exist $z_{0}=r_{0}$ in $(0,1)$ for which the quotient of (2.8) is negative. This contradicts the required condition for $f \in T S_{m} H(F, \lambda, \gamma, k)$. This completes the proof of Theorem 2.
Theorem 3. If $f \in T S_{m} H(F, \lambda, \gamma, k)$, then for $|z|=r<1,\left|A_{m+1}\right| \leq\left|A_{n}\right| \leq$ $\left|B_{n}\right|(n \geq m+1)$ and $A_{m+1} \neq 0$, we have

$$
|f(z)| \leq\left\{\begin{array}{c}
\left(1+\left|b_{m}\right|\right) r^{m}+\left[\frac{m(1-\gamma)}{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|}\right. \tag{2.9}\\
\left.-\frac{m[1+k+\lambda(k+\gamma)]}{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|}\left|b_{m} B_{m}\right|\right] r^{m+1} \\
{[1+k+\lambda(k+\gamma)]\left|b_{m} B_{m}\right|<(1-\gamma) \leq \frac{1}{m} ;} \\
\left(1+\left|b_{m}\right|\right) r^{m}+\left[\frac{1}{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|}\right. \\
\left.-\frac{[(m+1)(k+1)+m \lambda(k+\gamma)]}{[(m+1)(k+1)-m \lambda(k+\gamma)] \mid A_{m+1}}\left|b_{m} B_{m}\right|\right] r^{m+1} \\
{[(m+1)(k+1)+m \lambda(k+\gamma)]\left|b_{m} B_{m}\right|<1 \text { and } m(1-\gamma) \geq 1}
\end{array}\right.
$$

and

$$
|f(z)| \geq\left\{\begin{array}{c}
\left(1-\left|b_{m}\right|\right) r^{m}-\left[\frac{m(1-\gamma)}{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|}\right. \tag{2.10}\\
\left.-\frac{m[1+k+\lambda(k+\gamma)]}{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|}\left|b_{m} B_{m}\right|\right] r^{m+1}, \\
{[1+k+\lambda(k+\gamma)]\left|b_{m} B_{m}\right|<(1-\gamma) \leq \frac{1}{m} ;} \\
\left(1-\left|b_{m}\right|\right) r^{m}-\left[\frac{1}{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|}\right. \\
\left.-\frac{[(m+1)(k+1)+m \lambda(k+\gamma)]}{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|}\left|b_{m} B_{m}\right|\right] r^{m+1}, \\
{[(m+1)(k+1)+m \lambda(k+\gamma)]\left|b_{m} B_{m}\right|<1 \text { and } m(1-\gamma) \geq 1}
\end{array}\right.
$$

The results are sharp.

Proof. For $m(1-\gamma) \leq 1, f \in T S_{m} H(F, \lambda, \gamma, k)$ and $\left|A_{m+1}\right| \leq\left|A_{n}\right| \leq\left|B_{n}\right| \quad(n \geq$ $m+1)$. From (1.9), we have

$$
\left.\begin{array}{rl}
|f(z)|= & \left|z^{m}-\sum_{n=m+1}^{\infty}\right| a_{n}\left|z^{n}+\sum_{n=m}^{\infty}\right| b_{n}\left|\overline{z^{n}}\right| \\
= & \left|z^{m}+\left|b_{m}\right| \overline{z^{m}}-\sum_{n=m+1}^{\infty}\left[\left|a_{n}\right|-\left|b_{n}\right|\right] \overline{z^{n}}\right| \\
\leq & \left(1+\left|b_{m}\right|\right) r^{m}+\sum_{n=m+1}^{\infty}\left[\left|a_{n}\right|+\left|b_{n}\right|\right] r^{m+1} \\
\leq & \left(1+\left|b_{m}\right|\right) r^{m}+\frac{m(1-\gamma)}{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|} . \\
\leq \quad\left(1+\sum_{n=m+1}^{\infty} \frac{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|}{m(1-\gamma)}\left[\left|a_{n}\right|+\left|b_{n}\right|\right] r^{m+1}\right. \\
\leq & \quad\left(b_{m} \mid\right) r^{m}+\frac{m(1-\gamma)}{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|} \cdot \\
\leq & \left.\left(1+\left|b_{m}\right|\right) r^{m}+\frac{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|}{m(1-\gamma)}\left|a_{n}\right|+\frac{[(m+1)(k+1)+m \lambda(k+\gamma)]\left|A_{m+1}\right|}{m(1-\gamma)}\left|b_{n}\right|\right) r^{m+1} \\
\leq(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|
\end{array}\right) .
$$

From (2.5), we have

$$
\begin{aligned}
|f(z)| & \leq\left(1+\left|b_{m}\right|\right) r^{m}+\frac{m(1-\gamma)}{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|}\left(1-\frac{[(m+1)(k+1)+m \lambda(k+\gamma)]}{m(1-\gamma)}\left|b_{m} B_{m}\right|\right) r^{m+1} \\
& \leq\left(1+\left|b_{m}\right|\right) r^{m}+\left(\frac{m(1-\gamma)}{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|}-\frac{m[k+1+\lambda(k+\gamma)]\left|b_{m} B_{m}\right|}{[(m+1)(k+1)-m \lambda(k+\gamma)]\left|A_{m+1}\right|}\right) r^{m+1}
\end{aligned}
$$

This completes the first inequality of the theorem. The proof of the others are similar and so, we omit them.
Theorem 4. Let $A_{n} \neq 0, n \geq m+1, B_{n} \neq 0, n \geq m$. Then $f \in \operatorname{clcoT} S_{m} H(F, \lambda, \gamma, k)$ if and only if f can be expressed as

$$
\begin{equation*}
f(z)=X_{m} h_{m}(z)+\sum_{n=m+1}^{\infty}\left(X_{n} h_{n}(z)+Y_{n} g_{n}(z)\right), \tag{2.11}
\end{equation*}
$$

where $h_{m}(z)=z^{m}$,

$$
h_{n}(z)= \begin{cases}z^{m}-\frac{m(1-\gamma)}{[n(1+k)-m(k+\gamma)]\left|A_{n}\right|} z^{n} & (n \geq m+1, m(1-\gamma) \leq 1) \tag{2.12}\\ z^{m}-\frac{1}{[n(1+k)-m(k+\gamma)]\left|A_{n}\right|} z^{n} \quad(n \geq m+1, m(1-\gamma) \geq 1)\end{cases}
$$

$$
\begin{gather*}
g_{n}(z)=\left\{\begin{array}{c}
z^{m}+\frac{m(1-\gamma)}{[n(1+k)+m(k+\gamma)]\left|B_{n}\right|} \bar{z}^{n}(n \geq m, m(1-\gamma) \leq 1) \\
z^{m}+\frac{1}{[n(1+k)+m(k+\gamma)]\left|B_{n}\right|} \bar{z}^{n}(n \geq m, m(1-\gamma) \geq 1)
\end{array}\right. \tag{2.13}\\
X_{m}+\sum_{n=m+1}^{\infty} X_{n}+\sum_{n=m}^{\infty} Y_{n}=1 \text { and } X_{n}, Y_{n} \geq 0
\end{gather*}
$$

Proof. Let $m(1-\gamma) \leq 1$. For f of the form (2.11), we have
$f(z)=z^{m}-\sum_{n=m+1}^{\infty} \frac{m(1-\gamma)}{[n(1+k)-m(k+\gamma)]\left|A_{n}\right|} X_{n} z^{n}+\sum_{n=m}^{\infty} \frac{m(1-\gamma)}{[n(1+k)+m(k+\gamma)]\left|B_{n}\right|} Y_{n} \bar{z}^{n}$.
Since, $0 \leq X_{m} \leq 1$, we have

$$
\begin{aligned}
& \sum_{n=m+1}^{\infty} \frac{[n(1+k)-m(k+\gamma)]\left|A_{n}\right|}{m(1-\gamma)} \frac{m(1-\gamma)}{[n(1+k)-m(k+\gamma)]\left|A_{n}\right|} X_{n} \\
+ & \sum_{n=m}^{\infty} \frac{[n(1+k)+m(k+\gamma)]\left|B_{n}\right|}{m(1-\gamma)} \frac{m(1-\gamma)}{[n(1+k)+m(k+\gamma)]\left|B_{n}\right|} Y_{n} \\
= & \sum_{n=m+1}^{\infty} X_{n}+\sum_{n=m}^{\infty} Y_{n}=1-X_{m} \leq 1 .
\end{aligned}
$$

Consequently, $f \in T S_{m} H(F, \lambda, \gamma, k)$.
Conversely, let $f \in T S_{m} H(F, \lambda, \gamma, k)$.Then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{m(1-\gamma)}{[n(1+k)-m(k+\gamma)]\left|A_{n}\right|}, \quad\left|b_{n}\right| \leq \frac{m(1-\gamma)}{[n(1+k)+m(k+\gamma)]\left|B_{n}\right|} \tag{2.15}
\end{equation*}
$$

Putting

$$
\begin{equation*}
X_{n}=\frac{[n(1+k)-m(k+\gamma)]\left|a_{n} A_{n}\right|}{m(1-\gamma)}, \quad Y_{n}=\frac{[n(1+k)+m(k+\gamma)]\left|b_{n} B_{n}\right|}{m(1-\gamma)} \tag{2.16}
\end{equation*}
$$

and

$$
X_{m}=1-\left(\sum_{n=m+1}^{\infty} X_{n}+\sum_{n=m}^{\infty} Y_{n}\right) \geq 0
$$

we have

$$
\begin{aligned}
f(z) & =z^{m}-\sum_{n=m+1}^{\infty}\left|a_{n}\right| z^{n}+\sum_{n=m}^{\infty}\left|b_{n}\right| \bar{z}^{n} \\
& =z^{m}-\sum_{n=m+1}^{\infty} \frac{m(1-\gamma)}{[n(1+k)-m(k+\gamma)]\left|A_{n}\right|} X_{n} z^{n}+\sum_{n=m}^{\infty} \frac{m(1-\gamma)}{[n(1+k)+m(k+\gamma)]\left|B_{n}\right|} Y^{n} \bar{z}^{n} \\
& =z^{m}-\sum_{n=m+1}^{\infty}\left(z^{m}-h_{n}(z)\right) X_{n}-\sum_{n=m}^{\infty}\left(z^{m}-g_{n}(z)\right) Y_{n} \\
& =\left[1-\left(\sum_{n=m+1}^{\infty} X_{n}+\sum_{n=m}^{\infty} Y_{n}\right)\right] z^{m}+\sum_{n=m+1}^{\infty} h_{n}(z) X_{n}+\sum_{n=m}^{\infty} g_{n}(z) Y_{n} \\
& =X_{m} z^{m}+\sum_{n=m+1}^{\infty} h_{n}(z) X_{n}+\sum_{n=m}^{\infty} g_{n}(z) Y_{n} .
\end{aligned}
$$

Thus f can be expressed in the form (2.11). The case for $m(1-\gamma) \geq 1$ can be proved in the same manner and hence we omit it.
Theorem 5. The class $T S_{m} H(F, \lambda, \gamma, k)$ is closed under convex combinations.

Proof. For $i=1,2, \ldots$, let the functions f_{i} given by

$$
\begin{equation*}
f_{i}(z)=z^{m}-\sum_{n=m+1}^{\infty}\left|a_{i n}\right| z^{n}+\sum_{n=m}^{\infty}\left|b_{i n}\right| \bar{z}^{n} \tag{2.17}
\end{equation*}
$$

are in the class $T S_{m} H(F, \lambda, \gamma, k)$ and suppose that the fixed functions F_{i} are given by

$$
\begin{equation*}
F_{i}(z)=z^{m}+\sum_{n=m+1}^{\infty}\left|A_{i n}\right| z^{n}+\sum_{n=m}^{\infty}\left|B_{i n}\right| \bar{z}^{n} \tag{2.18}
\end{equation*}
$$

For $0 \leq \mu_{i} \leq 1, \sum_{i=1}^{\infty} \mu_{i}=1$, the convex combinations can be expressed in the form

$$
\begin{equation*}
\sum_{i=1}^{\infty} \mu_{i} f_{i}=z^{m}-\sum_{n=m+1}^{\infty}\left(\sum_{i=1}^{\infty} \mu_{i}\left|a_{i n}\right|\right) z^{n}+\sum_{n=m}^{\infty}\left(\sum_{i=1}^{\infty} \mu_{i}\left|b_{i n}\right|\right) \bar{z}^{n} \tag{2.19}
\end{equation*}
$$

From (2.5) and (2.6), we have

$$
\left.\begin{array}{rl}
& \sum_{n=m+1}^{\infty}[n+(n-m \lambda) k-\lambda m \gamma] \sum_{i=1}^{\infty} \mu_{i}\left|a_{i n} A_{i n}\right| \\
& +\sum_{n=m}^{\infty}[n+(n+m \lambda) k+\lambda m \gamma] \sum_{i=1}^{\infty} \mu_{i}\left|b_{i n} B_{i n}\right| \\
= & \sum_{i=1}^{\infty} \mu_{i}\left\{\sum_{n=m+1}^{\infty}[n+(n-m \lambda) k-\lambda m \gamma]\left|a_{i n} A_{i n}\right|\right. \\
& \left.+\sum_{n=m}^{\infty}[n+(n+m \lambda) k+\lambda m \gamma]\left|b_{i n} B_{i n}\right|\right\}
\end{array}\right\} \begin{array}{cc}
m(1-\gamma) \sum_{i=1}^{\infty} \mu_{i}=m(1-\gamma) & \text { if } m(1-\gamma) \leq 1 \\
\sum_{i=1}^{\infty} \mu_{i}=1 & \text { if } m(1-\gamma) \geq 1 .
\end{array}
$$

That is, that,

$$
\sum_{i=1}^{\infty} \mu_{i} f_{i}(z) \in T S_{m} H(F, \lambda, \gamma, k)
$$

which complets the proof of Theorem 5 .
Remark. (i) Putting $\lambda=1$ and replacing m by p in Theorems 1, 2, 3, 4 and 5 and Corollaries 1, 2 and 3, respectively, we obtain the results obtained by Ahuja et al. [10, Theorems 2.1, 2.4, 2.5, 2.6 and 2.8 and Corollaries 2.2, 2.3 and 2.7, respectively, with $t=1$;
(ii) Putting $k=m=1$ and $A_{n}=B_{n}$ in Theorems 1, 2, 3, 4 and 5, respectively, we obtain the results obtained by Murugusundaramoorthy and Vijaya [8, Theorems 1, 2, 3, 4 and 5, respectively];
(iii) For different choices of the function F, as stated in $(i),(i i)$ and (iii) in the introduction, we obtain new results corresponding to the corresponding classes.

References

[1] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9(1984), 3-25.
[2] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
[3] R. A. Al-Khal, Goodman-Ronning-type harmonic univalent functions based on DziokSrivastava operator, Appl. Math. Sci., 5(2011), no. 12, 573-584.
[4] A. Cătăs, On certain classes of p-valent functions defined by multiplier transformations, in Proc. Book of the International Symposium on Geometric Function Theory and Applications, Istanbul, Turkey, (August 2007), 241-250.
[5] R. M. El-Ashwah and M. K. Aouf, Some properties of new integraloperator, Acta Univ. Apulensis, (2010), no. 24, 51-61.
[6] M. K. Aouf, A.O. Mostafa and R. M. El-Ashwah, Sandwich theorems for p-valent functions defined by certain integral operator, Math. Comput. Modelling, 53 (2011), 1647-1653.
[7] O. P. Ahuja, S. Joshi and N. Sangle, Multivalent harmonic uniformly starlike functions, Kyungpook Math. J., 49 (2009), 545-555.
[8] J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, On starlikeness of certain multivalent harmonic functions, J. Natural Geom., 24 (2003), 1-10.
[9] G. Murugusundaramoorthy and K. Vijaya, Starlike harmonic functions in parabolic region associated with a convolution structure, Acta Univ. Sapientiae, Math., 2 (2010), no. 2, 168183.
[10] O. P. Ahuja, H. O. Gulem and F. M. Sakar, Certain classes of harmonic multivalent functions based on Hadamard product, J. Inequal. Appl., Vol. 2009, Art. ID 759251, 1-12.

Adela O. Mostafa, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

E-mail address: adelaeg254@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 30C45, 30C50,30C55.0.
 Key words and phrases. Multivalent, harmonic functions, convolution, distortion bounds.
 Submitted Oct. 7, 2013. Revised Nov. 19, 2013.

