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SOME CLASSES OF MULTIVALENT HARMONIC FUNCTIONS
DEFINED BY CONVOLUTION

ADELA O. MOSTAFA

ABSTRACT. In this paper, new classes of multivalent harmonic functions de-
fined by convolution are considered. Coefficient bounds, representation theo-
rem and distortion bounds for functions of these classes are obtained.

1. INTRODUCTION

A continuous function f = u 4 iv is a complex-valued harmonic in a complex
domain D if both u and v are harmonic in D. In any simply connected domain
D C C we can write f = h+ g, where h and g are analytic in D. A necessary and
sufficient condition for f to be locally univalent and sense preserving in D is that
|h/(2)] > 1¢'(2)] in D ( see Clunie and Sheil-Small [1]).

Denote by H the class of functions f = h+g which are harmonic univalent and
sense-preserving in the open unit disk U = {z € C : |z] < 1} and f is normalized
by f(0) = h(0) = f.(0) =1 =0.

For m € N = {1,2,...}, h and ¢ analytic in U, denote by H(m) the set of all
multivalent harmonic functions f = h + g defined in U, where h and g defined by

h(z)=2"+ Y anz",  g(2) =D buz", |bm| < 1. (1.1)

n=m-+1

Denote by H = H(1).
Let F' be a fixed multivalent harmonic function given by

P(e) = H(z)+GE) = 2"+ 3 a2+ 3 Bl 2t [bul <1 (12)

n=m-+1

Recall the Hadamard product (or convolution) of f and F' by:

FeP)2) ="+ 3 anldal 2+ S bo| Byl 2m. (13)

n=m-+1
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Using the convolution (1.3) and for 0 < v < 1,k > 0,0 € R,0 < A < 1,2/ =
9(z=re?),m>1 and f € H(m), we define the subclass S,, H(F,\,v,k) by

00
2(f+ F)(2)
Z[(L=X)2m + A(f * F)(2)]

Since f(z) = Z(f(re?)) = i(zh'(2) — zg'(2)), (1.4) is equivalent to:

|20 HY(2) = 29+ GY (=)
(L= N+ Al(h+ H)(2) + (9% G (2)]

Re {(1 + ke'?) - kmew} > my. (1.4)

0

Re < (14 ke') — kme? 3 >mry.  (1.5)

For special choices of the fixed function F', we obtain the following new classes:

. (1) n—m---(Cg)n—m
(7) For A,, = B, =T, (1) =
(ﬁl)n—m~-~(6s)n—m(l)n—m
postive real numbers, the class S, H(F, A, 7, k) reduces to

a1, .0, B, ... B, are

3 z2(Hpm q,s(a 2)) i
SmH(ala )‘7 s k) = Re {(1 + ke 9) z’[(1—)5)27",+>\§"1;,)§,J:)((a1)§(f)(z)] — kme 0} > my,
(1.6)

where, H,, 4 s(aq) is the modified Dziok-Srivastava operator (see [2] and [3] ) which
contains many other operators considered earlier for special values of the parameters
Qg /BJ7 q, S;

(i1) For A,, = B,, = [m} ,0,1,5 >0, the class S,,, H(F, \, 7, k) reduces

m-+I
to

SmH(,1,8,\,7,k) =Re {(1 + ke'?) Z,Kl_’ifff”,,fj_’?}?{éj;z}))(z)] - kmem} > my,
(1.7)
where I3,(0,1) is the modified Catéds operator (see [4]) which contains many other
operators considered earlier for special values of the parameters s, [, d;

(iii) For A, = B,, = [%} ,0,1,5 > 0, the class S, H(F,\,~,k) re-

duces to

— i0 2(J (8,0 (=)’ i
SmH(6,1,8,\,7,k) =Re {(1 + ke )Z,[(17)\)27,1“\(_]%(5’l)(f))(z)] — kme } > mry,
(1.8)

where J3,(9,1) is the modified operator for the operator J3 (d,1) introduced and
studied by El-Ashwah and Aouf [5] and Aouf et al. [6], which contains in turn
other operators considered earlier for special values of the parameters s,,J.

Also, for F'(z) = f(2), the class S,, H(F, \,~, k) reduces to the class Gy (k, m, v, \)
introduced and studied by Ahuja et al. [7], which for A = k& = 1, reduces to
the class R(m,) introduced and studied by Jahangiri et al. [8]. For m = k =
1, S1H(F,\,v,1)=Rp(F,\,v) which was introduced and studied by Murugusun-
daramoorthy and Vijaya [9] and for A = 1, m replaced by p, S,H(F,1,7,k) =
Hp(p,7, k) with ¢ = 1 which was introduced and studied by Ahuja et al. [10].

Denote by TH(m) the subclass of H(m) consisting of functions f(z) = h(z) +
g(z) , where

oo o0

h(z)=2"— 3 lanl2" g(2) = D [bal 2", |bm| < 1. (1.9)

n=m+1 n=m

Finally, we define the class T'S,, H(F, \,v,k) = Sp H(F, \,v, k) N TH(m).
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In this paper we obtain necessary and sufficient coefficient bounds for functions
in the class T'S,, H(F, \,7,k). A represntaion theorem, inclusion properties, and
distortion bounds for functions of this class are also obtained.

2. MAIN RESULTS

Unless otherwise mentioned, we assume that 0 < v < 1,k > 0,0 € R,0 < A <
1 and m € N.
We begin with a sufficient condition for functions in the class Sy, H(F, A, 7, k).
Theorem 1. Let f = h+ g, where h and g be given by (1.1). Then [ €

> Ik +1) = mA(k + )] lanAn| + Y [n(k + 1) — +mA(k + )] [bn B
n=m-+1 n=m
S%[m(l—’y)+1—|m(lf’y)fl|]. (2.1)

Proof. In view of (1.5) , we need to prove that Re{(} > m~, where

¢ = (1+ke™) [2(hxH)' (2) ~ 2(g*G) (2)| —mke { (1=X) 2™+ A[(h+H) (2)+(9%G) (2)] } _ d(z2)
(1=X)zm+A[(h+H ) (2)+(g*G) (2)] U(z)’
(2.2)

Using the fact that Re{¢(} > m~y if and only if |1 —my+ (| > |1+ my—(|in U, it
suffices to show that

[@(2) + ¥(2)(1 —m)| = |@(2) = ¥(2)(1 + my)| = 0. (2:3)
Substituting for ®(z) and ¥(z), we have
|[@(2) + W (2)(1 —my)| = [®(2) = ¥(2)(1 + my)]

[14+m(l—v)]z"+ Z [n+ (n — Am)ke® + A1 — m7y)]a, A, 2"
n=m+1

- Z [n+ (n4 dm)ke — X(1 — m7)]b, B, 2"

n=m

- ‘[m(l —5) = 1]" — Z [n+ (n — dm)ke — X1 4+ m7y)]a, A, 2"
n=m-+1

- [n+ (n 4 Am)ke'® + X(1 4+ my)]b, B, 2"

n=m
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> [T+ m1—7)=|m@d—v) =1 ]z"
o0

-2 Z [n+ (n—Am)k — dmy] |a, An| |2|"

n=m-+1

=23 " [n+ (n+ Am)k + Amq] [by Bn| |2]"

> [L+m(l—7)—[m(-7) - 1]

g 2[n+(n—)\m)k AmV] .

3 [n+ (n+ Am)k + Amy] b B |}
[L+m(l—7)—|ml-y)-1]] "

By hypothesis (2.1), last expression is nonnegative. Thus the proof is completed.

The coeficient bounds (2.1) is sharp for the function

= 1+m1—) |m(1 — )—1|}
) ="+ Z 2[n+ (n — Am)k — Am~]A,

n
n=m-+1

o0

1—|—m1— ) |m(1_ )_1”7771
+ Z + (n+ Am)k + Am~y] B, YnZ 24

n=m
o0

where > |z, + Z lyn| = 1, shows that the coefficient bound given by (2.1)

issharp
Corollary 1. For m > 1/(1 — ), then f € Sy H(F, A\, v, k) if
i [n(k +1) = mA(k + 7)) lanAn| + i [n(k+1) + mA(k +7)] [bn Bn| < 1.
n=m-+1 n=m
Corollary 2. For 1 <m < 1/(1—7), then f € SpH(F,\, v, k) if
i (n(k+1) — mA(k + )] |anAn| + i [n(k + 1) + mA(k + )] |bn B
< nm:(qw—1 v) o

Theorem 2. Let f =h+7g be given by (1.9). Then
(i) for 1 <m <1/(1—7), f € TSR H(F,\,~, k) if and only if

> Ik +1) = mA(k + )] anAn| + D [0k + 1) + mA(k + )] |bn Bl
n=m-+1 n=m
<m(l—7); (2.5)
(i) for m > 1/(1 — =), f € TS H(F,\,7, k) if and only if
> Ik +1) = mA(k+ )] lanAn| + Y [0k + 1) + mA(k + )] |bn By
n=m-41 n=m

<1. (2.6)
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Proof. Since S, H(F,\,v,k) C TS, H(F,\,v,k), we only need to prove the "only
if ” part of the theorem. For f of the form (1.9), then

Re J (ke ) [e(he H)' (2) ==(5+@) )] =m(he™* ) { (10" sM (e )+ (+ DN | o
=Nz A (e H) ()4 (97C) (2)] =

that is

m(1l—v)z™— § [n(1+ke'®)—rm (ke +7)]an Anz" — f [n(1+ke'®)+rm (ke +7)]by Br 2™
Re n=m-41 n=m > O

o0 (e
z2— > AanApz"+ >, AbpBpz™
n=m+1 n=m

(2.7)
The condition (2.7) must hold for all values of z in U. Upon choosing the values
of z on the positive real axis where 0 < z = r < 1, and noting that Re{—e"?} >
— |ei9{ = —1, we have

m(l—vy)— i n(14ke'®)—Am (ke +7)]an Apr™ ™™ — io: [n(14+ke'®)+Am (ke +4)]bp Bpr™ ™™
n=m+1 _ _n=m >0.
1— 3> AXapApr®= ™+ 3 AbpB,rnm™

n=m+1 n=m

(2.8)
If the condition (2.7) does not hold, then the numerator in (2.8) is negative for r
sufficiently close to 1. Hence, there exist zg = 7 in (0, 1) for which the quotient of
(2.8) is negative. This contradicts the required condition for f € T'S,,, H(F, X, v, k).
This completes the proof of Theorem 2.
Theorem 3. If f € TS,H(F,\ k), then for |z| =1 < 1,|Apmy1| < |An] <
|Bn| (n>m+1) and Apms1 # 0, we have

m m(1—>)
(L4 [bm])r™ + {[(m+1)(k+1)—mx(k+v)]\Amﬂ\

_ m[1+k+A(k+7)] mal
D ) —mA ([ A |0m Bl | 7777,

[1+ &+ Ak +9)] [bm Brn| < (1 —7) < 4

m 1
(L +[bm)r™ + | G D= A

[(m+1)(k+1)+mA(k+7)] m—+1
O D =G Aw ] 0om Bl | 777,

[(m+1)(k+ 1)+ mA(k+ )] |bmBm| <1 and m(1 —v) > 1

and

m m(177)
(1= [by|)r™ — [[<m+1><k+1>—mx<k+w)1|Am+1|

m[l+k+A(k+7)] m+1
B (CESV(Es () vy |mem|} e

[L+ &+ Ak + )] [bnBm| < (1=7) < 5

m 1
(1 = [bm[)r™ — |:[(m+1)(/€+1)—m)\(k+7)]|Am+1|

[+ 1) (k1) FmA k) bl
Gt D A kAl [om Bl | 77,

[(m+1)(k+ 1) +mA(k+ )] |bmBm| <1 and m(1 —~) > 1

(2.10)
The results are sharp.
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Proof. For m(1 —~) < 1,f € TS,,H(F,\,v,k) and |A,,11| < |A,| < |By| (n >
m + 1). From (1.9), we have

FE = 2" = > anlz"+ ) |balZ”
n=m-+1 n=m
= 2"+ bl 2T = Y (lan] = [bal]2”
n=m-+1
< (@ [bw)r™ + Z [lan] + [bn[]rm*
n=m-+1
m(1—1)
< (L+1bpr™ + .
= D G D D) — AR+ )] A
> D(k+1) —mAk A,
S L DD —mAE ) el e
n=m-+1 m(l_’y>
m(l —7)
< (14 |by)r™ + .
4 oD 4 G DG+ 1) — Ao+ D] ]
> m -m A, m m Am m
( Z [( +1)(k+12n(13\7(’)€+“/)]| +1] lan| + [( +1)(k+137jr(13\$)€+“/)]| +1] bn>7a +1
n=m-+1
1—
< (1|l + m(l —7)

[(m + 1) (k + 1) = mA(k + )] [Amia|

- ( Z [(m+1)(k+1)—mA(k+v)] lanAp| + [(m+1)(k+1)+mA(k+)] |ann|> pmtl

m(1—7) m(1—7y)
n=m-+1

From (2.5), we have

m m(1— m+1)(k+1)+mA(k+7)] m—+1

@I < U D™ + g (1 - Al b, B, )
m m(1-7) kA 1A G£7)]bm B| m+1
S (1 + |bm|)T + ([(7n+1)(k+1)—’m)\(k+v)]|Am+1| - [(7rL+1)(k+1)—'m)\(k+'y)]|Am+1|) r .

This completes the first inequality of the theorem. The proof of the others are
similar and so, we omit them.

Theorem 4. Let A, #0,n > m+1, B, # 0,n > m. Then [ €clcoT S, H(F,\,~, k)
if and only if f can be expressed as

f(z) = thm(z) + Z (thn(z) + }/ngn(z)) , (211)
n=m-+1
where h,,(z) = 2™,
mo_ m(l - 7) 2 (n, m (1 —
hn(2) = T TR - m(k -+ )] |4l (n2m+1,m(l-7) <1),

"z mt Lm(l - ) > 1),
(2.12)

T A+ k) —mk+ ][4
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zm m(1—7) 2" n>m,m(l—

M+ z" (n > m,m(l - '7) > 1)7

[n (1+k)+m(k+7)HB K

X, + i Xn+§:yn:1andxn,yn>o.

n=m-1 n=m

Proof. Let m(1 —~) < 1. For f of the form (2.11), we have

oo

_om_ m(l—’y) zn (1_ ) En
O =" D TR mlh A *Z QSR AL

n=m-+1
(2.14)
Since, 0 < X,,, < 1, we have
S 0D k4] A U
W m(1l—7) [n(1+ k) —m(k +7)] A"
JFZ n(l+ k) +m(k + )] |Bnl m(1—7)
m(1 —7) [n(1+ k) +m(k +7)][Ba| "
= Z X, +ZYH_1—X",§1
n=m-+1
Consequently, f € T'S,, H(F, A\, v, k).
Conversely, let f € T'S,, H(F,\,7, k). Then
m(l —7) m(l —7)
an| < , |bn] . 2.15
= T —m A S R+ mG B O
Putting
X, = (1 + k) —m(k +7)] |anAn| Y, = [n(1+ k) +m(k + )] |ann|’ (2.16)

m(1—~) ’ m(1—7)

and

(ZX+ZY>

n=m-+1
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we have
f(Z) = M _ Z |an|zn+ Z |b |7!L
n=m+1 n=m
_ m m(lf ) m 17 n—n
=z Y. G A X+ Z eEsate T
n=m+1

(oo}

= 2= Y (- ha(2) X — Y (2" = ga(2)Ya

n=m-+1

:[<ZX+ZY> +Zh X+Zgn
n=m-+1 n=m-+1

= +Zh X—i—Zgn
n=m+1 n=m

Thus f can be expressed in the form (2.11). The case for m(1 — ) > 1 can be
proved in the same manner and hence we omit it.
Theorem 5. The class TS, H(F, \,7,k) is closed under convex combinations.

Proof. For i =1,2, ..., let the functions f; given by

filz)=2" = > awmlz"+ > |bin| 2" (2.17)
n=m-+1 n=m

are in the class T'S,,, H(F, A, v, k) and suppose that the fixed functions F; are given
by

Fi(z) = 2™ + Z | Ajn| 2" +Z|Bm|z (2.18)

n=m+1

o0
For 0 < p; <1,% p, =1, the convex combinations can be expressed in the form
i=1

Z,uifi =" - Z (Z” am|> 2"+ Z (Zu |bm|> (2.19)

n=m-+1
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From (2.5) and (2.6), we have

S [ (o= mAE = Am] S g ain Al
n=m-+1 i=1
+ Y [t (- mAk+dma] Y g [bin Bin
n=m i=1
oo oo
= Zui Z [n 4 (n—mA)Ek — Amy] |ainAin|
1= n=m-+1

+ Z n+ (n 4+ mA)k + Amy] |bin Bin|
n=m

m(1 — VZuz—m(lf) if m(l—7v)<1

IN

That is, that,
> pifi(z) € TSmH(F, N7, k),

which complets the proof of Theorem 5.

Remark. (i) Putting A = 1 and replacing m by p in Theorems 1, 2, 3, 4 and 5
and Corollaries 1, 2 and 3, respectively , we obtain the results obtained by Ahuja
et al. [10, Theorems 2.1, 2.4, 2.5, 2.6 and 2.8 and Corollaries 2.2, 2.8 and 2.7,
respectively , with t = 1];

(i) Putting k =m =1 and A, = B, in Theorems 1, 2, 8, 4 and 5,
respectively , we obtain the results obtained by Murugusundaramoorthy and Vijaya
[8 , Theorems 1, 2, 3, 4 and 5, respectively J;

(7i7) For different choices of the function F', as stated in (), (i¢) and (¢i7) in
the introduction, we obtain new results corresponding to the corresponding classes.
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