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Abstract

Herein, we investigate new and different types of internal wave solutions in deep water.
These solutions are described by the Benjamin Ono equation. We use the unified method to
obtain these solutions in polynomial function type which are classified into three categories,

namely solitary, soliton and elliptic wave solutions.
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Introduction

In literature, different physical phenomena in the real life and the nature are described by
nonlinear evolution equations (NLEES). Under using symbolic computation systems, the
studying of the exact solutions of the NLEESs has attracted the attention of research community. A
variety of approaches have been investigated and applied to the NLEEs, including the unified
method (UM) [1-5] and its generalized form [6-10], the extended Jacobi elliptic function
expansion method [11, 12], the Bernoulli sub-equation function method [13, 14], the sine-Gordon

expansion method [15, 16] and the Ricatti equation expansion [17, 18].

Our main object in this paper to apply the UM [1-5] to investigate new types of wave

solutions for the Benjamin Ono equation (BOE) [19, 20].
The BOE is given by
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where A and p are arbitrary constants. The BOE has a good application for describing internal

long waves in deep water. In [21-23], different types of solution for Eq. (1) are obtained by
using the extended homoclinic test. Among these solutions doubly periodic, rogue waves,

breather solitary waves and lump wave solutions.

The article is arranged as follows: In section 2, the mathematical formulation of the UM is
introduced. The application of the UM to the BOE is given in section 3. Conclusions are provided
in section 4.

2- Mathematical formulation for the unified method (UM)

Consider the nonlinear evolution equation (NLEE) of the type

(Z)F (ulutﬁuxlﬁ "'JuquuxleJuxleJ ) = O,

where F is a polynomial in its arguments and U = u(t, X1y o s xq).

When X1, X5, ..., Xq and t are missing in Eg. (2), then each physical observable 1 possess

(g + 1) basic traveling wave solutions that satisfy the equation

q
HU,U",U",..) =0, &= a,t +Zczsxs
s=1 (3)

du
where U = U(&),U" = a (X, and Qg are arbitrary constants.

In this section, we find the traveling wave solutions (in polynomial function or rational
function forms) for the NLEE given by (3) via the UM [1-5]. The outline of this method are
presented as follow.

(1) Polynomial solutions.

To obtain the solutions of Eq. (3) in polynomial function forms, we assume that
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U=UE) =) prie),
=0 4)

Tm q
(F’({))T :ijf‘f({), &= a,t +Zczsxs T=1,2,
j=0 s=1

where P;, bj, ay and (g are constants. The UM provides the balance principle technique to

evaluate the relation between the two parameters 1 and m and satisfies the consistency condition

between the arbitrary functions in the solutions given by Eq. (4) (for details see [1-5]).

It worth mentioning that, the UM solves (4) to elementary solutions or elliptic solutions when

T = 1lorT = 2 respectively.

(1) Rational solutions.

To get these solutions, we suppose that

n k
U=U@ =Y pri@©) /Y ar'© nzk

T™m q
(') = ijFj(f), &= a0t+Zans 7= 0)
j=0 s5=1

where Py, ;, bj, ay and &g are constants. Similarly, The UM provides the balance principle

technique to evaluate the relation between the two parameters n,k and m and satisfies the
consistency condition between the arbitrary functions in the solutions given by Eq. (5) (for details
see [1-5]). Furthermore, the values of T give different types for these solutions by the same

criteria described in (I).

Here, we find only the solutions in the polynomial function type.
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3 Exact solutions of BOE using the UM

Applying the transformation u(x,t) = P(£), & = ay;x + a5t on Eq. (1), it

generates the following ordinary differential equation
©ay* L PH(E) + (az® + 2a,* AP(§)I)P"(§) + 2a,2 AP*(§) =0

dapP
where P' = — and & , & are constants.

dg

Integrating Eqgs. (6) twice while taking the constants of integration as zero, it gives
May* uP" () + a;* AP*(§) + a,*P(§) =0

In the next sub-section, we use the UM technique to find the traveling wave solutions of Eq. (7)
in the polynomial function type.

3.1 Polynomial function solutions of the BOE

To find the polynomial function solutions of the BOE, we assume that
n
PE) = D il
i=0

(rf@))T = Z bjrj(f), T=1,2, (8)
j=0

where P; and bj are constants. By considering the homogeneous balance relation

between P"" and P2 in Eq. (7), we get n = 2(m — 1) and m = 2, 3,... Here, we con ne

ourselves to find these solutionswhenm = 2and7 = lor7 = 2.

3.1.1 Solitary wave solution
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To obtain this solution, we consider T = 1 in the auxiliary equation given by (8). From Eq. (8),

we have

P(&) =po + piT () +p.T%(8),
@' () = b,I'*(§) + byT'(€) + by

Substituting Eq. (9) into Eg. (7) and equating the coefficients of F(f ) to zero, we obtain a set

of algebraic equations. By means of a symbolic computations package, we get the following two

sets of algebraic equations

_ (bf +2byby)a;  6bybyaj 6bsa3

o=~ mraza P T TR T RN

_a; (10)
- 2
R? a;

JI;

where R = \/bf — 4b, b, .

Solving the auxiliary equation I''(§) = b,I'*(§) + byT'(¢) + b, and substituting

together with (10) into Eq. (9), we get the solution of Eq. (1), namely

2

uy(x,t) = 23; ,1(1 — 3 tanh? (% R {)) (11)

whereé = @; x + @, t.

3.1.2 Soliton wave solution

Here we find the soliton wave solution. We consider T = 2 in the auxiliary equation given by

(8). From Eq. (8), we have

P(&) =po +piT(€) +pI2(8),
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r'e) = F(f)\/bzrz(f) + b, T(€) + by (12)

Substituting (12) into Eq. (7), we get a set of algebraic equations that yield

a3 _ 12bya;3 24 b3a3
Po= =21 T T a2 P2 T Tz

_4bya?  b? (13)
K= p2 g 70 = 4,

Solving the auxiliary equation I''(&) = b,I'*(¢) 4+ b,I'(§) + b, and substituting

together with (13) into Eq. (12), we get the solution of Eq. (1)

(1+8b, exp(zblg )+ 4 bfexp(ﬁ)) a’
2

Vbs Vb

(1 — 2 by exp(Z25))2a? A
2./b,

e

uZ(xl t) =

(14)

whereé = ayx + a,t,b, > 0.

3.1.3 Elliptic wave solution

Here we find the elliptic wave solution. We consider T = 2 in the auxiliary equation given by

(8). From Eq. (8), we have
P(&) =po + 1T (E) +p.I*(0),

['(§) = T()ybaT*(€) + boT2(§) + by (15)

Substituting from (15) into Eq. (7), we get

2 2 2
a; 2 3b,a; a; (16)
1 — =0 = — ==
2 At P =000 = o 2 S

2a

Po = —

1
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Substituting from Eq. (15) into Eqg. (7), we obtain the solution of Eqg. (1)

(bz + H + 3b4r2(f)) (17)
2Ha}2

ug(x, t) ==

where I'(§) is obtained by solving the auxiliary equation given by Eq. (15),

E=a,x + a,t.

It must be noted that b;, i = 0, 2, 4, in Eq. (17) are arbitrary constants and that for particular

values of bi, we get different Jacobi elliptic functions solutions [24].

According to the classification in [24], namely

4
by = by = —(k? + 6k +1),b = k* +2k* + k% 0<k<1, (18)

the auxiliary function takes the form

kdn (& k)cn (& k)
k (sn?(¢,k)—1)

re) =
and the solution given by Eq.(17) will be in the form

) ~ 1 kdn (£,k) cn (£, %)\
usz(x,t) = 2Hafl(b2+H+3b4( PG — D) ) )

(19)

We mention that 0 << k << 1 is called the modulus of the Jacobi elliptic functions. When
k — 0, sn(¢), cn(&) and dn(<) degenerate to sin(¢), cos(&) and 1 respectively. While
when k — 1, sn(¢), cn(¢) and dn(¢) degenerate to tanh(¢), sech(&) and sech(¢)

respectively.
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4 Conclusion

In this paper, we found different types of solutions of the BOE. Among these solutions:
solitary wave, soliton wave and elliptic wave solutions. The solutions of the BOE are obtained by
using the UM. This method can not only give a unified formulation to uniformly construct
polynomial solutions, but also can provide us a guideline to classify the types of these solutions
according to the given parameters. The method which we have proposed in this work is also a
standard, direct and computerized method, which allow us to do complicated and tedious

algebraic calculation.
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$i5) ~Copaly Askaay 48 gus gal) Aglifal) Ay ghal) il gall Bayan Agbilas Jgla
d3panll slpal) o

g shall Jles
Cap KU A oY) leaall el dgaall - il il alaill dalall gl

3 1al)

Al olaall 3 A0 Gl gl sl (e Bapaa g dilide ) 5l Al 2y mu;f:é

AaV saa sall 48 Hlall Lieadin) ddmeall olyal) 3 530 - aalisy Alalaa aladindy Jglall 028 Caia g oy
Jsla ¢ A jaie da ga i3 Jola a5 i O Lgayiad oy il g 3 g0m 5,8 Alla JSG 3 Jslal) o2
Aangla) 4 50 I3 Jla g6 430 5 g A g0 DD

3aa gall Ay Hlall - Alavia da s A Jala - g3l el Alalaa dgalidall cilalgl)
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