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Abstract 

A compound on miscible fluid jet's magneto hydrodynamics (MHD) stability is 

discussed. For that model, which incorporates fluid inertia, capillary forces, and 

electromagnetic forces, a general eigenvalue relation is derived. Small axisymmetric 

disturbances are the only ones that cause the model to be capillary unstable, and the rest of 

the disturbances are stable. The attractive fields inside and outside to the gas-mantle fly 

have consistently a settling impact. The radii proportion of the concentric planes assumes a 

significant part in the (unsteadiness) security states and are (diminishing) expanding with 

expanding attractive field power as the outside span is a lot bigger than the inside range; 

under certain limitations of the radii proportion or more a specific worth of the attractive 

field the slim precariousness is overlooked and totally smothered and afterward 

dependability sets in. The last option result is checked logically and affirmed 

mathematically for the situation where the barrel shaped surface of the external stream is 

sited at endlessness. 
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1. Introduction 

Chandrasekhar and Fermi [1] have been regarded as pioneers of establishing the 

principle of self-gravitating instability for a complete fluid jet enclosed in a gravitationally 

low-inertia medium. This can be   derived using the normal mode analysis, which is 

originally   attributed to Chandrasekhar [2]. Such a complete analysis is related to the 

influence of surface tension whether acting separately or combined with other factors. In our 

present work, we are going to study the hydrodynamic stability on a fluid cylinder caused by 

various acting forces. Meanwhile, several studies related to this in this field of stability 

theory are quite relevant. 

o Moreover, it is worth mentioning that Chandrasekhar [2], investigated the effects of 

a constant magnetic field on the gravitational instability of a liquid jet for small 

axisymmetric perturbations.  Such a type of studying the self-gravitating instability 

of a liquid jet is inevitable especially by applying the method of presenting 

solenoidal vector in a sense of existing on poloidal and toroidal quantities. Also, 

Radwan [3] has produced several extensions for it as well as the number of other 

models that incorporate additional electromagnetic or electrodynamic forces [11-

13]. Now, in our context, we are going to examine the effect of the magneto 

gravitational stability for flowing, coaxial fluid cylinders that are magnetised, with 

twice disrupted interface. This phenomenon may be intriguing for applying 

geological drilling operations on the earth's crust. Such a study may be utilised 

within internal gas cylinder flowing through cylindrical oil which will be discussed 

in our future work. 

2. The underlying Problem 

The fluid is assumed to be incompressible, non-viscous, and non-dissipative of 

primality coefficient. We consider a fluid cylinder with a uniform cross-section of 

(radius  ). The fluid contains a homogeneous axial magnetic field that surrounds the fluid 

jet and moves little. 

  
( )

 (      )     (1) 

Additionally, the transversely varying electric field is permeating the nearby self-gravitating 

tenuous medium. 

  
( )

 (       )  (2) 

The fluid is thought to be flowing with an oscillating velocity where    the magnetic field’s 

intensity is and is a parameter. 
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   (               )  (3) 

 

The fluid's oscillation frequency at time zero is Ω.U is the amplitude of velocity  . 

The fluid cylinder's axis coincides with the z-axis, and the components of  
( )

,  
( )

 and    

are taken into consideration along the cylinder coordinates (r, , z). The fluid is subject to 

the combined effects of self-gravitating, magneto dynamic, and pressure gradient forces. 

Shown in Fig.1. 
 

 

 

 

 

 

 

 

Fig.1.Self-gravitation magneto dynamic cylindrical Fluid sketch is the basis for the stability 

of the present model. 
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   ( )=0    (10) 

                (11) 

 

Where                                    
  (       )

|  (       )|
             (12) 

 

The variables u, p, T, and Ns stand in for the fluid's velocity vector, kinematic pressure, 

surface tension coefficient, normal to the fluid interface as a unit vector. 

Where 

F(r,     ) =0   (13) 

 

3. State of equilibrium 

 
Equation (4) can be written as 

   
  

  
 (   )               (14) 

Where 

           
 

 
(     )      (15) 

Where π stands for total magneto hydrodynamic pressure. The basic Equations (4) - (15) are 

resolved by applying the boundary condition to Equations (1) through (3) in their 

unperturbed states. At     we get 

          
 

 
(     )           (16) 

But the balance of the pressure            
 

 
(     ) 

The equilibrium's self-gravitating potentials     and   
( )

  satisfy 

    
( )

  -4      (17) 

    
( )

         (18) 

The solutions of equations (17), (18) 
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                                            (19) 

  
( )

       +                           (20) 

 

Where the integration constants  ,   and    must be determined in conjunction with the 

boundary conditions.     
 

   =     
                          (21) 

 

Therefore 

 

                                                          (22) 

  
( )

              
 (     ) *     (

 

  
)  

 

 
+                 (23)

      

By balancing the pressure over the boundary surface, r=   rating, the fluid pressure    in 

the equilibrium state is established. 

 

                
       [  (     

 )      
 ]  

 

 
  

                               (24)         

                   

                  
       [        

 (     ) *     (
 

  
)  

 

 
+]  

 

 
   

              (25) 

 

 

4. Perturbed State 

 

It is possible to construct any dimensionally scale Q(r, φ, z; t) as for small departures from 

the equilibrium state: 

Q(r,     ) =  ( )   ( )  (     )     (26) 

Where 

       ( )       (    (     ))   (27) 

The modified form of the cylindrical interface's formula is provided by 
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r=          (28) 

With 

    ( )       ( (     ))   (29) 

Where 

 ( )           (  ) 
The height of the surface wave measured from the un-perterbuted state. From eq. (26) and 

(29) in the basic equations (4) - (14), the pertinent perturbation equations are given by 

 

  *
  

  
 (    )  +   (    )         

   (30) 

Where 

               (     )    (31) 

 

    
 =0    (32) 

 
   

  
    (    )   (    )      (33) 

    
       (34) 

    
      (35) 

A system similar to (30) - (35) may be produced for the outside of the self-gravitating 

dielectric fluid cylinder.  For such a perturbed quantity   Q(r,     ) may be described as 

Q(r,     ) =  ( )       (    (     )) (36) 

From Laplace equation in cylinder coordinate equation 

  
( )

      ( )       (    (     )), (37) 

  
( )

      ( )       (    (     )). (38) 

Thus, from equations (34), (35) we get 

   
    

(               )
    (39) 

By take the divergence to eq. (31) we get 

    
( )

  ,   (40) 
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In which 

 

  
( )

    
( )

   (41) 

And Equation (38) becomes 

    
( )

           (42) 

Since the fluid is incompressible, in viscid and irrational 

        (43) 

Combining equations (33), (44) 

          (44) 

 

From Equation 28), the variable              
 

Therefore, the non-singular solutions of equations (40), (41) and (44) are obtained in the 

following way: 

  
( )

       (  )   (    (     )) (45) 

  
( )

       ( )    (    (     )) (46) 

  
( )

       ( )    (    (     ))                                                             (47) 

  
( )

       ( )exp (    (     ))  . (48) 

Where  ,   ,   , and    are integration constants and m is the first and second types of 

order,   (  )and  (  ) are Bessel functions.  

Where (x=k  ) 

5. Boundary conditions 

Now, it is worth mentioning that the solution of the fundamental equation (4) and (14) must 

satisfy the boundary conditions. Simple equations in the un-perterbuted state by Equations 

(1-3), (17) and (23-26) while in perturbed state given by (47) and (48) 
 

5.1.1. Magnetic condition 
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Due to considering the equation of motion is affected magnetically, this will add up a vital 

factor in considering the boundary condition, which regulates along the fluid the fluid 

contact. This issue is appearing as the normal magnetic field component to continuous 

at    . 

Which is expressed as follows 

     
( )

      
( )

      
( )

      
( )

                                       (49) 

Such that 

   (     )          ,        (  
   

  
    ) (50) 

Then, 

   
    

  
 ( )

 Where   (x=kr)  (51) 

5.1.2. Kinematic State 

 

The typical element of the fluid's velocity and the velocity of the perturbed boundary fluid 

connection must be similar. (29) At       i.e. 
 

    (               )         (    (     ))  (52) 

Combining eq. (57) 

    
   

  
 

We get 

 

   
(               )

    
 ( )

  (53) 

From eq. (31), (40) we get 

 

 *
    

  
            

    

  
+  

     
 

(               )

    

  
  

  

  
 (54) 

From which we get 
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 ( )

                                               
    

 

  
 ( )

 

   (55) 

5.1.3. Self-gravitating conditions 

 

i. The equilibrium surface must have a continuous self-gravitating potential. 

At      

     
   

  
   

( )
   

   
( )

  
  (56) 

ii. The self-gravitating potential's derivative needs to be continuous over the surface of the 

initial equilibrium   at      

   

  
   

    

    
   

( )

  
   

   
( )

  
  (57) 

Sub. From eqs. (22), (23), (28), (37) and (38) we get 

A=4  (     )    ( )  (58) 

B=4  (     )    ( )  (59) 

Lastly, we must apply a condition requiring compatibility between the jump in total fluid 

stress and the framing of     across the fluid cylindrical interface (29) at       

     
   

  
  (     )   (     )( )      (60) 

The condition can be written 

  *  
( )

   
( )

+    *  
( )

   
( )

+=  
   

 

  
   

   
( )

  
  (     )( )   (     )( )

   (61) 

Then we get 

                                                 
   

 ( )  
 ( )  

[  ( )  
 ( )    

 ( )  ( )]
[   (   ) ((   )  ( )  ( )  

 

 
(    ))  

  
   (    )  ( )  ( )

(  )   
    

 ( )  ( )   ( )  
 ( ) 

]                                 (62) 
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Since the density relation of a self-gravitating oscillating fluid is equal to  (
  

  
), Eq. (62) 

is the dispersion relation of a self-gravitating fluid cylinder; each is acting upon magnetic 

forces. The first and second forms of modified Bessel functions, as well as the longitudinal 

and transverse wave numbers x and m, all have a relationship with the growth of rate . 

  ( ),  ( ) of order m, and their derivatives  
 ( )   

 ( ).the fluid density    the fluid 

cylinder radius  , the uniform streaming U, and the self-gravitating constant g. we put U=0, 

            and m=0 we get 

  =4 G   [
   

 ( )

  
] (  ( )  ( )  

 

 
)          (63) 

The dispersion relation was obtained by Chandrasekhar and Fermi, and it is the same. In an 

actuality different an approach then we have here. They applied the technique of expressing 

solenoidal. Poloidal and toroidal values of vectors. 

 If we assume that                    , the relation (63) produces  

where the ratio of the densities of the self-gravitating dielectric fluids is equal to 

   
  

    and   
  

   is the proportion between the dielectric constants of fluids. 

 

(     ) =4    
   

 ( )

  ( )
 (  ( )  ( )  

 

 
)    

   (64) 

This is consistent with the conclusions made by Chandrasekhar [2] and Hassan [5].If we 

assume U=0, =0, G=0, and m=0, the relation (63) produces. 

 

     
  

 

   
 

  (    )  ( )  ( )

[  
 ( )  ( )   ( )  

 ( )]
            (65) 

This is the fluid cylinder's magneto hydrodynamic dispersion relation 
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6. Numerical  Solutions 

From solving the equants of motion (14) numerically using Matlab package 2-17 

as a tool to be compared with the analytical results, it has been found out that 

           [    [
   

 ( )  
 ( )

(  ( )  
 ( )    

 ( )  ( ))
] [(   ) *(   )  ( )  ( )  

 

 
(    )+   

(    )  ( )  ( )

(  
 ( )  ( )   ( )  

 ( ))
]]  

     (66) 

 

Where = 
         

(     )
 
 

                               
         

               M=*
  

  
+

 

               

     √
  

 
     

    
  

   

 
Fig. 2.U=0,   =0.2 conformable with M=0.1, 0.4, 0.7, 0.9 and 1.2 
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(i) For U=0,  =0.2 conformable with M=0.1,0.4,0.7,0.9 and 1.2 it is found unstable domain  

is 0        , 0           0          0        , 0         

The contiguous stable domain are 1.246    , 1.346    , 1.447   
   1.545    , 1.548    . 

 
 

Fig. 3. For U=0,   =0.4 conformable with M=0.1, 0.4, 0.7, 0.9 and 1 

 

 

(ii) For  =0.4,U=0 conformable with M=0.1, 0.4, 0.7, 0.9 and 1.2 it is found unstable 

domain is 0        , 0        , 0        , 0        , 

0         The contiguous stable domain are 1.450    , 1246   
 , 1.347    , 1.444    , 1.547    . 
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Fig.4.For   =0.5, U=0 conformable with M=0.1, 0.4, 0.7, 0.9 and 1 

(iii) For  =0.5,U=0 conformable with M=0.1, 0.4, 0.7, 0.9 and 1.2 it is found unstable 

domain is 0        ,0        , 0       , 0       , 

0        The contiguous stable domain are 1.145    , 1252   
 , 1345    , 1445    , 1447    . 

 

 
 

 

Fig.5. for U=0, ρ=0.7 conformable with M=0.1, 0.4, 0.7, 0.9 and 1 

 

 

(iv) For  =0.7,U=0, conformable with M=0.1, 0.4, 0.7, 0.9 and 1.2 it is found unstable 

domain is 0        , 0        , 0        , 0        , 

0         The contiguous stable domain are 1.147    , 1.347   
 , 1.346    , 1.445    , 1447     
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Fig.6.For  =0.7, U=0, conformable with M=0.1, 0.4, 0.7, 0.9 and 1.2 

 

Accordingly, the numerical results go in agreement with the analytical ones as shown in the 

previous sections. 

 

7. Conclusions 

In this section we have found out that the unstable domains are reduced as N value 

grows for a given value of U*, which means that that the magnetic field's impact 

stabilises the system. Such reducing the N, the capillary force (M) which demonstrates 

the stability of the magnetic force, the model by increasing the regions of stable 

domains while reducing the regions of unstable ones. 

Meanwhile.  The capillary force has a large stabilising effect on the model. While it has 

been discovered that unstable domains expand for the same N values that U* values 

expand.  Owing to this result, it reveals the puzzle of the streaming effect which appear 

as in terms short and long waves to become unstable. 

Finally, we have figured out that the capillary force is indicated by the growth of the 

unstable domain with increasing M values for a given value of N. 
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