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CONCENTRATION DISTRIBUTION AROUND A GROWING

GAS BUBBLE IN A BIOTISSUES UNDER THE EFFECT OF

SUCTION AND INJECTION

MOHAMMADEIN, S. A

Abstract. The paper presents the concentration distribution around a grow-

ing nitrogen gas bubble in the blood and other bio tissues of divers who sur-
face too quickly under the effect of suction and injection. The modification

of Mohammadein and Mohamed model (2010) for ambient pressure through

the decompression process is considered as variant and constant. The mathe-
matical model is solved analytically to find the growth rate of a gas bubble in

bio tissues after decompression in the ambient pressure. The growth process

is affected by ascent rate , tissue diffusivity , initial concentration difference ,
surface tension and void fraction .The gas bubbles grows slowly in bio tissues

of divers under the effect of suction than injection and Mohammadein and Mo-

hamed model (2010) respectively. Results are compared with Mohammadein
and Mohamed model.

1. Introduction

Decompression sickness (DCS) is a dangerous disease caused by nitrogen bubbles;
which appears in the blood and other tissues for divers who surface too quickly or
people who flight for long distances from the earth (Fig.1). The growth problem is
discussed for unsteady flow in tissue by Mohammadein and Mohamed [6]; in case of
three-region model [8]. Moreover, the concentration distribution around a station-
ary growing gas bubble in tissue is obtained analytically for two main growth stages.

Srinivasan, R. S. et al. [8] have solved the problem in the case of quasi-static
pressure. Mohammadein and Mohamed [6] solved the problem when the effect of
changing in concentration with the time takes place. The growth stages can be
repeated sequentially, while the diver ascents quickly to a lower-pressure sea level
and dives horizontally, and so on until he reaches the sea level pressure (1 atm.)

The same decompression effect may be occurred when aviators or astronauts are
exposed to low-pressure environments, in this case P0 = Patm = 101.325N.m−2(the
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Figure 1. On the left, in the initial phase of the decompression, an
arterial bubble enters a tissue capillary net. It exchanges gas with
the surrounding tissues and starts growing. If it reaches a critical
radius, it might block the blood supply and cause ischemia. On the
right, in the last phase of the decompression, a bubble has grown
to a large volume using dissolved gas available in the surrounding
tissue. Its mechanical action might cause pain. [4]

sea level pressure)

In this work, the problem in more general case, at which the effect of suction
and injection in tissues of divers is considered. The normal and critical gas bubbles
in a bio tissues is illustrated in Fig.1.

2. Analysis

A single gas bubble as in Fig.2 is considered to grow inside a tissue between two
finite boundaries R0 and Rm under the effect of suction and injection in biotissues.
The growth is affected by some parameters such as the pressure difference between
the bubble pressure Pg(R(t), t) and the ambient pressure Pamb(t) , surface tension
of the mixture inside the bio tissue at the bubble boundary, concentration difference
between the two phases and other physical parameters.
The growth of the gas bubble has been studied based on the following assumptions:

• Gases are considered to be ideal.
• The bubble is assumed to have a spherical geometry.
• Pressure inside the bubble is assumed to be uniform.
• Gas density distribution inside the bubble is assumed to be uniform.
• The viscosity of the fluid is omitted.
• The growth performed under the effect of suction and injection processes.

The mathematical model describing the current problem consists of four main
equations (mass, diffusion, F ick′s and concentration equations).

Mass Balance equation: Assuming equilibration of tissue gas with venous
blood gas. The rate of gas uptake by the biotissue is the amount carried by
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Figure 2. The growth stages.

the blood per unit time less than flux into the gas bubble. Thus, the mass
equation has the form

αTVT
dPT
dt

= αTVT Q̇(Pa − PT )− 1

<T
d

dt
(PgVg) (1)

Diffusion equation: The gas diffusion through the tissue without suction or
injection and convection due to bubble movement [6] is described by

∂C(r, t)

∂t
= DT∇2C(r, t) (2)

Fick’s equation: The molar flux of gas through the bubble surface equals
the rate of change of molar concentration of gas in the bubble. Thus

1

<T
d

dt
(
4

3
πR3Pg) = 4πR2DT (

∂C

∂r
)r=R (3)

Pressure Balance equation: Effects of surface tension at the gas-liquid in-
terface of the bubble through the Laplace equation, neglecting tissue vis-
coelastic effects, is

Pg = Patm +
2σ

R
(4)

2.1. Analytical Solution. Assuming spherical symmetry, the above equation (2)
with suction and injection and neglecting convection term is described in the form

∂C(r, t)

∂t
= DT (

∂2C

∂r2
+

2

r

∂C

∂r
) +

bDT

r

∂C

∂r
, (5)

where

b =

 −1 suction effect
0 Mohammadein and Mohamed model [6]
1 injection effect

For solving the diffusion Eq. (5), the method of combined variables is used to
solve the diffusion Eq.(5) [6, 10], then

C(r, t) = C(s)



EJMAA-2014/2(2) CONCENTRATION DISTRIBUTION 15

where

s =
βr

f(t)
(6)

At r = R, then s = β and
R = f(t). (7)

Based on the above assumptions, Eq. (5) becomes, after separating of variables,

f(t)ḟ(t) =
−β2DT

s
(

1
dC
ds

)
d2C

ds2
− (2 + b)

β2DT

s2
= D2

Tµ. (8)

The separation constant in the form D2
Tµ divides Eq. (8) into two differential

equations

f(t)ḟ(t) = D2
Tµ. (9)

and
d

ds
ln(

dC

ds
) = −(

µDT s

β2 +
(2 + b)

s
). (10)

Apply integration to Eq. (9), and by using of the boundary condition at t = t0,
R = R0 , therefore

R(t) =
√

2µD2
T (t− t0) +R2

0. (11)

Now, integrating Eq. (10), we obtain

dC

ds
= k1s

−(2+b) exp(−µDT s
2

2β2 ). (12)

For getting an expression for the constant k1 . The initial condition (3), by using
of Eq. (4), is modified to be

(
∂C

∂r
)r=R =

1

3<TDt
(R ˙Patm +

4σṘ

R
+ 3PambṘ). (13)

and

(
dC

ds
)s=β = (

r

s

∂C

∂r
)r=R,s=β . (14)

Substituting from Eq. (14) into Eq. (12), then

k1 =
β(b+1)(R2 ˙Pamb + 4σṘ+ 3RṘPamb)

3<TDT
exp(−µDT s

2

2β2 ). (15)

From Eq. (12) into Eq. (14), we have

∂C

∂r
=

k1
R−(b+1)

β−(b+1)r−(b+2) exp(−µDT s
2

2β2 ) =
k

R−(b+1)
r−(b+2) exp(−µDT r

2

2R2
).

(16)
Integrating the previous equation through the interval from any instant t to at

which the bubble reaches its maximum radius Rm , at this instant C(Rm, tm) = C∞
, then

C(r, t)− C∞ = −kR(b+1)

∫ Rm

r

1

x(b+2)
exp(−µDTx

2

2R2
)dx. (17)

At the bubble wall r = R(t) the previous equation becomes

C(R(t), t)− C∞ = −kR(b+1)

∫ Rm

R(t)

1

x(b+2)
exp(−µDTx

2

2R2
)dx. (18)



16 MOHAMMADEIN, S. A EJMAA-2014/2(2)

Putting y = x
R , thus the previous equation can be written in the form

C(R(t), t)− C∞ = −k
∫ Rm

R(t)

t

1

y(b+2)
exp(−µDT

2
y2)dy. (19)

To find the relation between the bubble radius R(t) and the time t; we assume
that at t = t0 ⇒ R(t0) = R0 , then Eq. (21) becomes

µ =

√√√√ 8(3− b)4C0

D2
T k(ϕ

−1
3 (3−b)

0 − 1)
(20)

since DT = 1 and 0 < ϕ0 < 1, then k0 =
R2

0
˙Pamb + 4σṘ0 + 3R0Ṙ0Pamb0

3<TDT
(21)

Substituting for µ into Eq. (11) we get the relation of the bubble radius as a
function of time.

R(t) =

√√√√R2
0 + 2DT

√
8(3− b)4C0

k(ϕ
−1
3 (3−b)

0 − 1)
(t− t0) (22)

The initial growth velocity can get the following approximated value

Ṙ0 ≈
ϕ

1
3
0

R0
DT (23)

In the follows, the growth process is divided into two main stages:

(1) The first stage takes place during the decompression of the ambient pressure
Pamb(t) as a function of time.

(2) The second stage takes place at the end of the decompression at which
d
dtPamb(t) = 0 i.e. Pamb(t) = const = P∞.

For the decompression stage, suppose the ambient pressure linearly decreases
with time, i.e. Pamb(t) = P0 − α̇t, where α̇ is the ascent rate [10], then

Rd(t) =

√√√√R2
0 + 2DT

√
8(3− b)4C0

kd(ϕ
−1
3 (3−b)

0 − 1)
(t− t0), fort0 ≤ t ≤ tdm (24)

where

kd =
−αR2

0 + 4σṘ0 + 3R0Ṙ0(P0 − α̇t0)

3<TDT
(25)

4Cd0 = C∞ − C(R0, t0) and ϕ0d = (
R0

Rdm
)3 (26)

At the end of the decompression stage, at which the ambient pressure becomes
constant i.e. Pamb(t) = const = P∞ , then

Rc(t) =

√√√√R2
dm + 2DT

√
8(3− b)4Cd0

kc(ϕ
−1
3 (3−b)

0 − 1)
(t− tdm), fortdm ≤ t ≤ tm (27)

where
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kc =
4σṘc0 + 3RdmṘc0P∞

3<TDT
(28)

2.2. Concentration distribution around a growing gas bubble under the
effect of suction and injection in a biotissues. The growth and concentra-
tion distribution in tissues during a growing nitrogen bubbles are studied in two
intervals of time and bubble radius; which called decompression and after decom-
pression stages respectively. For the decompression stage R0 ≤ r(t) ≤ Rdm and
t0 ≤ t ≤ tdm. After decompression stage Rdm ≤ r(t) ≤ Rm and tdm ≤ t ≤ tm.

The concentration distribution in tissues during a growing nitrogen bubbles is
given by

Putting y = x
R into Eq. (17), it becomes

C(r, t)− C∞ = −kd(t)
∫ Rm

Rd

r
Rd

1

y(b+2)
exp(−µDT

2
y2)dy. (29)

C(r, t)− C∞ = − kdA
2

2(3− b)

(
(
Rm
R

)3−b − (
r

R
)3−b

)
. (30)

Where

kd(t) =
−αR2

d(t) + 4σ ˙Rd(t) + 3Rd(t) ˙Rd(t)(P0 − α̇t)
3<TDT

(31)

and

˙Rd(t) =
D2
Tµd

Rd(t)
(32)

After decompression stage Rdm ≤ r(t) ≤ Rm and tdm ≤ t ≤ tm, the gas distribution
around the growing bubble is given by

C(r, t)− C∞ = −kc(t)
∫ Rm

Rc

r
Rc

1

y(b+2)
exp(−µcDT

2
y2)dy. (33)

where

kc(t) =
4σ ˙Rc(t) + 3Rc(t) ˙Rc(t)P∞

3<TDT
(34)

and

˙Rc(t) =
D2
Tµc

Rc(t)
. (35)

3. Implementation

The following table shows the data which used to simulate the problem for de-
compression stage.

By using Mathematica program (Version 6.0) we get the following graphs that
demonstrate the effect of the physical parameters on the growth of the gas bubble.
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Parameter Value Unit Parameter Value Unit
T 310 (37◦C) K R◦ 1.0× 10−6 m
p0 200,000 [10] N/m2 α 3066.67 [10] N/m2s
4C0 0.7 mol/m3 < 8.314472 [5] Nm/molK
σ 0.03 [8] N/m t◦ 0.0 s
Dr 2.210−12[8] m2/s

4. Discussion of the Results

The growth of a gas bubble in tissue is obtained as a function of time and other
physical parameters. On contrary, the previous problems are presented a numerical
or an implicit solution as given by authors [1, 8, 10].The diffusion equation (5) for
a stationary growing gas bubble in a bio tissue is solved under the effect of suction
and injection processes. The problem of growth and concentration is solved by the
method of combined variables under the effect of decompression in ambient pressure.

The growth of gas bubble in terms of time for three different values of parameter
”b” when ambient pressure is constant or variant is given by Figs.3 and 4. It is
observed that growth is proportional with the values of parameter ”b”. The growth
of gas bubble in terms of time for three different values of gas diffusion coefficient
in tissue when ambient pressure is variant is given by Fig.5. It is observed that
growth is proportional with the values of gas diffusion coefficient in tissue. The
Concentration distribution around a growing nitrogen bubble in the bio-tissues for
diver when b = −1, 0, 1 for suction, zero suction and injection effects respectively
are given by Figs. 6, 7, and 8. It is observed that the Concentration distribution is
proportional inversely with the values of parameter ”b”.

5. Conclusion

The growth problem is discussed for unsteady flow in the bio tissues of divers.
Based on the three-region model [8], the concentration distribution around a sta-
tionary growing gas bubble in the bio tissues is obtained analytically for the two
main growth stages as given by Eqs. (29) and (33) respectively. The discussion of
results and figures concluded the following remarks:

(1) The concentration gradient decreases while the growth process is taking
place until it vanishes at complete growth of the bubble.

(2) The growth of bubble radius is proportional with the ascent rate α̇, the
initial difference in concentration 4C0 , the diffusivity of the tissue DT ,
the initial void fraction ϕ0 and inversely proportional to the surface tension
σ of the tissue.

(3) The growth of gas bubbles proportional with all values of parameter ”b”.
(4) The suction effect (b = −1) performs lower values of growth than that

obtained in case of Mohammadein and Mohamed model (b = 0.0) [6] and
injection effect (b = 1) respectively.

(5) The current problem can be used to avoid the divers from many bad side
effects of the decompression sickness (DCS) under suction effects.
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Figure 3. The growth of gas bubble in terms of time for three
different values of parameter ”b” when ambient pressure is con-
stant.

Figure 4. The growth of gas bubble in terms of time for three
different values of parameter ”b” when ambient pressure is variant.
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Figure 5. The growth of gas bubble in terms of time for three
different values of gas diffusion coefficient in tissue when ambient
pressure is variant.

Figure 6. Concentration distribution around a growing nitrogen
bubble in a bio-tissue for diver when b= -1 (suction effect).
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Figure 7. Concentration distribution around a growing nitrogen
bubble in a bio-tissue for diver when b=0.0 (Mohammadein and
Mohamed model [6]).

Figure 8. Concentration distribution around a growing nitrogen
bubble in a bio-tissue for diver when b=1 (injection effect).
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