BAXTER PERMUTATION AND INVERSION MATRIX

M.ANIS

Abstract

In this paper we give some examples of Baxter permutation as inversiom matrix. Hence we identify the Baxter permutation directly through the inversion matrix .

1. Introduction

The Artin's braid group B_{n} and the symmetric group S_{n}, have respectively the presentations ([1]) :

$$
B_{n}=\left\{\begin{array}{c}
\sigma_{i}, i=1,2, \ldots, n-1: \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { if }|i-j|>1 \tag{1}\\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \text { if } i=1,2, \ldots, n-2
\end{array}\right\}
$$

A positive braid in B_{n} is the braid which can be written as a word in positive powers of generators σ_{i}, and without use of the inverse elements σ_{i}^{-1}. The set of all positive braids form a monoid of positive braids denoted by B_{n}^{+}. The positive permutation braids, PPBs S_{n}^{+}, were first defined by Elrifai [2]), where a braid is a positive permutation braid if it is positive and each pair of its strings cross at most once. PPBs represent a geometric analogue of permutations, and $S_{n}^{+} \subseteq B_{n}^{+} \subseteq B_{n}$.

In ([3]) Elrifai and Anis constructed an isomorphic group of matrices to a finite symmetric group, which is based on the inversion of permutations.

They construct a group of binary matrices which is isomorphic to a symmetric group. Starting with a permutation $\alpha \in S_{n}$ and from its inversion set, and define a unique binary matrix $M(\alpha)$, called inversion matrix of α. Then construct a group $M_{n}(F)=\left\{M(\alpha): \alpha \in S_{n}\right\} \cong S_{n}$, over the field $F=\{0,1\}$ with addition $\bmod 2$.

2. Existence and uniqueness

2.1. Inversion matrix.

A permutation matrix is a square binary matrix that has exactly one entry 1 in each row and each column and $0 s$ elsewhere. In the $i \underline{t h}$ row, the entry $\alpha(i)$ equals 1 , for a permutation α.

[^0]For a permutation

$$
\alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 5 & 2 & 4
\end{array}\right)
$$

the permutation matrix P_{α} equals

$$
P_{\alpha}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

(For $\alpha=(\alpha(1) \alpha(2) \ldots \alpha(n)) \in S_{n}, \alpha(i)$ is the image of i under α, define the following:

- An inversion of α is the pair $(\alpha(i), \alpha(j))$ where $i<j$ and $\alpha(i)>\alpha(j)$.
- The inversion set of α is $\operatorname{Inv}(\alpha)=\{(\alpha(i), \alpha(j)): i<j, \alpha(i)>\alpha(j)\}$.
- Let $l_{i}=|\{\alpha(j): i>j, \alpha(i)<\alpha(j)\}|$.
- The inversion vector or "the Lehmer code" of α is the n-tuple $L(\alpha)=$ $\left(l_{1}, l_{2}, \ldots, l_{n}\right)$.
- The inversion number of α is $I(\alpha)=l_{1}+l_{2}+\ldots+l_{n}$.
- The inversion family of order n is $L_{n}=\left\{L(\alpha): \alpha \in S_{n}\right\}$.
$I(\alpha)$ is the length of α, i.e. the smallest word of generators τ_{i} that needed to represent α, and there is a $1-1$ correspondence between S_{n} and the inversion family L_{n}. [3].
(An inversion matrix of $\alpha \in S_{n}$, is the matrix

$$
M(\alpha)=\left(m_{i j}\right)_{n \times n}=\left\{\begin{array}{cr}
1 & \text { if } i<j \text { and } \alpha(i)>\alpha(j) \tag{2}\\
0 & \text { otherwise }
\end{array}\right\}
$$

2.2. Baxter permutations. (Let S_{n} be the set of all permutations of $\{1, \ldots, n\}$. A permutation $\pi \in S_{n}$ is called a Baxter permutation if it satisfies the following conditions for all $1 \leq a \quad b \quad c \quad d \leq n$,

- If $\pi_{a}+1=\pi_{d}$ and $\pi_{b} \quad \pi_{d}$ then $\pi_{c} \pi_{d}$.
- If $\pi_{d}+1=\pi_{a}$ and $\pi_{c} \quad \pi_{a}$ then $\pi_{b} \pi_{a}$. [4].

For example (25314) is a Baxter permutation, but (5327146) is not. It is clear from the definition that the inverse of a Baxter permutation is also Baxter.
2.2.1. 321-avoiding Baxter permutations with further restriction.

In ([4]) consider the permutations in $B_{n}(321)$ with the entry 1 preceding the entry 2. Let

$$
\begin{equation*}
R_{n}=\left\{\pi \in \mathbb{B}_{n}(321): \pi^{-1}(1) \quad \pi^{-1}(2)\right\} \tag{3}
\end{equation*}
$$

For example,

$$
R_{3}=\{123,132,312\}
$$

and

$$
R_{4}=\{1234,1243,1324,1342,1423,3124,3412,4123\}
$$

For $n>3$, we classify the permutations $\pi=\pi_{1} \ldots \pi_{n} \in R_{n}$ into the following four classes.

- If $\pi_{n}=n$ then we label π by $\left(2_{1}\right)$.
- If $\pi_{n-1}=n$ then we label π by (3_{1}).
- If $\pi=(3,4, \ldots, n, 1,2)$ then we label π by $\left(3_{2}\right)$.
- Otherwise, we label π by $\left(2_{2}\right)$.

2.3. Representation 321-avoiding Baxter permutations as Inversion

 matrix.In ([4]) they classify the permutations $\pi=\pi_{1} \ldots \pi_{n} \in R_{n}$ into the following four classes, under the condition

$$
R_{n}=\left\{\pi \in \mathbb{B}_{n}(321): \pi^{-1}(1) \quad \pi^{-1}(2)\right\}
$$

We begin by studing the inversion matrix of some Baxter permutation.
In $R_{4}=\{1234,1243,1324,1342,1423,3124,3412,4123\}$, we have the inversion matrix as follows:

$$
\begin{aligned}
& M(e)=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad M\left(\sigma_{1} \sigma_{2}\right)=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \\
& M\left(\sigma_{2}\right)=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad M\left(\sigma_{3}\right)=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \\
& M\left(\sigma_{3} \sigma_{2}\right)=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad M\left(\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}\right)=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \\
& M\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad M\left(\sigma_{2} \sigma_{3}\right)=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],
\end{aligned}
$$

We identify the Baxter permutation directly through the inversion matrix through the study of one of these properties:

- If all the elements of column n equal to zero in the inversion matrix represents class $\left(2_{1}\right)$.
- In the inversion matrix if the item corresponding to $n-1$ row and n column equal to 1 , the inversion matrix represents class (3_{1}).
- In the inversion matrix if the item corresponding to i row and $n-1$ column, i row and n column equal to $1, i=1,2, \ldots, n-1$, the item corresponding to n row and $n-1$ row equal to zero, the inversion matrix represents class (3_{2}).
- In the rest of the case the inversion matrices under the condition mentioned represents class $\left(2_{2}\right)$.

For α in R_{n}, and let $M_{\alpha}=\left(m_{i j}\right)$, then define the matrix,
$M_{\alpha}=\left\{\begin{array}{lllll}C L A S S & \left(2_{1}\right) & \text { if } & \left(m_{i n}\right)=0 & i=1,2, \ldots, n \\ C L A S S & \left(3_{1}\right) & \text { if } & \left(m_{n-1 n}\right)=1 & \\ & & & \\ C L A S S & \left(3_{2}\right) & \text { if } & \left(m_{i n}\right)=\left(m_{i n-1}\right)=1, & i=1,2, \ldots, n-2 \\ & & & \left(m_{n-1 j}\right)=\left(m_{n j}\right)=0 & j=1,2, \ldots, n \\ C L A S S & \left(2_{2}\right) & & \text { Otherwise } & \end{array}\right.$

References

[1] J. Birman, "Braids, Links, and mapping class groups". Annals of math. Studies, (Princeton univ. Press and univ. Of Tokyo press, Prenceton, New Jersey, 1974, No 84.
[2] E. A. Elrifai "Positive braids and Lorenz links", Ph.D. Thesis, Liverpool university, 1988.
[3] E. A. Elrifai and M. Anis, "Positive permutation braids and permutation inversions with some applications". Journal of Knot Theory and Its Ramifications. Vol. 21, 1250101, No. 10, 2012.of math.
[4] Sen-Peng Eu, Tung-Shan, FuYeh-Jong and Chien-Tai Ting, "Baxter Permutations, Majbalances, and Positive Braids". The electronic journal of combinatorics.19(3), 2012, No 17.

Department of mathematics, Faculty of science,, Mansoura university, Egypt.,
E-mail address: mona_anis1985@yahoo.com

[^0]: 1991 Mathematics Subject Classification. 20F36,20B30,05A05. 20F36,20B30,05A05.
 Key words and phrases. Braid groups, Inversion of permutations, Inversion matrix, Baxter permutation, 321-avoiding Baxter permutation.

 Submitted Jan. 2, 2014.

