Electronic Journal of Mathematical Analysis and Applications, Vol. 2(2) July 2014, pp. 42-45. ISSN: 2090-792X (online) http://fcag-egypt.com/Journals/EJMAA/

BAXTER PERMUTATION AND INVERSION MATRIX

M.ANIS

ABSTRACT. In this paper we give some examples of Baxter permutation as inversiom matrix . Hence we identify the Baxter permutation directly through the inversion matrix .

1. INTRODUCTION

The Artin's braid group B_n and the symmetric group S_n , have respectively the presentations ([1]):

$$B_{n} = \left\{ \begin{array}{cc} \sigma_{i}, \ i = 1, 2, ..., n - 1: \ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \ \text{if} \ |i - j| > 1, \\ \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \ \text{if} \ i = 1, 2, ..., n - 2 \end{array} \right\}$$
(1)

A positive braid in B_n is the braid which can be written as a word in positive powers of generators σ_i , and without use of the inverse elements σ_i^{-1} . The set of all positive braids form a monoid of positive braids denoted by B_n^+ . The positive permutation braids, PPBs S_n^+ , were first defined by Elrifai [2]), where a braid is a positive permutation braid if it is positive and each pair of its strings cross at most once. PPBs represent a geometric analogue of permutations, and $S_n^+ \subseteq B_n^+ \subseteq B_n$.

In ([3]) Elrifai and Anis constructed an isomorphic group of matrices to a finite symmetric group, which is based on the inversion of permutations.

They construct a group of binary matrices which is isomorphic to a symmetric group. Starting with a permutation $\alpha \in S_n$ and from its inversion set, and define a unique binary matrix $M(\alpha)$, called inversion matrix of α . Then construct a group $M_n(F) = \{M(\alpha) : \alpha \in S_n\} \cong S_n$, over the field $F = \{0, 1\}$ with addition mod 2.

2. EXISTENCE AND UNIQUENESS

2.1. Inversion matrix.

A permutation matrix is a square binary matrix that has exactly one entry 1 in each row and each column and 0s elsewhere. In the $i \underline{th}$ row, the entry $\alpha(i)$ equals 1, for a permutation α .

¹⁹⁹¹ Mathematics Subject Classification. 20F36,20B30,05A05. 20F36,20B30,05A05.

 $Key\ words\ and\ phrases.$ Braid groups, Inversion of permutations, Inversion matrix, Baxter permutation, 321-avoiding Baxter permutation.

Submitted Jan. 2, 2014.

EJMAA-2014/2(1)

For a permutation

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 2 & 4 \end{pmatrix},$$

the permutation matrix P_{α} equals

$$P_{\alpha} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

(For $\alpha = (\alpha(1)\alpha(2)...\alpha(n)) \in S_n$, $\alpha(i)$ is the image of *i* under α , define the

following:

- An inversion of α is the pair $(\alpha(i), \alpha(j))$ where i < j and $\alpha(i) > \alpha(j)$.

- The inversion set of α is $Inv(\alpha) = \{(\alpha(i), \alpha(j)) : i < j, \alpha(i) > \alpha(j)\}.$
- Let $l_i = |\{\alpha(j) : i > j, \alpha(i) < \alpha(j)\}|.$

- The inversion vector or " the Lehmer code" of α is the *n*-tuple $L(\alpha) = (l_1, l_2, ..., l_n)$.

- The inversion number of α is $I(\alpha) = l_1 + l_2 + \dots + l_n$.

- The inversion family of order n is $L_n = \{L(\alpha) : \alpha \in S_n\}$.

 $I(\alpha)$ is the length of α , i.e. the smallest word of generators τ_i that needed to represent α , and there is a 1-1 correspondence between S_n and the inversion family L_n . [3].

(An inversion matrix of $\alpha \in S_n$, is the matrix

$$M(\alpha) = (m_{ij})_{n \times n} = \left\{ \begin{array}{cc} 1 & \text{if } i < j \text{ and } \alpha(i) > \alpha(j) \\ 0 & \text{otherwise} \end{array} \right\}$$
(2)

2.2. Baxter permutations. (Let S_n be the set of all permutations of $\{1, ..., n\}$. A permutation $\pi \in S_n$ is called a Baxter permutation if it satisfies the following conditions for all $1 \le a$ b c $d \le n$,

• If $\pi_a + 1 = \pi_d$ and $\pi_b \ \pi_d$ then $\pi_c \ \pi_d$.

• If $\pi_d + 1 = \pi_a$ and $\pi_c \pi_a$ then $\pi_b \pi_a$. [4].

For example (25314) is a Baxter permutation, but (5327146) is not. It is clear from the definition that the inverse of a Baxter permutation is also Baxter.

2.2.1. 321-avoiding Baxter permutations with further restriction.

In ([4]) consider the permutations in $B_n(321)$ with the entry 1 preceding the entry 2. Let

$$R_n = \left\{ \pi \in \mathbb{B}_n(321) : \pi^{-1}(1) \quad \pi^{-1}(2) \right\}$$
(3)

For example,

$$R_3 = \{123, 132, 312\}$$

and

$$R_4 = \{1234, 1243, 1324, 1342, 1423, 3124, 3412, 4123\}.$$

For n > 3, we classify the permutations $\pi = \pi_1 \dots \pi_n \in R_n$ into the following four classes.

• If $\pi_n = n$ then we label π by (2_1) .

- If $\pi_{n-1} = n$ then we label π by (3_1) .
- If $\pi = (3, 4, ..., n, 1, 2)$ then we label π by (3_2) .
- Otherwise, we label π by (2_2) .

2.3. Representation **321**-avoiding Baxter permutations as Inversion matrix.

In ([4]) they classify the permutations $\pi = \pi_1 \dots \pi_n \in R_n$ into the following four classes, under the condition

$$R_n = \left\{ \pi \in \mathbb{B}_n(321) : \pi^{-1}(1) \quad \pi^{-1}(2) \right\}$$

We begin by studing the inversion matrix of some Baxter permutation. In $R_4 = \{1234, 1243, 1324, 1342, 1423, 3124, 3412, 4123\}$, we have the inversion matrix as follows:

We identify the Baxter permutation directly through the inversion matrix through the study of one of these properties:

- If all the elements of column n equal to zero in the inversion matrix represents class (2_1) .
- In the inversion matrix if the item corresponding to n-1 row and n column equal to 1, the inversion matrix represents class (3_1) .
- In the inversion matrix if the item corresponding to i row and n-1 column, i row and n column equal to 1, i = 1, 2, ..., n-1, the item corresponding to n row and n-1 row equal to zero, the inversion matrix represents class (3_2) .
- In the rest of the case the inversion matrices under the condition mentioned represents class (2_2) .

44

EJMAA-2014/2(1)

 $M_{\alpha} = \begin{cases} CLASS (2_{1}) & \text{if } (m_{in}) = 0 & i = 1, 2, ..., n \\ CLASS (3_{1}) & \text{if } (m_{n-1n}) = 1 \\ CLASS (3_{2}) & \text{if } (m_{in}) = (m_{in-1}) = 1, \quad i = 1, 2, ..., n - 2 \\ (m_{n-1j}) = (m_{nj}) = 0 & j = 1, 2, ..., n \\ CLASS (2_{2}) & Otherwise \end{cases}$

References

- [1] J. Birman, "Braids, Links, and mapping class groups". Annals of math. Studies, (Princeton univ. Press and univ. Of Tokyo press, Prenceton, New Jersey, 1974, No 84.
- [2] E. A. Elrifai "Positive braids and Lorenz links", Ph.D. Thesis, Liverpool university, 1988.
- [3] E. A. Elrifai and M. Anis, "Positive permutation braids and permutation inversions with some applications". Journal of Knot Theory and Its Ramifications. Vol. 21, 1250101, No. 10, 2012.of math.
- [4] Sen-Peng Eu, Tung-Shan, FuYeh-Jong and Chien-Tai Ting, "Baxter Permutations, Majbalances, and Positive Braids". The electronic journal of combinatorics.19(3), 2012, No 17.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE,, MANSOURA UNIVERSITY, EGYPT., E-mail address: mona_anis1985@yahoo.com