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GROWTH OF SOLUTIONS WITH L2(ρ+2)-NORM TO SYSTEM OF

DAMPED WAVE EQUATIONS WITH STRONG SOURCES

KHALED ZENNIR

Abstract. In the present paper we will prove that the solutions of system of
damping wave equations with source terms supplemented with the initial and
boundary conditions grow exponentially in a bounded domain, with positive

initial energy.

1. Introduction

We consider the following system:
(|ut|m−2ut)

′ −∆u+
(
a1 |u|k + a2 |v|l

)
ut = f1(u, v),

(|vt|m−2vt)
′ −∆v +

(
a3 |v|θ + a4 |u|ϱ

)
vt = f2(u, v),

(1.1)

where m ≥ 2, k, l, θ, ϱ ≥ 1 and the two functions f1(u, v) and f2(u, v) given by

f1(u, v) = a5|u+ v|2(ρ+1)(u+ v) + a6|u|ρu|v|(ρ+2)

f2(u, v) = a5|u+ v|2(ρ+1)(u+ v) + a6|u|(ρ+2)|v|ρv, ρ > −1
(1.2)

In (1.1), u = u(t, x), v = v(t, x) where x ∈ Ω is a bounded domain of Rn with
a smooth boundary ∂Ω and t > 0, ai > 0, i = 1, 2, .... Our system is supplemented
with the following initial conditions

(u(0), v(0)) = (u0, v0), (ut(0), vt(0)) = (u1, v1), x ∈ Ω (1.3)

and boundary conditions

u(x) = v(x) = 0, x ∈ ∂Ω. (1.4)

This type of problems are not only important from the theoretical point of view,
but also arise in many physical applications and describe a great deal of models in
applied science, many questions in physics and engineering give rise to problems
that deal with system of nonlinear wave equations.

2000 Mathematics Subject Classification. 35L05, 35L20, 58G16.

Key words and phrases. Exponential growth, Strong nonlinear source, Positive initial energy.
Submitted Jan. 11, 2014.

46



EJMAA-2014/2(2) SYSTEM OF DAMPED WAVE EQUATIONS WITH SOURCES 47

Authors in [17] considered the following system{
utt −∆u+ u− |v|ρ+2 |u|ρ u = f1(x),

vtt −∆v + v − |u|ρ+2 |v|ρ v = f2(x),
(1.5)

in Ω × (0, T ). Using the method of potential well, the authors determined the
existence of weak solutions of system (1.5).

In [2] Agre and Rammaha studied the following system :{
utt −∆u+ |ut|m−1ut = f1(u, v),

vtt −∆v + |vt|r−1vt = f2(u, v),
(1.6)

in Ω × (0, T ) with initial and boundary conditions and the nonlinear functions
f1 and f2 satisfying appropriate conditions. They proved under some restrictions
on the parameters and the initial data many results on the existence of a weak
solution. They also showed that any weak solution with negative initial energy
blows up in finite time using the same techniques as in [9].

In [21], author considered the same problem treated in [2], and he improved the
blow up result for a large class of initial data in which the initial energy can take
positive values.

In the work [16], authors considered the nonlinear viscoelastic system:
utt −∆u+

t∫
0

g(t− s)∆u(x, s)ds+ |ut|m−1
ut = f1(u, v),

vtt −∆v +
t∫
0

h(t− s)∆v(x, s)ds+ |vt|r−1
vt = f2(u, v),

x ∈ Ω, t > 0 (1.7)

where

f1(u, v) = a|u+ v|2(ρ+1)(u+ v) + b|u|ρu|v|(ρ+2)

f2(u, v) = a|u+ v|2(ρ+1)(u+ v) + b|u|(ρ+2)|v|ρv,
(1.8)

and they prove a global nonexistence theorem for certain solutions with positive
initial energy, the main tool of the proof is a method used in [21].

Recently, in [19] M. A. Rammaha and Sawanya Sakuntasathien focus on the
global well-posedness of the system of nonlinear wave equations

utt −∆u+
(
d |u|k + e |v|l

)
ut = f1(u, v),

vtt −∆v +
(
d′ |v|θ + e′ |u|ϱ

)
vt = f2(u, v),

(1.9)

in a bounded domain Ω ⊂ Rn, n = 1, 2, 3, with Dirichlet boundary conditions. The
nonlinearities f1(u, v) and f2(u, v) act as a strong source in the system. Under
some restriction on the parameters in the system, they obtain several results on the
existence and uniqueness of solutions.

We will prove that, under some restrictions on the initial data and (with positive
initial energy) for some conditions on the functions f1 and f2, the solution of
problem (1.1)-(1.4) grows exponentially i.e

lim
t→∞

[
∥u∥2(ρ+2) + ∥v∥2(ρ+2)

]
→ ∞.
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2. Assumptions

The constants ci, i = 0, 1, 2, .. used throughout this paper are positive generic
constants, which may be different in various occurrences.

We introduce the following definition of weak solution to (1.1)-(1.4)

Definition 2.1. A pair of functions (u, v) is said to be a weak solution of (1.1)-
(1.4) on [0, T ] if u, v ∈ Cw([0, T ],H

1
0 (Ω)), ut, vt ∈ Cw([0, T ], L

m(Ω)), (u0, v0) ∈
H1

0 (Ω)×H1
0 (Ω), (u1, v1) ∈ Lm(Ω)× Lm(Ω) and (u, v) satisfies,∫ t

0

∫
Ω

(|us|m−2us)
′ϕdxds+

∫ t

0

∫
Ω

∇u(s)∇ϕdxds

+

∫ t

0

∫
Ω

(
(a1 |u|k + a2 |v|l

)
usϕdxds =

∫ t

0

∫
Ω

f1(u, v)ϕdxds∫ t

0

∫
Ω

(|vs|m−2vs)
′ψdxds+

∫ t

0

∫
Ω

∇v(s)∇ψdxds

+

∫ t

0

∫
Ω

(
(a3 |v|θ + a4 |u|ϱ

)
vsψdxds =

∫ t

0

∫
Ω

f2(u, v)ψdxds (2.1)

for all test functions ϕ, ψ ∈ H1
0 (Ω) ∩ Lm(Ω), for almost all t ∈ [0, T ]. Where

Cw([0, T ], X) denotes the space of weakly continuous functions from [0, T ] into Ba-
nach space X

We introduce the ”modified” energy functional E(t) associated to our system:

2E(t) =
2(m− 1)

m
(∥ut∥mm + ∥vt∥mm) + J(u, v)− 2

∫
Ω

F (u, v)dx. (2.2)

where

J(u, v) = ∥∇u∥22 + ∥∇v∥22 (2.3)

We make use Sobolev imbedding H1
0 (Ω) ⊂ L2(ρ+2)(Ω), for{

−1 < ρ ifn = 1, 2

−1 < ρ ≤ 4−n
n−2 ifn ≥ 3.

(2.4)

There exists a function F (u, v) such that

F (u, v) =
1

2(ρ+ 2)
[uf1(u, v) + vf2(u, v)]

=
1

2(ρ+ 2)

[
a5 |u+ v|2(ρ+2)

+ 2a6 |uv|ρ+2
]
≥ 0, (2.5)

where
∂F

∂u
= f1(u, v),

∂F

∂v
= f2(u, v). (2.6)

The following technical lemmas will play an important role in the sequel.

Lemma 2.2. [21] There exist a positive constant c1 such that

F (u, v) ≤ c1
2(ρ+ 2)

(
|u|2(ρ+2)

+ |v|2(ρ+2)
)
. (2.7)

It is not hard to see this lemma.
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Lemma 2.3. Suppose that (2.4) holds. Then there exists η > 0 such that for any
(u, v) ∈ H1

0 (Ω)×H1
0 (Ω) the inequality

2(ρ+ 2)

∫
Ω

F (u, v)dx ≤ η (J(u, v))
ρ+2

(2.8)

holds.

3. Proof of result

We take ai = 1, i = 1, 2... for convenience, and let us introduce the following:

B = η
1

2(ρ+2) , α1 = B− (ρ+2)
(ρ+1) , E1 =

(
1

2
− 1

2(ρ+ 2)

)
α2
1, (3.1)

where η given in (2.8).
We first state (without proof, it is similar to that in [19]) a local existence theorem

for n = 1, 2, 3. Unfortunately, due to the strong nonlinearities on f1, f2 the well
known techniques of constructing approximations by the Faedo-Galerkin allowed us
to prove the local existence result only for n ≤ 3, where the local existence result
in the case of n > 3 is still an open problem.

Theorem 3.1. Let n = 1, 2, 3. Suppose that (2.4) holds. Then, there exists a
local weak solution in the sense of Definition (2.1) of problem (1.1)-(1.4) defined
on [0, T ] for some T > 0, and (u, v) satisfies the energy inequality

E(t) +

∫ t

s

(∫
Ω

(
|u(τ)|k + |v(τ)|l

)
u2τdx+

∫
Ω

(
|v(τ)|θ + |u(τ)|ϱ

)
v2τdx

)
dτ

≤ E(s) (3.2)

for all T ≥ t ≥ s ≥ 0, where E(t) is given in (2.2).

The following theorem asserts that the weak solution furnished by Theorem 3.1
grows exponentially with positive initial energy under condition (3.3).

Theorem 3.2. Suppose that (2.4) holds. Assume further that

2(ρ+ 2) > max(m, k + 2, l + 2, θ + 2, ϱ+ 2) (3.3)

Then any solution of problem (1.1)-(1.4) with initial data satisfying

∥∇u0∥22 + ∥∇v0∥22 > α2
1, and E(0) < E1 (3.4)

grows exponentially, where the constants α1 and E1 are defined in (3.1).

The following lemma is very useful to prove our main result for positive initial
energy E(0) > 0. It is similar to that in [21].

Lemma 3.3. Let the assumption (2.4) be fulfilled. Let (u, v) be a solution of
(1.1)− (1.4). Assume further that E(0) < E1 and

∥∇u0∥22 + ∥∇v0∥22 > α2
1. (3.5)

Then there exists a constant α2 > α1 such that

J(u, v) > α2
2, (3.6)

and

2(ρ+ 2)

∫
Ω

F (u, v)dx ≥ (Bα2)
2(ρ+2),∀t ≥ 0. (3.7)
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Proof. (of theorem 3.2)
We set

H(t) = E1 − E(t). (3.8)

By using the definition of H(t), we get

H ′(t) = −E′(t)

=

∫
Ω

(
|u(t)|k + |v(t)|l

)
u2tdx

+

∫
Ω

(
|v(t)|θ + |u(t)|ϱ

)
v2t dx.

≥ 0, ∀t ≥ 0.

Consequently, since E′(t) is absolutely continuous,

H(0) = E1 − E(0) > 0.

Then,

0 < H(0) ≤ H(t) = E1 −
m− 1

m
(∥ut∥mm + ∥vt∥mm)− 1

2

(
∥∇u∥22 + ∥∇v∥22

)
+

1

2(ρ+ 2)

[
∥u+ v∥2(ρ+2)

2(ρ+2) + 2∥uv∥ρ+2
ρ+2

]
. (3.9)

From (2.2) and (3.6), we obtain, for all t ≥ 0,

E1 −
1

2

(
∥∇u∥22 + ∥∇v∥22

)
+

1

2(ρ+ 2)

[
∥u+ v∥2(ρ+2)

2(ρ+2) + 2∥uv∥ρ+2
ρ+2

]
< E1 −

1

2
α2
1 +

1

2(ρ+ 2)

[
∥u+ v∥2(ρ+2)

2(ρ+2) + 2∥uv∥ρ+2
ρ+2

]
= − 1

2(ρ+ 2)
α2
1 +

1

2(ρ+ 2)

[
∥u+ v∥2(ρ+2)

2(ρ+2) + 2∥uv∥ρ+2
ρ+2

]
<

c0
2(ρ+ 2)

[
∥u+ v∥2(ρ+2)

2(ρ+2) + 2∥uv∥ρ+2
ρ+2

]
.

Hence,

0 < H(0) ≤ H(t) ≤ c1
2(ρ+ 2)

[
∥u∥2(ρ+2)

2(ρ+2) + ∥v∥2(ρ+2)
2(ρ+2)

]
, ∀t > 0. (3.10)

Then we define the functional

L(t) = H(t) + ε

∫
Ω

u|ut|m−2ut + v|vt|m−2vtdx, (3.11)

for ε small to be chosen later to get small perturbation of E(t) and we will show
that L(t) grows exponentially.

By taking a derivative of (3.11) and by equations (1.1), we obtain
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L′(t) = H ′(t) + ε (∥ut∥mm + ∥vt∥mm)− ε
(
∥∇u∥22 + ∥∇v∥22

)
−ε

∫
Ω

u
(
|u(t)|k + |v(t)|l

)
utdx (3.12)

−ε
∫
Ω

v
(
|v(t)|θ + |u(t)|ϱ

)
vtdx

+ε

∫
Ω

(uf1(u, v) + vf2(u, v)) dx.

The definition of H(t) leads to

L′(t) = H ′(t) + (1 +
2(m− 1)

m
)ε (∥ut∥mm + ∥vt∥mm)

−ε
∫
Ω

u
(
|u(t)|k + |v(t)|l

)
utdx (3.13)

−ε
∫
Ω

v
(
|v(t)|θ + |u(t)|ϱ

)
vtdx

+ε

(
1− 1

(ρ+ 2)

)(
∥u+ v∥2(ρ+2)

2(ρ+2) + 2∥uv∥ρ+2
ρ+2

)
+ 2εH(t)− 2εE1.

Then using (3.7) we obtain, for c3 > 0

L′(t) ≥ H ′(t) + (1 +
2(m− 1)

m
)ε (∥ut∥mm + ∥vt∥mm)

+εc3

(
∥u+ v∥2(ρ+2)

2(ρ+2) + 2∥uv∥ρ+2
ρ+2

)
+ 2εH(t),

−ε
∫
Ω

u
(
|u(t)|k + |v(t)|l

)
utdx (3.14)

−ε
∫
Ω

v
(
|v(t)|θ + |u(t)|ϱ

)
vtdx

In order to estimate the last two terms in (3.14) we have:∫
Ω

(
|u(t)|k + |v(t)|l

)
|uut|dx ≤ λ1

∫
Ω

(
|u(t)|k + |v(t)|l

)
u2dx (3.15)

+
1

4λ1

∫
Ω

(
|u(t)|k + |v(t)|l

)
u2tdx.

and ∫
Ω

(
|v(t)|θ + |u(t)|ϱ

)
|vvt|dx ≤ λ2

∫
Ω

(
|v(t)|θ + |u(t)|ϱ

)
v2dx

+
1

4λ2

∫
Ω

(
|v(t)|θ + |u(t)|ϱ

)
v2t dx. (3.16)
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Inserting the estimates (3.15), (3.16) into (3.14), we obtain

L′(t) ≥ H ′(t) + (1 +
2(m− 1)

m
)ε

(
∥ut∥22 + ∥vt∥22

)
+εc3

(
∥u+ v∥2(ρ+2)

2(ρ+2) + ∥uv∥ρ+2
ρ+2

)
+ 2εH(t)

−ελ1
∫
Ω

(
|u(t)|k + |v(t)|l

)
u2dx

−ε 1

4λ1

∫
Ω

(
|u(t)|k + |v(t)|l

)
u2tdx (3.17)

−ελ2
∫
Ω

(
|v(t)|θ + |u(t)|ϱ

)
v2dx

−ε 1

4λ2

∫
Ω

(
|v(t)|θ + |u(t)|ϱ

)
v2t dx

Consequently, by using Young’s inequality for some δ, δ1 > 0, we have∫
Ω

(
|u(t)|k + |v(t)|l

)
u2dx = ∥u∥k+2

k+2 +

∫
Ω

|v|lu2dx

≤ ∥u∥k+2
k+2 +

l

l + 2
δ(l+2)/l∥v∥l+2

l+2 +
2

l + 2
δ−(l+2)/(2)∥u∥l+2

l+2,

and ∫
Ω

(
|v(t)|θ + |u(t)|ϱ

)
v2dx = ∥v∥θ+2

θ+2 +

∫
Ω

|u|ϱv2dx

≤ ∥v∥θ+2
θ+2 +

ϱ

ϱ+ 2
δ
(ϱ+2)/ϱ
1 ∥u∥ϱ+2

ϱ+2 +
2

ϱ+ 2
δ
−(ϱ+2)/(2)
1 ∥v∥ϱ+2

ϱ+2.

By using lemma 2.2, (3.17) becomes

L′(t) ≥ H ′(t) + (1 +
2(m− 1)

m
)ε

(
∥ut∥22 + ∥vt∥22

)
+εc4

(
∥u∥2(ρ+2)

2(ρ+2) + ∥v∥2(ρ+2)
2(ρ+2)

)
+ 2εH(t)

−ε 1

4λ1

∫
Ω

(
|v(t)|θ + |u(t)|ϱ

)
|vt|2dx− ε

1

4λ2

∫
Ω

(
|u(t)|k + |v(t)|l

)
|ut|2dx

−ελ2
(
∥v∥θ+2

θ+2 +
ϱ

ϱ+ 2
δ
(ϱ+2)/ϱ
1 ∥u∥ϱ+2

ϱ+2 +
2

ϱ+ 2
δ
−(ϱ+2)/(2)
1 ∥v∥ϱ+2

ϱ+2

)
−ελ1

(
∥u∥k+2

k+2 +
l

l + 2
δ(l+2)/l∥v∥l+2

l+2 +
2

l + 2
δ−(l+2)/(2)∥u∥l+2

l+2

)
Since (3.3) holds, there exists M1 > 0,M2,M3, for λ1, λ2 fixed

L′(t) ≥ (1− εM1)H
′(t) + (1 +

2(m− 1)

m
)ε

(
∥ut∥22 + ∥vt∥22

)
+ 2εH(t)

+εM2∥u∥2(ρ+2)
2(ρ+2) + εM3∥v∥2(ρ+2)

2(ρ+2) (3.18)

where M2 =
(
c4 − λ1(

2
l+2δ

−(l+2)/(2) + 1)− λ2
ϱ

ϱ+2δ
(ϱ+2)/ϱ
1

)
,

M3 =
(
c4 − λ1

l
l+2δ

(l+2)/l − λ2(1 +
2

ϱ+2δ
−(ϱ+2)/(2)
1 )

)
.

Choosing δ, δ1 such that M2,M3 > 0, then we pich ε small enough so that
(1 − εM1) ≥ 0 and L(0 > 0. Consequently, there exists Γ > 0 such that (3.18)
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becomes

L′(t) ≥ εΓ
(
H(t) + ∥ut∥22 + ∥vt∥22 + ∥u∥2(ρ+2)

2(ρ+2) + ∥v∥2(ρ+2)
2(ρ+2)

)
. (3.19)

Thus, the functional L(t) is strictly positive and increasing for all t ≥ 0.
By Holder’s and Young’s inegualities, since (3.3), we estimate

∣∣∣∣∫
Ω

u|ut|m−1dx

∣∣∣∣
≤ ∥u∥m∥ut∥(m−1)

m

≤ C|Ω|
1
m− 1

2(ρ+2)

(
∥u∥m2(ρ+2) + ∥ut∥mm

)
,

≤ C|Ω|
1
m− 1

2(ρ+2)

(
∥u∥2(ρ+2)

2(ρ+2) + ∥ut∥mm
)
, (3.20)

and ∣∣∣∣∫
Ω

v|vt|m−1dx

∣∣∣∣
≤ ∥v∥m∥vt∥(m−1)

m

≤ C|Ω|
1
m− 1

2(ρ+2)

(
∥v∥m2(ρ+2) + ∥vt∥mm

)
,

≤ C|Ω|
1
m− 1

2(ρ+2)

(
∥v∥2(ρ+2)

2(ρ+2) + ∥vt∥mm
)
, (3.21)

Also, by noting that

L(t) = H(t) + ε

∫
Ω

uut|ut|m−2 + vvt|vt|m−2dx

≤ c5

(
H(t) +

∣∣∣∣∫
Ω

u|ut|m−1 + v|vt|m−1dx

∣∣∣∣) (3.22)

≤ c6

[
H(t) + ∥u∥2(ρ+2)

2(ρ+2) + ∥v∥2(ρ+2)
2(ρ+2) + ∥ut∥mm + ∥vt∥mm

]
, ∀t ≥ 0,

and combining with (3.22) and (3.19), we arrive at

dL(t)

dt
≥ ξL(t), ξ > 0, ∀t ≥ 0. (3.23)

Integration of (3.23) between 0 and t gives us L(t) ≥ L(0) exp(ξt) and for ε small
enough, we have

L(t) ≤ H(t) ≤ c1
2(ρ+ 2)

[
∥u∥2(ρ+2)

2(ρ+2) + ∥v∥2(ρ+2)
2(ρ+2)

]
,∀t > 0.

then,

L(0) exp(ξt) ≤ c1
2(ρ+ 2)

[
∥u∥2(ρ+2)

2(ρ+2) + ∥v∥2(ρ+2)
2(ρ+2)

]
,∀t > 0.

This completes the proof. �

Question : One can consider the same problem and may ask questions on as-
ymptotic behavior of the solutions (If it existes): as time goes to infinity, what is
the asymptotic behavior of solutions? More generally, what is the long time be-
havior of solutions when initial data vary in any bounded set in a Sobolev space
associated with the problem.
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