ON FINITE SUM OF G-FRAMES AND NEAR EXACT G-FRAMES

RENU CHUGH, SHASHANK GOEL

Abstract

Finite sum of g-frames in Hilbert spaces has been defined and studied. A necessary and sufficient condition for the finite sum of g-frames to be a g-frame for a Hilbert space has been given. Also, a sufficient condition for the stability of finite sum of g-frames and a sufficient condition for the stability of finite sum of g-Bessel sequences to be a g-frame for a Hilbert space have been given. Further, near exact g-frames in Hilbert space have been defined and studied. Finally, a sufficient condition for a g-frame to be a near exact g-frame has been given.

1. Introduction

In 1952, Duffin and Schaeffer [5] introduced frames for Hilbert spaces while addressing some difficult problems arising from the theory of non-harmonic Fourier series. Today, frames have been widely used in signal processing, data compression, sampling theory and many other fields.

Recently, Sun [13] introduced a g-frame and a g-Riesz bases in a Hilbert space and obtained some results for g-frames and g-Riesz bases. He also observed that frame of subspaces (fusion frames) introduced by Casazza and Kutyniok [2] is a particular case of g-frame in a Hilbert space. Also, a system of bounded quasiprojectors introduced by Fornasier [7] is a particular case of g-frame in a Hilbert space.

In the present paper, we study finite sum of g-frames in Hilbert spaces and observe that a finite sum of g-frames may not be a g-frame for a Hilbert space. A necessary and sufficient condition for the finite sum of g-frames to be a g-frame for a Hilbert space has been given. Also, a sufficient condition for the stability of finite sum of g-frames and a sufficient condition for the stability of finite sum of g-Bessel sequences to be a g-frame for a Hilbert space have been given. Further, near exact g-frame in Hilbert space has been defined and studied . Finally, a sufficient condition for a g-frame to be a near exact g-frame for a Hilbert space has been given.

[^0]
2. Preliminaries

Throughout this paper, H is a Hilbert space over $\mathbb{K}(\mathbb{R}$ or $\mathbb{C})$ and $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of Hilbert spaces over $\mathbb{K} . B\left(H, H_{n}\right)$ is the collection of all bounded linear operators from H into H_{n}.
Definition 1 A sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset H$ is called a frame for H if there exist constants A and B with $0<A \leq B<\infty$ such that

$$
A\|x\|^{2} \leq \sum_{n \in \mathbb{N}}\left|\left\langle x, x_{n}\right\rangle\right|^{2} \leq B\|x\|^{2}, \quad \text { for all } x \in H
$$

The positive constants A and B, respectively, are called lower and upper frame bounds of the frame $\left\{x_{n}\right\}_{n \in \mathbb{N}}$.
Definition 2 [13] A sequence $\left\{\Lambda_{n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}$ is called a generalized frame or simply a g-frame for H with respect to $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ if there exist constants A and B with $0<A \leq B<\infty$ such that

$$
\begin{equation*}
A\|x\|^{2} \leq \sum_{n \in \mathbb{N}}\left\|\Lambda_{n}(x)\right\|^{2} \leq B\|x\|^{2}, \quad \text { for all } x \in H \tag{1}
\end{equation*}
$$

The positive constants A and B, respectively, are called the lower and upper frame bounds of the g-frame $\left\{\Lambda_{n}\right\}_{n \in \mathbb{N}}$. The g-frame $\left\{\Lambda_{n}\right\}_{n \in \mathbb{N}}$ is called a tight g-frame if $A=B$ and a Parseval g-frame if $A=B=1$. The sequence $\left\{\Lambda_{n}\right\}_{n \in \mathbb{N}}$ is called a g-Bessel sequence for H with respect to $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ with bound B if $\left\{\Lambda_{n}\right\}_{n \in \mathbb{N}}$ satisfies the right hand side of the inequality (1).
Definition 3 [10] A sequence $\left\{\Lambda_{n}\right\}_{n \in \mathbb{N}}$ is called a g-frame sequence for H, if it is a g-frame for $\operatorname{span}\left\{\Lambda_{n}^{*}\left(H_{n}\right)\right\}_{n \in \mathbb{N}}$.
Notation. For each sequence $\left\{H_{n}\right\}_{n \in \mathbb{N}}$, define $\left(\sum_{n \in \mathbb{N}} \oplus H_{n}\right)_{\ell_{2}}$ by

$$
\left(\sum_{n \in \mathbb{N}} \oplus H_{n}\right)_{\ell_{2}}=\left\{\left\{a_{n}\right\}_{n \in \mathbb{N}}: a_{n} \in H_{n}, n \in \mathbb{N} \text { and } \sum_{n \in \mathbb{N}}\left\|a_{n}\right\|^{2}<\infty\right\}
$$

with the inner product defined by $\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle=\sum_{n \in \mathbb{N}}\left\langle a_{n}, b_{n}\right\rangle$.
It is clear that $\left(\sum_{n \in \mathbb{N}} \oplus H_{n}\right)_{\ell_{2}}$ is a Hilbert space with pointwise operations.
The following results which are referred in this paper are listed in the form of lemmas.
Lemma $1[10]\left\{\Lambda_{n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}$ is a g-Bessel sequences for H with respect to $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ if and only if

$$
T:\left\{x_{n}\right\}_{n \in \mathbb{N}} \rightarrow \sum_{n \in \mathbb{N}} \Lambda_{n}^{*}\left(x_{n}\right)
$$

is well-defined and bounded mapping from $\left(\sum_{n \in \mathbb{N}} \oplus H_{n}\right)_{\ell_{2}}$ to H.
Lemma 2[10] If $\left\{\Lambda_{n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}$ is a g-frame for H, then $\overline{\operatorname{span}}\left\{\Lambda_{n}^{*}\left(H_{n}\right)\right\}_{n \in \mathbb{N}}=H$.

3. Finite Sum of G-Frames

Let $\left\{\Lambda_{i, n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}, i=1,2, \cdots, k$ be g-frames for H. Consider the sequence $\left\{\sum_{i=1}^{k} \Lambda_{i, n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}$. Then $\left\{\sum_{i=1}^{k} \Lambda_{i, n}\right\}_{n \in \mathbb{N}}$ may not be a g-frame for H. In this direction, we give the following examples:

Example 1 Let $\left\{\Lambda_{i, n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}, i=1,2, \cdots, k$ be g-frames for H. If for some $1 \leq p \leq k$,

$$
\Lambda_{i, n}(x)=\Lambda_{p, n}(x), \text { for all } x \in H, i=1,2, \cdots, k \text { and } n \in \mathbb{N}
$$

Then $\left\{\sum_{i=1}^{k} \Lambda_{i, n}(x)\right\}=\left\{k \Lambda_{p, n}(x)\right\}, n \in \mathbb{N}$. Therefore $\left\{\sum_{i=1}^{k} \Lambda_{i, n}(x)\right\}_{n \in \mathbb{N}}$ is a g-frame for H.
Example 2 Let $\left\{\Lambda_{1, n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}$ and $\left\{\Lambda_{2, n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}$ be two g frames for H such that

$$
\Lambda_{1, n}(x)=-\Lambda_{2, n}(x), \text { for all } x \in H \text { and } n \in \mathbb{N} .
$$

Then $\left\{\sum_{i=1}^{2} \Lambda_{i, n}(x)\right\}=\{0\}$, which is not a g-frame for H.
In view of Examples 1 and 2, we give a necessary and sufficient condition for the finite sum of g-frames to be a g-frame.
Theorem 1 Let $\left\{\Lambda_{i, n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}, i=1,2, \cdots, k$ be g-frames for H. Let $\left\{\alpha_{i}\right\}, i=1,2, \cdots, k$ be any scalars. Then $\left\{\sum_{i=1}^{k} \alpha_{i} \Lambda_{i, n}\right\}$ is a g-frame for H if and only if there exists $\beta>0$ and some $p \in\{1,2, \cdots, k\}$ such that

$$
\beta \sum_{n \in \mathbb{N}}\left\|\Lambda_{p, n}(x)\right\|^{2} \leq \sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \alpha_{i} \Lambda_{i, n}(x)\right\|^{2}, \quad x \in H
$$

Proof.For each $1 \leq p \leq k$, let A_{p} and B_{p} be the bounds of the g-frame $\left\{\Lambda_{p, n}\right\}$. Let $\beta>0$ be a constant satisfying

$$
\beta \sum_{n \in \mathbb{N}}\left\|\Lambda_{p, n}(x)\right\|^{2} \leq \sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \alpha_{i} \Lambda_{i, n}(x)\right\|^{2}, \quad x \in H
$$

Then

$$
\beta A_{p}\|x\|^{2} \leq \sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \alpha_{i} \Lambda_{i, n}(x)\right\|^{2}, \quad x \in H
$$

For any $x \in H$, we have

$$
\begin{aligned}
\sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \alpha_{i} \Lambda_{i, n}(x)\right\|^{2} & \leq \sum_{n \in \mathbb{N}} k\left(\sum_{i=1}^{k}\left\|\alpha_{i} \Lambda_{i, n}(x)\right\|^{2}\right) \\
& =k \sum_{i=1}^{k}\left(\left|\alpha_{i}\right|^{2} \sum_{n \in \mathbb{N}}\left\|\Lambda_{i, n}(x)\right\|^{2}\right) \\
& \leq k\left(\max \left|\alpha_{i}\right|^{2}\right)\left(\sum_{i=1}^{k} B_{i}\right)\|x\|^{2} .
\end{aligned}
$$

Hence $\left\{\sum_{i=1}^{k} \alpha_{i} \Lambda_{i, n}\right\}_{n \in \mathbb{N}}$ is a g-frame for H with bounds βA_{p} and $k\left(\max \left|\alpha_{i}\right|^{2}\right)\left(\sum_{i=1}^{k} B_{i}\right)$. Conversely, let $\left\{\sum_{i=1}^{k} \alpha_{i} \Lambda_{i, n}\right\}_{n \in \mathbb{N}}$ be a g-frame for H with bounds A, B and let for any $p \in\{1,2, \cdots, k\},\left\{\Lambda_{p, n}\right\}_{n \in \mathbb{N}}$ be a g-frame for H with bounds A_{p} and B_{p}. Then, for any $x \in H, p \in\{1,2, \cdots, k\}$, we have

$$
A_{p}\|x\|^{2} \leq \sum_{n \in \mathbb{N}}\left\|\Lambda_{p, n}(x)\right\|^{2} \leq B_{p}\|x\|^{2}
$$

This gives

$$
\frac{1}{B_{p}} \sum_{n \in \mathbb{N}}\left\|\Lambda_{p, n}(x)\right\|^{2} \leq\|x\|^{2}, \quad x \in H
$$

Also, we have

$$
A\|x\|^{2} \leq \sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \alpha_{i} \Lambda_{i, n}(x)\right\|^{2} \leq B\|x\|^{2}, \quad x \in H
$$

So,

$$
\|x\|^{2} \leq \frac{1}{A} \sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \alpha_{i} \Lambda_{i, n}(x)\right\|^{2}, \quad x \in H
$$

Hence

$$
\frac{A}{B_{p}} \sum_{n \in \mathbb{N}}\left\|\Lambda_{p, n}(x)\right\|^{2} \leq \sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \alpha_{i} \Lambda_{i, n}(x)\right\|^{2}, \quad x \in H .
$$

Write $\frac{A}{B_{p}}=\beta$. Then

$$
\beta \sum_{n \in \mathbb{N}}\left\|\Lambda_{p, n}(x)\right\|^{2} \leq \sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \alpha_{i} \Lambda_{i, n}(x)\right\|^{2}, \quad x \in H
$$

Next, we give a sufficient condition for the stability of finite sum of g-frames. Theorem 2 For $i=1,2, \cdots, k$, let $\left\{\Lambda_{i, n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}$ be g-frames for H, $\left\{\Theta_{i, n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}$ be any sequence. Let $L:\left(\sum_{n \in \mathbb{N}} \oplus H_{n}\right)_{\ell_{2}} \rightarrow\left(\sum_{n \in \mathbb{N}} \oplus H_{n}\right)_{\ell_{2}}$ be a bounded linear operator such that $L\left(\left\{\sum_{i=1}^{k} \Theta_{i, n}(x)\right\}_{n \in \mathbb{N}}\right)=\left\{\Lambda_{p, n}(x)\right\}_{n \in \mathbb{N}}$, for some $p \in\{1,2, \cdots, k\}$. If there exists a non-negative constant λ such that

$$
\sum_{n \in \mathbb{N}}\left\|\left(\Lambda_{i, n}-\Theta_{i, n}\right)(x)\right\|^{2} \leq \lambda \sum_{n \in \mathbb{N}}\left\|\Lambda_{i, n}(x)\right\|^{2}, \quad x \in H \text { and } i=1,2, \cdots, k .
$$

Then $\left\{\sum_{i=1}^{k} \Theta_{i, n}\right\}_{n \in \mathbb{N}}$ is a g-frame for H.
Proof.For any $x \in H$, we have

$$
\begin{aligned}
\sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \Theta_{i, n}(x)\right\|^{2} & =\sum_{n \in \mathbb{N}}\left\|\left(\sum_{i=1}^{k}\left(\Theta_{i, n}-\Lambda_{i, n}\right)(x)\right)+\sum_{i=1}^{k} \Lambda_{i, n}(x)\right\|^{2} \\
& \leq 2 k \sum_{i=1}^{k}\left(\sum_{n \in \mathbb{N}}\left\|\left(\Theta_{i, n}-\Lambda_{i, n}\right)(x)\right\|^{2}+\sum_{n \in \mathbb{N}}\left\|\Lambda_{i, n}(x)\right\|^{2}\right) \\
& \leq 2 k \sum_{i=1}^{k}\left(\lambda \sum_{n \in \mathbb{N}}\left\|\Lambda_{i, n}(x)\right\|^{2}+\sum_{n \in \mathbb{N}}\left\|\Lambda_{i, n}(x)\right\|^{2}\right) \\
& \leq 2 k(1+\lambda)\left(\sum_{i=1}^{k} B_{i}\right)\|x\|^{2}
\end{aligned}
$$

where, B_{i} is an upper bound for $\left\{\Lambda_{i, n}\right\}_{n \in \mathbb{N}}, \quad i=1,2, \ldots, k$.

Also, for each $x \in H$, we have

$$
\begin{aligned}
\left\|L\left(\left\{\sum_{i=1}^{k} \Theta_{i, n}(x)\right\}\right)\right\|^{2} & =\left\|\left\{\Lambda_{p, n}(x)\right\}\right\|^{2} \\
& =\sum_{i \in \mathbb{N}}\left\|\Lambda_{p, n}(x)\right\|^{2}
\end{aligned}
$$

Therefore, we get

$$
A_{p}\|x\|^{2} \leq \sum_{n \in \mathbb{N}}\left\|\Lambda_{p, n}(x)\right\|^{2} \leq\|L\|^{2} \sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \Theta_{i, n}(x)\right\|^{2}, \quad x \in H,
$$

where A_{p} is a lower bound of the g-frame $\left\{\Lambda_{p, n}\right\}_{n \in \mathbb{N}}$.
This gives

$$
\frac{A_{p}}{\|L\|^{2}} \leq \sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \Theta_{i, n}(x)\right\|^{2}, \quad x \in H
$$

Hence $\left\{\sum_{i=1}^{k} \Theta_{i, n}\right\}_{n \in \mathbb{N}}$ is a g-frame for H.
Now, we give another sufficient condition for the stability of finite sum of g-Bessel sequences to be a g-frame for H.
Theorem 3 For $i=1,2, \cdots, k$, let $\left\{\Lambda_{i, n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}$ be g-Bessel sequences in H with coefficient mapping $T_{i}: H \rightarrow\left(\sum_{n \in \mathbb{N}} \oplus H_{n}\right)_{\ell_{2}}$ given by $T_{i}(x)=\left\{\Lambda_{i, n}(x)\right\}_{n \in \mathbb{N}}$, $x \in H, i=1,2, \cdots, k$ and let $\left\{\Theta_{i, n} \in B\left(H, H_{n}\right)\right\}_{n \in \mathbb{N}}$ be any sequence such that $\sum_{n \in \mathbb{N}}\left\|\left(\Lambda_{i, n}-\Theta_{i, n}(x)\right)\right\|^{2} \leq \lambda \sum_{n \in \mathbb{N}}\left\|\Lambda_{i, n}(x)\right\|^{2}, \quad x \in H, \lambda \geq 0$ and $i=1,2, \cdots, k$.
If for some $p \in\{1,2, \cdots, k\}$, there exists $A_{p}>0$ such

$$
\sum_{n \in \mathbb{N}}\left\|\Lambda_{p, n}(x)\right\|^{2} \geq A_{p}\|x\|^{2}, \quad x \in H
$$

and

$$
A_{p}>\left(2(k-1) \sum_{\substack{i=1 \\ i \neq p}}^{k}\left\|T_{i}\right\|^{2}+4 \lambda k \sum_{i=1}^{k}\left\|T_{i}\right\|^{2}\right)
$$

Then $\left\{\sum_{i=1}^{k} \Theta_{i, n}\right\}_{n \in \mathbb{N}}$ is a g-frame for H.
Proof. For each $x \in H$, we have

$$
\begin{aligned}
& \sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \Theta_{i, n}(x)\right\|^{2}= \sum_{n \in \mathbb{N}}\left\|\left(\sum_{i=1}^{k}\left(\Theta_{i, n}-\Lambda_{i, n}\right)(x)\right)+\sum_{i=1}^{k} \Lambda_{i, n}(x)\right\|^{2} \\
& \geq \frac{1}{2}\left(\frac{1}{2}\left(\sum_{n \in \mathbb{N}}\left\|\Lambda_{p, n}(x)\right\|^{2}-2 \sum_{n \in \mathbb{N}}\left\|\sum_{\substack{i=1 \\
i \neq p}}^{k} \Lambda_{i, n}(x)\right\|^{2}\right)\right. \\
&\left.\quad-2 k \sum_{i=1}^{k} \sum_{n \in \mathbb{N}}\left\|\left(\Theta_{i, n}-\Lambda_{i, n}\right)(x)\right\|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{1}{4}\left(A_{p}\|x\|^{2}-2(k-1) \sum_{\substack{i=1 \\
i \neq p}}^{k} \sum_{n \in \mathbb{N}}\left\|\Lambda_{i, n}(x)\right\|^{2}\right) \\
& \quad-k \lambda \sum_{i=1}^{k} \sum_{n \in \mathbb{N}}\left\|\Lambda_{i, n}(x)\right\|^{2} \\
& =\frac{1}{4}\left(A_{p}\|x\|^{2}-2(k-1) \sum_{\substack{i=1 \\
i \neq p}}^{k}\left\|T_{i}(x)\right\|^{2}\right)-k \lambda \sum_{i=1}^{k}\left\|T_{i}(x)\right\|^{2} \\
& =\frac{1}{4}\left(A_{p}-2(k-1) \sum_{\substack{i=1 \\
i \neq p}}^{k}\left\|T_{i}\right\|^{2}-4 \lambda k \sum_{i=1}^{k}\left\|T_{i}\right\|^{2}\right)\|x\|^{2} .
\end{aligned}
$$

Also, for each $x \in H$, we have

$$
\begin{aligned}
\sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \Theta_{i, n}(x)\right\|^{2} & =\sum_{n \in \mathbb{N}}\left\|\left(\sum_{i=1}^{k}\left(\Theta_{i, n}-\Lambda_{i, n}\right)(x)\right)+\sum_{i=1}^{k} \Lambda_{i, n}(x)\right\|^{2} \\
& \leq 2\left(\sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k}\left(\Theta_{i, n}-\Lambda_{i, n}\right)(x)\right\|^{2}+\sum_{n \in \mathbb{N}}\left\|\sum_{i=1}^{k} \Lambda_{i, n}(x)\right\|^{2}\right) \\
& \leq 2 k \lambda \sum_{i=1}^{k} \sum_{n \in \mathbb{N}}\left\|\Lambda_{i, n}(x)\right\|^{2}+2 k \sum_{i=1}^{k} \sum_{n \in \mathbb{N}}\left\|\Lambda_{i, n}(x)\right\|^{2} \\
& \leq 2 k(1+\lambda)\left(\sum_{i=1}^{k} B_{i}\right)\|x\|^{2}
\end{aligned}
$$

where B_{i} is a g-Bessel bound for $\left\{\Lambda_{i, n}\right\}_{n \in \mathbb{N}}$. Hence $\left\{\sum_{i=1}^{k} \Theta_{i, n}\right\}_{n \in \mathbb{N}}$ is a g-frame for H.

4. Near Exact G-Frames

We begin this section with the following definition of near exact g-frame:
Definition 4 A g-frame $\left\{\Lambda_{i} \in B\left(H, H_{i}\right)\right\}_{i \in I}$ for H is said to be near-exact if it can be made exact by removing finitely many members from it.

To show the existence of near exact g-frame, we give the following example.
Example 3 Let $\left\{e_{n}\right\}$ be an orthonormal basis for H. Define a sequence $\left\{x_{n}\right\} \subset H$ by

$$
\left\{\begin{array}{l}
x_{i}=e_{i}, \quad i=1,2, \cdots, n \\
x_{i}=e_{i-n}, \quad i=n+1, n+2, \cdots
\end{array}\right.
$$

For each $i \in \mathbb{N}$, define $\Lambda_{i}: H \rightarrow \mathbb{C}$ by

$$
\Lambda_{i}(x)=\left\langle x, x_{i}\right\rangle, \quad x \in H
$$

Then $\left\{\Lambda_{i}\right\}_{i \in \mathbb{N}}$ is a g-frame for H with respect to \mathbb{C}. Indeed, we have

$$
\|x\|^{2} \leq \sum_{i \in \mathbb{N}}\left\|\Lambda_{i}(x)\right\|^{2} \leq 2\|x\|^{2}, \quad x \in H
$$

Further, by removing first n members from $\left\{\Lambda_{i}\right\}_{i \in \mathbb{N}}$, we obtain $\left\{\Lambda_{i}\right\}_{i=n+1}^{\infty}$ which is an exact g-frame for H.

Example 4 Let $\left\{e_{n}\right\}$ be an orthonormal basis for H. Define a sequence $\left\{x_{n}\right\} \subset H$ by

$$
x_{2 n-1}=x_{2 n}=e_{n}, \quad n \in \mathbb{N} .
$$

For each $n \in \mathbb{N}$, define $\Lambda_{n}: H \rightarrow \mathbb{C}$ by

$$
\Lambda_{n}(x)=\left\langle x, x_{n}\right\rangle, \quad x \in H
$$

Then $\left\{\Lambda_{n}\right\}_{n \in \mathbb{N}}$ is a g-frame for H with respect to \mathbb{C}. Indeed, we have

$$
\sum_{n \in \mathbb{N}}\left\|\Lambda_{n}(x)\right\|^{2}=2\|x\|^{2}, \quad x \in H .
$$

But, after removing finitely many elements from $\left\{\Lambda_{n}\right\}_{n \in \mathbb{N}}$, it is an not exact g-frame for H.

Next, we give a sufficient condition for a g-frame to be a near exact g-frame.
Theorem 4 Let H be a separable Hilbert space and $\left\{\Lambda_{i} \in B\left(H, H_{i}\right)\right\}_{i \in I}$ be a g-frame for H. Then $\left\{\Lambda_{i}\right\}_{i \in I}$ is near exact if every infinite sequences $\{\sigma(k)\}_{k=1}^{\infty}$ of positive integers such that

$$
\begin{equation*}
\overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right): i \in I\right\}_{i \neq \sigma(1), \sigma(2), \ldots} \neq H \tag{2}
\end{equation*}
$$

where Λ_{i}^{*} is the adjoint operator of Λ_{i}.
Proof.Suppose that $\left\{\Lambda_{i}\right\}_{i \in I}$ is not near exact. Then $\left\{\Lambda_{i}\right\}_{i \in I}$ is not an exact g frame. Therefore, there exist a positive integer $\sigma(1)$ such that $\left\{\Lambda_{i}\right\}_{\substack{i \neq \sigma(1) \\ i \in I}}$ is a g-frame for H with respect to $\left\{H_{i}\right\}_{\substack{i \neq \sigma(1) \\ i \in I}}$. Then, by Lemma 2,

$$
\begin{equation*}
\Lambda_{\sigma(1)}^{*}\left(x_{\sigma(1)}\right) \in \overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{\substack{i \neq \sigma(1) \\ i \in I}}=H, \quad x_{\sigma(1)} \in H_{\sigma(1)} \tag{3}
\end{equation*}
$$

Since H is separable, there exists a positive integer $n_{1} \geq \sigma(1)$ such that
$\operatorname{dist}\left(\Lambda_{\sigma(1)}^{*}\left(x_{\sigma(1)}\right), \overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{\substack{i=1 \\ i \neq \sigma(1)}}^{n_{1}}\right)<\frac{1}{2}, \quad x_{\sigma(1)} \in H_{\sigma(1)}$.
By assumption, $\left\{\Lambda_{i}\right\}_{\substack{i=n_{1}+1 \\ i \neq \sigma(1)}}^{\infty}$ is not exact. Therefore, there exist a positive integer $\sigma(2) \geq n_{1}+1$ such that

$$
\begin{align*}
\Lambda_{\sigma(2)}^{*}\left(x_{\sigma(2)}\right) & \in \overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{\substack{i=n_{1}+1 \\
i \neq(1), \sigma(2)}}^{\infty} \\
& =\overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{\substack{\infty=n_{1}+1 \\
i \neq \sigma(1)}}^{\infty}, x_{\sigma(2)} \in H_{\sigma(2)} \tag{4}
\end{align*}
$$

and a positive integer $n_{2} \geq \sigma(2)$ such that

$$
\operatorname{dist}\left(\Lambda_{\sigma(2)}^{*}\left(x_{\sigma(2)}\right), \overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{\substack{i=1 \\ i \neq \sigma(1), \sigma(2)}}^{n_{2}}\right)<\frac{1}{4}, \quad x_{\sigma(2)} \in H_{\sigma(2)} .
$$

Further, since

$$
\begin{align*}
& \overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{\substack{i=1 \\
i \neq \sigma(1)}}^{n_{1}}+\overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{\substack{i=n_{1}+1 \\
i \neq \sigma(1), \sigma(2)}}^{\infty} \subseteq \overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{i \neq \sigma(1), \sigma(2)} \\
& \overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{\substack{1 i=1 \\
i \neq \sigma(1)}}^{n_{1}}+\overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{\substack{i=n_{1}+1 \\
i \neq \sigma(1)}}^{\infty} \subseteq \overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{i \neq \sigma(1), \sigma(2)} \tag{4}
\end{align*}
$$

$$
\overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{\substack{i \neq \sigma(1) \\ i \leq I}} \subseteq \overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{i \neq \sigma(1), \sigma(2)}
$$

So, we have

$$
\overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{i \neq \sigma(1), \sigma(2)}=H
$$

Continuing in this way, we get a sequence of indices $\{\sigma(k)\}_{k=1}^{\infty}$ and an increasing sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ with $n_{k-1}+1 \leq \sigma(k) \leq n_{k}$ and $n_{o}=0$ such that

$$
\operatorname{dist}\left(\Lambda_{\sigma(k)}^{*}\left(x_{\sigma(k)}\right), \overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right)\right\}_{\substack{i \neq \sigma(1), \sigma(2), \ldots, \sigma(k)}}^{n_{k}}\right)<\frac{1}{2^{k}}, \quad x_{\sigma(k)} \in H_{\sigma(k)}
$$

and

$$
\overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right): i \in I\right\}_{i \neq \sigma(1), \sigma(2), \cdots, \sigma(k)}=H .
$$

Thus, we get a sequence of indices $\{\sigma(k)\}_{k=1}^{\infty}$ such that

$$
\overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(H_{i}\right): i \in I\right\}_{i \neq \sigma(1), \sigma(2), \cdots}=H .
$$

This is a contradiction.
Hence $\left\{\Lambda_{i} \in B\left(H, H_{i}\right)\right\}_{i \in I}$ is a near exact g-frame for H .
Remark 1 The condition in Theorem 4 is not necessary. (Example 3).

References

[1] M.S. Asgari and A. Khosravi: Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl., 308, 541-553 (2005).
[2] P.G. Casazza and G. Kutyniok: Frames of subspaces,in: Wavelets, Frames and Operator theory, Contemp. Math., 345, Providence, RI, 87-113 (2004)
[3] O. Christensen: An Introduction to Frames and Riesz Bases, Birkhauser (2002).
[4] I. Daubechies, A. Grossman and Y. Meyer: Painless non-orthogonal expansions, J. Math. Phys., 27, 1271-1283 (1986).
[5] R.J. Duffin and A.C. Schaeffer: A class of non-harmonic Fourier series, Trans. Amer. Math. Soc., 72, 341-366 (1952).
[6] P.K. Jain, S.K. Kaushik and Nisha Gupta: On near exact Banach frames in Banach spaces, Bull. Austral. Math. Soc., 18, 335-342 (2008)
[7] M. Fornasier: Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl., 289, 180-199 (2004).
[8] S.K. Kaushik, Ghanshyam Singh and Virender: A note on frame sequences in Hilbert space, Int. J. Contemp. Math. Sciences, 3 (16), 791-799 (2008).
[9] S.K. Kaushik, Ghanshyam Singh and Virender: A note on block sequences in Hilbert spaces, Glasnik Matematicki, 43(63), 387-395, (2008).
[10] A. Najati, M.H. Faroughi and A. Rahimi: G-frames and stability of G-frames in Hilbert spaces, Methods of Functional Analysis and Topology, 14(3), 271-286 (2008).
[11] Renu Chugh, S.K. Sharma and Shashank Goel: A note on g-frame sequences, Int. J. Pure and Appl. Mathematics, 70(6), 797-805, (2011).
[12] Renu Chugh and Shashank Goel: On sum of g-frames in Hilbert spaces, Jordanian Journal of Mathematics and Statistics(JJMS), 5 (2), 115-124 (2012).
[13] W. Sun: G-frame and g-Riesz base, J. Math. Anal. Appl., 322(1), 437-452 (2006).
[14] W. Sun: Stability of g-frames, J. Math. Anal. Appl., 326(2), 858-868 (2007).
Renu Chugh
Department of Mathematics, M. D. University, Rohtak, India
E-mail address: chughrenu@yahoo.com
Shashank Goel
Department of Mathematics, Amity Institute Of Applied Sciences, Amity University, Noida, India

E-mail address: goel.shashank25@gmail.com

[^0]: 2000 Mathematics Subject Classification. 42C15, 42A38.
 Key words and phrases. Frame, g-frame, near exact g-frame.
 Submitted June 15, 2013.

