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ON APPROXIMATION OF CONJUGATE FUNCTIONS

H. K. NIGAM

Abstract. In present paper, three quite new theorems on degree of approxi-

mation of a function f̃ belonging to the class Lip(α, r), class Lip(ξ(t), r) and
weighted class W (Lr(f), ξ(t)), 1 ≤ r < ∞ by (C,2)(E,1) product operators

on its conjugate Fourier series have been established. Here, the function f̃ is
conjugate to a 2π-periodic function f and ξ(t) is non-negative and increasing

function of t . The results obtained in this paper further extend several known
results on linear operators.

1. Introduction

A number of researchers ([1], [2], [3], [4], [5], [7], [8], [9], [10], [12], [13], [16], [17],
[18], [19], [21], [22], [23], [24], [25], [26], [27]) have studied error estimates En(f) of
a function belonging to different classes using different linear operators. A study on
degree of approximation of conjugate of a function belonging to class Lip(ξ(t), r)
by product summability method on conjugate Fourier series has been made by Lal
and Singh [14]. Recently, a study on (C, 2)(E, 1) product summability of Fourier
series and conjugate Fourier series has been made by Nigam [20].

Motivated by the work of earlier authors on degree of approximation of a function
using linear operators, we, in present paper, use quite new product operators and
obtain three quite new results. In fact, we establish three theorems on degree of
approximation of a function f̃ , conjugate to a 2π-periodic function f belonging to
the class Lip(α, r), class Lip(ξ(t), r) and weighted class W (Lr(f), ξ(t)), 1 ≤ r <∞
by (C, 2)(E, 1) product operators on its conjugate Fourier series.

2. Preliminaries

Let f be a 2π-periodic and Lebesgue integrable function. The Fourier series
associated with f at a point x is defined by

f(x) ∼ a0
2

+
∞∑

n=1

(an cosnx+ bn sinnx) ≡
∞∑

n=0

An(x) (1)
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with partial sum sn(f ;x).

The conjugate series of the Fourier series (1) is given by
∞∑

n=1

(an sinnx− bn cosnx) ≡
∞∑

n=1

Bn(x) (2)

with partial sum s̃n(f ;x).

Throughout this paper, we shall call (2) as conjugate Fourier series of the funtion f .

The L∞(f)-norm of a function f : Rn → R is defined by

∥f∥∞ = sup{| f(x) |: x ∈ R} (3)

The Lr(f)-norm of a function f : Rn → R is defined by

∥f∥r =

(∫ 2π

0

| f(x) |r dx
)1

r

, 1 ≤ r <∞ (4)

The degree of approximation of a function f : Rn → R by a trigonometric polyno-
mial tn(x) of order n under sup norm ∥ ∥∞ is defined by

∥ f(x)− tn(x) ∥∞= sup{| f(x)− tn(x) |: x ∈ R} [28] (5)

and En(f) of a function f belongs to Lr(f) is given by

En(f) = min
tn

∥f(x)− tn(x)∥r (6)

This method of approximation is called trigonometric Fourier approximation (TFA).

Let f(x) and g(x) be two functions defined on some subset of the real numbers.
One writes

f(x) = O(g(x))

if and only if there exists a positive real number M and a real number x0 such that

|f(x)| ≤M |g(x)| for all x > x0.

One says that a function f belongs to the class Lipα if

f(x+ t)− f(x) = O(| t |α) for 0 < α ≤ 1 (7)

and that f belongs to the class Lip(α, r) if(∫ 2π

0

| f(x+ t)− f(x) |r dx
) 1

r

= O(| t |α), 0 < α ≤ 1 and 1 ≤ r <∞. (8)

([15], definition 5.38)
Given a positive increasing function ξ(t) and some r, 1 ≤ r < ∞, one says that a
function f belongs to the class Lip((ξ(t), r) if(∫ 2π

0

| f(x+ t)− f(x) |r dx)
) 1

r

= O(ξ(t)) (9)
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and that f belongs to the class W (Lr(f), ξ(t)), 1 ≤ r <∞ if(∫ 2π

0

| {f(x+ t)− f(x)} sinβx |r dx)
) 1

r

= O(ξ(t)), β ≥ 0. (10)

If β = 0, our newly defined class W (Lr(f), ξ(t)) reduces to the class Lip(ξ(t), r)
and if ξ(t) = tα then Lip(ξ(t), r) class reduces to the class Lip(α, r).

Let
∑∞

n=0 un be a given infinite series with sn for its nth partial sum.

Let {tC2
n } denote the sequence of (C, 2) means of the sequence {sn}. If the (C, 2)

transform of sn is defined as

tC2
n (f ;x) =

2

(n+ 1)(n+ 2)

n∑
k=0

(n− k + 1) sk(f ;x) → s as n→ ∞ (11)

the series
∑∞

n=0 un is said to be summable to s by (C, 2) method (Cesàro method).

Let {tE1
n } denote the sequence of (E, 1) means of the sequence {sn}. If the (E, 1)

transform of sn is defined as

tE1
n (f ;x) =

1

2n

n∑
k=0

(
n
k

)
sk(f ;x) → s as n→ ∞ (12)

the series
∑∞

n=0 un is said to be summable to s by (E, 1) method (Euler method)([10]).

Thus if

tC2E1
n (f ;x) =

2

(n+ 1)(n+ 2)

n∑
k=0

(n− k + 1)
1

2k

k∑
ν=0

(
k
ν

)
sν(f ;x) → s as n→ ∞,

(13)

where {tC2E1
n } denote the sequence of (C, 2)(E, 1) product means of the sequence

sn, the series
∑∞

n=0 un is said to be summable to s by (C, 2)(E, 1) method.

Now, we mention Hölder’s inequality, Minkowiski’s inequality and second mean
value theorem for integrals, which are used in the proofs of our main results.

Hölder’s Inequality.
Supoose f, g : Rn → R are Lebesgue measurable. Then

∥fg∥1 ≤ ∥f∥r ∥g∥s (14)

Minkowiski’s Inequality.
Supoose f, g : Rn → R are Lebesgue measurable. Then

∥f + g∥r ≤ ∥f∥r + ∥g∥s (15)

Second Mean Value Theorem for Integrals.
Let f(x) and g(x) be two functions, which are in (a, b). If g(x) is a positive mono-
tonic increasing function in (a, b) then there exists a value c, where a ≤ c ≤ b such
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that ∫ b

a

f(x)g(x)dx = g(b)

∫ d

c

f(x)dx (16)

We use the following notations.

ψ (t) = ψ (x, t) = f (x+ t)− f (x− t)

K̃n (t) =
1

π (n+ 1) (n+ 2)

n∑
k=0

[
n− k + 1

2k

k∑
ν=0

(
k
ν

)
cos
(
ν + 1

2

)
t

sin t
2

]

f̃(x) = − 1

2π

∫ 2π

0

ψ(t) cot

(
t

2

)
dt [29]

3. The Main Results

We prove the following theorems:

3.1. Theorem 1. If a function f̃(x), conjugate to a 2π-periodic function f(x)
belonging to the class Lip(α, r), 1 ≤ r < ∞, then its degree of approximation by
(C, 2)(E, 1) means on its conjugate Fourier series (2) is given by

∥ f̃(x)− tC2E1
n (x) ∥r= O

{
1

(n+ 1)α−
1
r

}
for 0 < α ≤ 1, (17)

where r−1 + s−1 = 1, 1 ≤ r <∞ and αr > 1, provided that

2τ
n∑

k=τ

(
n− k + 1

2k

)
= O(n+ 1)(n+ 2) (18)

3.2. Theorem 2. If a function f̃(x), conjugate to a 2π-periodic function f(x)
belonging to the class Lip(ξ(t), r), 1 ≤ r <∞, then its degree of approximation by
(C, 2)(E, 1) means on its conjugate Fourier series (2) is given by

∥ f̃(x)− tC2E1
n (x) ∥r= O

{
(n+ 1)

1
r ξ

(
1

n+ 1

)}
, (19)

provided that ξ(t) satisfies the conditions{∫ 1
n+1

0

(
t | ψ(t) |
ξ(t)

)r

dt

} 1
r

= O

(
1

n+ 1

)
(20)

and {∫ π

1
n+1

(
t−δ | ψ(t) |

ξ(t)

)r

dt

} 1
r

= O
{
(n+ 1)δ

}
(21)

uniformaly in x, in which δ is an arbitrary number with s(1 − δ) − 1 > 0, where
r−1 + s−1 = 1, 1 ≤ r <∞ and (18) holds.
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3.3. Theorem 3. If a function f̃(x), conjugate to a 2π-periodic function f(x)
belonging to the class weighted W (Lr(f), ξ(t)), 1 ≤ r < ∞, then its degree of
approximation by (C, 2)(E, 1) means on its conjugate Fourier series (2) is given by

∥ f̃(x)− tC2E1
n (x) ∥r= O

{
(n+ 1)β+

1
r ξ

(
1

n+ 1

)}
, (22)

provided that ξ(t) satisfies the condition{∫ 1
n+1

0

(
t | ψ(t) |
ξ(t)

)r

sinβr t dt

} 1
r

= O

(
1

n+ 1

)
(23)

and (21) uniformaly in x, in which δ is an arbitrary number with s(1− δ)− 1 > 0,
where r−1 + s−1 = 1, 1 ≤ r <∞ and

ξ(t)

t
is non-increasing in t (24)

and (18) holds.

4. Lemmas

Following lemmas are required for the proof of our theorems,

4.1. Lemma 1. ∣∣∣K̃n (t)
∣∣∣ = O(n+ 1), for 0 ≤ t ≤ 1

n+ 1

Proof. For 0 ≤ t ≤ 1
n+1 , sin

t
2 ≥ t

π and |cosnt| ≤ 1∣∣∣K̃n (t)
∣∣∣ = 1

π (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
n− k + 1

2k

k∑
ν=0

(
k
ν

)
cos
(
ν + 1

2

)
t

sin t
2

]∣∣∣∣∣
≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
n− k + 1

2k

k∑
ν=0

(
k
ν

)]∣∣∣∣∣
=

1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

(n− k + 1)

∣∣∣∣∣
= O

(
1

t

)
�

4.2. Lemma 2. For 0 ≤ a ≤ b ≤ ∞, 0 ≤ t ≤ π and for any n, we have∣∣∣K̃n (t)
∣∣∣ = O

(
1

t

)
Proof. For 0 < 1

n+1 ≤ t ≤ π, sin
(
t
2

)
≥ t

π .∣∣∣K̃n (t)
∣∣∣ = 1

π (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
n− k + 1

2k

k∑
ν=0

(
k
ν

)
cos
(
ν + 1

2

)
t

sin
(
t
2

) ]∣∣∣∣∣
≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
ei(ν+

1
2 )t

}]∣∣∣∣∣
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≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
eiνt

}]∣∣∣∣∣ ∣∣∣ei t
2

∣∣∣
≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=0

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
eiνt

}]∣∣∣∣∣
≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
τ−1∑
k=0

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
eiνt

}]∣∣∣∣∣
+

1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=τ

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
eiνt

}]∣∣∣∣∣ , (25)

where τ denotes the integral part of 1
t .

Now we consider first term of (25),

1

t (n+ 1) (n+ 2)

∣∣∣∣∣
τ−1∑
k=0

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
eiνt

}]∣∣∣∣∣
≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
τ−1∑
k=0

[
n− k + 1

2k

{
k∑

ν=0

(
k
ν

)}]∣∣∣∣∣ ∣∣eiνt∣∣
≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
τ−1∑
k=0

[
n− k + 1

2k

{
k∑

ν=0

(
k
ν

)}]∣∣∣∣∣
=

1

t (n+ 1) (n+ 2)

τ−1∑
k=0

(n− k + 1)

=
1

t (n+ 1) (n+ 2)

τ−1∑
k=0

(n+ 1)− 1

t (n+ 1) (n+ 2)

τ−1∑
k=0

k

=
1

t(n+ 2)

τ−1∑
k=0

1− 1

t (n+ 1) (n+ 2)

τ−1∑
k=0

k

=
τ − 1

t(n+ 2)
− τ(τ − 1)

t (n+ 1) (n+ 2)

≤ k

(
1

t

)
(26)

Now considering second term of (25) and using Abel’s lemma

1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=τ

[
n− k + 1

2k
Re

{
k∑

ν=0

(
k
ν

)
eiνt

}]∣∣∣∣∣
≤ 1

t (n+ 1) (n+ 2)

∣∣∣∣∣
n∑

k=τ

[
n− k + 1

2k
max

0≤ m≤ k

{
k∑

ν=0

(
k
ν

)
eiνt

}]∣∣∣∣∣
≤ k

t (n+ 1) (n+ 2)
2τ

n∑
k=τ

(
n− k + 1

2k

)
(27)
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Combining (25) to (27),∣∣∣K̃n(t)
∣∣∣ ≤ k

(
1

t

)
+ k

{
2τ

t (n+ 1) (n+ 2)

n∑
k=τ

(
n− k + 1

2k

)}
(28)

�

4.3. Lemma 3. ([15], lemma 5.40) If f(x) belongs to the class Lip(α, r) on [0, π]
then ψ(t) belongs to the class Lip(α, r) on [0, π].

5. Proof of the main results

We obtain our main theorems in the following way.

5.1. Proof of theorem 1. It is well known that sn(f ;x) of the series (2) is given
by

s̃n(f ;x)− f̃(x) =
1

2π

∫ π

0

ψ(t)
cos(n+ 1

2 )t

sin t
2

dt

Using (2), the (E, 1) transform of sn(f ;x) is given by

f̃(x)− tE1
n (x) =

1

2π 2n

∫ π

0

ψ(t)

{
n∑

k=0

(
n
k

)
cos(k + 1

2 )t

sin t
2

}
dt

The (C, 2)(E, 1) transform of sn(f ;x) is given by

f̃(x)− tC2E1
n (x) =

1

π (n+ 1)(n+ 2)

n∑
k=0

[
(n− k + 1)

2k

∫ π

0

ψ(t)

sin t
2

{
k∑

υ=0

(
k
υ

)
cos

(
υ +

1

2

)
t

}
dt

]

=

∫ π

0

ψ(t) K̃n(t) dt

=

[∫ 1
n+1

0

+

∫ π

1
n+1

]
ψ(t)K̃n(t) dt

= I1.1 + I1.2 (say) (29)

We consider,

| I1.1 |≤
∫ 1

n+1

0

| ψ(t) || K̃n(t) | dt

Using Hölder’s inequality (14) and lemma 3,

| I1.1 |≤

[∫ 1
n+1

0

{
t | ψ(t) |

tα

}r

dt

] 1
r
[∫ 1

n+1

0

{
| K̃n(t) |
t1−α

}s

dt

] 1
s

=O

(
1

n+ 1

)[∫ 1
n+1

0

{
| K̃n(t) |
t1−α

}s

dt

] 1
s

=O

(
1

n+ 1

)[∫ 1
n+1

0

{
1

t2−α

}s

dt

] 1
s

by lemma 1

=O

(
1

n+ 1

)[∫ 1
n+1

0

tαs−2sdt

] 1
s
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=O

(
1

n+ 1

)[(
1

n+ 1

)αs−2s+1
s

]

=O

[(
1

n+ 1

)α−1+ 1
s

]

=O

[(
1

n+ 1

)α−(1− 1
s )
]

I1.1 =O

[(
1

n+ 1

)α− 1
r

]
(30)

Similarly as above, we have

| I1.2 |≤

[∫ π

1
n+1

{
t−δ | ψ(t) |

tα

}r

dt

] 1
r
[∫ π

1
n+1

{
| K̃n(t) |
t−δ−α

}s

dt

] 1
s

=O

[∫ π

1
n+1

{
t−δtα−

1
r

tα

}r

dt

] 1
r
[∫ π

1
n+1

{
| K̃n(t) |
t−δ−α

}s

dt

] 1
s

=O

[∫ π

1
n+1

{
t−

1
r−δ
}r

dt

] 1
r

using lemma 2

[∫ π

1
n+1

{
1

t−δ−α

{(
1

t

)
+

{(
1

t (n+ 1) (n+ 2)

)
2τ

n∑
k=τ

(
n− k + 1

2k

)}}}s

dt

] 1
s

=O

[∫ π

1
n+1

t−1−δrdt

] 1
r

[∫ π

1
n+1

{
1

t−δ−α

{(
1

t

)
+

{(
1

t (n+ 1) (n+ 2)

)
2τ

n∑
k=τ

(
n− k + 1

2k

)}}}s

dt

] 1
s

=O(n+ 1)δ[∫ π

1
n+1

{
1

t−δ−α

{(
1

t

)
+

{(
1

t (n+ 1) (n+ 2)

)
2τ

n∑
k=τ

(
n− k + 1

2k

)}}}s

dt

] 1
s

= O(n+ 1)δ

[∫ π

1
n+1

{
1

t−δ−α

{
1

t
+

1

t

}}s

dt

] 1
s

=O(n+ 1)δ

[∫ π

1
n+1

tsα+sδ−sdt

] 1
s

=O
[
(n+ 1)δ

{
(n+ 1)−sα−sδ+s−1

} 1
s

]
=O

[
(n+ 1)δ(n+ 1)−α−δ+1− 1

s

]
I1.2 =O

[
1

(n+ 1)α−
1
r

]
(31)
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Combining (29) to (31),∣∣∣f̃(x)− tC2E1
n (x)

∣∣∣ = O

[
1

(n+ 1)α−
1
r

]
Using Lr(f)-norm, we get

∥ f̃(x)− tC2E1
n (x) ∥r =

{∫ 2π

0

| f̃(x)− tC2E1
n (x) |r dx

} 1
r

= O

[{∫ 2π

0

{
1

(n+ 1)α−
1
r

}r

dx

} 1
r

]

= O

{
1

(n+ 1)α−
1
r

}[{∫ 2π

0

dx

} 1
r

]

∥ f̃(x)− tC2E1
n (x) ∥r = O

{
1

(n+ 1)α−
1
r

}
This completes the proof of theorem 1.

5.2. Proof of theorem 2. Following the proof of theorem 1

f̃(x)− tC2E1
n (x) =

[∫ 1
n+1

0

+

∫ π

1
n+1

]
ψ(t)K̃n(t) dt

= I2.1 + I2.2 (say) (32)

Now we consider,

| I2.1 | ≤
∫ 1

n+1

0

| ψ(t) | | K̃n(t) | dt

Using Hölder’s inequality (14) and the fact that ψ(t) ∈ Lip(ξ(t), r),

| I2.1 ≤

[∫ 1
n+1

0

{
t | ψ(t) |
ξ(t)

}r

dt

] 1
r
[∫ 1

n+1

0

{
ξ(t) | K̃n(t) |

t

}s

dt

] 1
s

= O

(
1

n+ 1

)[∫ 1
n+1

0

{
ξ(t) | K̃n(t) |

t

}s

dt

] 1
s

by (20)

= O

(
1

n+ 1

)[∫ 1
n+1

0

{
ξ(t)

t2

}s

dt

] 1
s

by lemma 1

Since ξ(t) is a positive increasing function and using second mean value theorem
for integrals (16)

I2.1 = O

{(
1

n+ 1

)
ξ

(
1

n+ 1

)}[∫ 1
n+1

∈

dt

t2s

] 1
s

for some 0 ≤∈≤ 1

n+ 1

= O

{(
1

n+ 1

)
ξ

(
1

n+ 1

)}[{
t−2s+1

−2s+ 1

} 1
n+1

∈

] 1
s

= O

{(
1

n+ 1

)
ξ

(
1

n+ 1

)}{
(n+ 1)

2− 1
s

}
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= O

{
(n+ 1)

1
r ξ

(
1

n+ 1

)}
(33)

Using Hölder’s inequality (14),

|I2.2| ≤
∫ π

1
n+1

|ψ (t) |
∣∣∣K̃n (t)

∣∣∣ dt
≤

[∫ π

1
n+1

{
t−δ |ψ (t) |

ξ (t)

}r

dt

] 1
r

∫ π

1
n+1

ξ (t)
∣∣∣K̃n (t)

∣∣∣
t−δ


s

dt


1
s

≤ k

[∫ π

1
n+1

{
t−δ |ψ (t) |

ξ (t)

}r

dt

] 1
r

using lemma 2

[∫ π

1
n+1

{(
ξ(t)

t1−δ

)
+

{
2τ

ξ(t)

t1−δ (n+ 1) (n+ 2)

n∑
k=τ

(
n− k + 1

2k

)}}s

dt

] 1
s

= O
{
(n+ 1)

δ
}[∫ π

1
n+1

{
ξ(t)

t1−δ

}s

dt

] 1
s

by (18) and (21)

Now putting t = 1
y ,

I2.2 = O
{
(n+ 1)

δ
}∫ n+1

1
π

 ξ
(

1
y

)
(y)

δ−1

 dy

y2


1
s

Since ξ(t) is a positive increasing function and using second mean value theorem
for integrals (16),

I2.2 = O

{
(n+ 1)

δ
ξ

(
1

n+ 1

)}[∫ n+1

η

dy

ys(δ−1)+2

] 1
s

for some
1

π
≤ η ≤ n+ 1

= O

{
(n+ 1)

δ
ξ

(
1

n+ 1

)}[∫ n+1

1

dy

ys(δ−1)+2

] 1
s

for some
1

π
≤ 1 ≤ n+ 1

= O

{
(n+ 1)

δ
ξ

(
1

n+ 1

)}[{
ys(1−δ)−1

s (1− δ)− 1

}n+1

1

] 1
s

= O

{
(n+ 1)

δ
ξ

(
1

n+ 1

)}[
(n+ 1)

(1−δ)− 1
s

]
= O

{
ξ

(
1

n+ 1

)}[
(n+ 1)

1− 1
s

]
= O

{
(n+ 1)

1
r ξ

(
1

n+ 1

)}
(34)

Combining (32) to (34),∣∣∣f̃(x)− tC2E1
n (x)

∣∣∣ = O

{
(n+ 1)

1
r ξ

(
1

n+ 1

)}
(35)
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Using Lr(f)-norm, we get∥∥∥f̃(x)− tC2E1
n (x)

∥∥∥
r
=

{∫ 2π

0

∣∣∣f̃(x)− tC2E1
n (x)

∣∣∣r dx } 1
r

= O

[{∫ 2π

0

{
(n+ 1)

1
r ξ

(
1

n+ 1

)}r

dx

} 1
r

]

= O

{
(n+ 1)

1
r ξ

(
1

n+ 1

)}[{∫ 2π

0

dx

} 1
r

]
∥∥∥f̃(x)− tC2E1

n (x)
∥∥∥
r
= O

{
(n+ 1)

1
r ξ

(
1

n+ 1

)}
This completes the proof of theorem 2.

5.3. Proof of theorem 3. Following the proof of theorem 1∣∣∣f̃(x)− tC2E1
n (x)

∣∣∣ = [∫ 1
n+1

0

+

∫ π

1
n+1

]
ψ(t)K̃n(t) dt

= I3.1 + I3.2 (say) (36)

we have
| ψ(x+ t)− ψ(x) | ≤ | f(u+ x+ t)− f(u+ x) | + | f(u− x− t)− f(u− x) |

Hence, by Minkowiski’s inequality (15),[∫ 2π

0

| {ψ(x+ t)− ψ(x)} sinβ x |r dx
] 1

r

≤
[∫ 2π

0

| {f(u+ x+ t)− f(u+ x)} sinβ x |r dx
] 1

r

+

[∫ 2π

0

| {f(u− x− t)− f(u− x)} sinβ x |r dx
] 1

r

= O{ξ(t)}.

Then f belongs to W (Lr(f), ξ(t)) ⇒ ψ belongs to W (Lr(f), ξ(t))
Now consider,

| I3.1 | ≤
∫ 1

n+1

0

| ψ(t) | | K̃n(t) | dt

Using Hölder’s inequality (14) and the fact that ψ(t) ∈W (Lr, ξ(t)),

| I3.1 | ≤

[∫ 1
n+1

0

{
t | ψ(t) | sinβ t

ξ(t)

}r

dt

] 1
r
[∫ 1

n+1

0

{
ξ(t) | K̃n(t) |
t sinβ t

}s

dt

] 1
s

= O

(
1

n+ 1

)[∫ 1
n+1

0

{
ξ(t) | K̃n(t) |
t sinβ t

}s

dt

] 1
s

by (23)

Since sin t ≥ 2t
π and using lemma 1,

| I3.1 | = O

(
1

n+ 1

)[∫ 1
n+1

0

{
ξ(t)

t2+β

}s

dt

] 1
s
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Since ξ(t) is a positive increasing function and using second mean value theorem
for integrals (16),

| I3.1 | = O

{(
1

n+ 1

)
ξ

(
1

n+ 1

)}[∫ 1
n+1

∈

dt

t(2+β)s

] 1
s

for some 0 ≤∈≤ 1

n+ 1

= O

{(
1

n+ 1

)
ξ

(
1

n+ 1

)}[{
t−(2+β)s+1

−(2 + β)s+ 1

} 1
n+1

∈

] 1
s

= O

{(
1

n+ 1

)
ξ

(
1

n+ 1

)
(n+ 1)2+β− 1

s

}
I3.1 = O

{
(n+ 1)β+

1
r ξ

(
1

n+ 1

)}
(37)

Now using lemma 2,

I3.2 ≤ k

[∫ π

1
n+1

|ψ(t)|
t

dt

]
+ k

[∫ π

1
n+1

2τ
|ψ(t)|

t (n+ 1) (n+ 2)

n∑
k=τ

(
n− k + 1

2k

)
dt

]
= I3.2.1 + I3.2.2 (say) (38)

Using Hölder’s inequality (14), |sin t| ≤ 1, sin t ≥ 2t
π , (21), (24) and second mean

value theorem for integrals (16),

| I3.2.1 | ≤ k

[∫ π

1
n+1

{
t−δ | ψ(t) | sinβ t

ξ(t)

}r

dt

] 1
r
[∫ π

1
n+1

{
ξ(t)

t−δ+1 sinβ t

}s

dt

] 1
s

≤ k

[∫ π

1
n+1

{
t−δ | ψ(t) |

ξ(t)

}r

dt

] 1
r
[∫ π

1
n+1

{
ξ(t)

tβ+1−δ

}s

dt

] 1
s

= O{(n+ 1)δ}

∫ n+1

1
π

 ξ
(

1
y

)
yδ−1−β


s

dy

y2


1
s

by putting t =
1

y

= O

{
(n+ 1)δ ξ

(
1

n+ 1

)}[∫ n+1

η

dy

ys(δ−1−β)+2

] 1
s

for some
1

π
≤ η ≤ n+ 1

= O

{
(n+ 1)δ ξ

(
1

n+ 1

)}[∫ n+1

1

dy

ys(δ−1−β)+2

] 1
s

for some
1

π
≤ 1 ≤ n+ 1

= O

{
(n+ 1)δ ξ

(
1

n+ 1

)}[
(n+ 1)(1+β−δ)− 1

s

]
I3.2.1 = O

{
(n+ 1)β+

1
r ξ

(
1

n+ 1

)}
(39)
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Similarly using (21) and (24), |sin t| ≤ 1, sin t ≥ 2t
π and second mean value theorem

for integrals (16),

| I3.2.2 | ≤ k

[∫ π

1
n+1

{
t−δ | ψ(t) | sinβ t

ξ(t)

}r

dt

] 1
r

[∫ π

1
n+1

{
2τ

|ξ(t)|
t1−δ sinβ t (n+ 1) (n+ 2)

n∑
k=τ

(
n− k + 1

2k

)}s

dt

] 1
s

≤ k

[∫ π

1
n+1

{
t−δ | ψ(t) |

ξ(t)

}r

dt

] 1
r
[∫ π

1
n+1

{
ξ(t)

tβ+1−δ

}s

dt

] 1
s

by (18)

= O{(n+ 1)δ}

[∫ π

1
n+1

{
ξ(t)

tβ+1−δ

}s

dt

] 1
s

= O{(n+ 1)δ}

∫ n+1

1
π

 ξ
(

1
y

)
yδ−1−β


s

dy

y2


1
s

by putting t =
1

y

= O

{
(n+ 1)δ ξ

(
1

n+ 1

)}[∫ n+1

η

dy

ys(δ−1−β)+2

] 1
s

for some
1

π
≤ η ≤ n+ 1

= O

{
(n+ 1)δ ξ

(
1

n+ 1

)}[∫ n+1

1

dy

ys(δ−1−β)+2

] 1
s

for some
1

π
≤ 1 ≤ n+ 1

= O

{
(n+ 1)δ ξ

(
1

n+ 1

)}[
(n+ 1)(1+β−δ)− 1

s

]
I3.2.1 = O

{
(n+ 1)β+

1
r ξ

(
1

n+ 1

)}
(40)

Combining (36) to (40),

| f̃(x)− tC2E1
n (x) | = O

{
(n+ 1)β+

1
r ξ

(
1

n+ 1

)}
.

Using Lr(f)-norm, we get

∥ f̃(x)− tC2E1
n (x) ∥r =

{∫ 2π

0

| C2
nE

1
n − f(x) |r dx

} 1
r

= O

[{∫ 2π

0

{
(n+ 1)β+

1
r ξ

(
1

n+ 1

)}r

dx

} 1
r

]

= O

{
(n+ 1)β+

1
r ξ

(
1

n+ 1

)}[{∫ 2π

0

dx

} 1
r

]

∥ f̃(x)− tC2E1
n (x) ∥r = O

{
(n+ 1)β+

1
r ξ

(
1

n+ 1

)}
This completes the proof of theorem 3.
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6. Corollaries

Following corollaries can be derived from our main theorems.

6.1. Corollary 1. If ξ(t) = tα, 0 < α ≤ 1, then the weighted class W (Lr(f), ξ(t)),
1 ≤ r <∞ reduces to the class Lip(α, r), and then the degree of approximation of

a function f̃ , conjugate to a 2π-periodic function f belonging to the class Lip(α, r),
r−1 ≤ α ≤ 1 is given by

∥ f̃(x)− tC2E1
n (x) ∥r= O

{
1

(n+ 1)α−
1
r

}
.

Proof. The result follows by setting β = 0 in (22). �

6.2. Corollary 2. If r → ∞ in corollary 1, then the class Lip(α, r) reduces to the

class Lipα and then the degree of approximation of a function f̃ , conjugate to a
2π-periodic function f belonging to the class Lipα, 0 < α < 1 is given by

∥ f̃(x)− tC2E1
n (x) ∥r= O

{
1

(n+ 1)α

}
6.3. Corollary 3. If ξ(t) = tα, 0 < α ≤ 1, then the class Lip(ξ(t), r), 1 ≤ r < ∞
reduces to the class Lip(α, r) and then the degree of approximation of a function f̃ ,
conjugate to a 2π-periodic function f belonging to the class Lip(α, r), r−1 ≤ α ≤ 1
is given by

∥ f̃(x)− tC2E1
n (x) ∥r= O

{
1

(n+ 1)α−
1
r

}
.

Proof. We have∥∥∥f̃(x)− tC2E1
n (x)

∥∥∥
r
= O

{∫ 2π

0

∣∣∣f̃(x)− tC2E1
n (x)

∣∣∣r dx } 1
r

or {
(n+ 1)

1
r ξ

(
1

n+ 1

)}
= O

{∫ 2π

0

∣∣∣f̃(x)− tC2E1
n (x)

∣∣∣r dx } 1
r

or

O(1) = O

{∫ 2π

0

∣∣∣f̃(x)− tC2E1
n (x)

∣∣∣r dx } 1
r

O

 1

O
{
(n+ 1)

1
r ξ
(

1
n+1

)}


Hence, ∣∣∣f̃(x)− tC2E1
n (x)

∣∣∣ = O

{
(n+ 1)

1
r ξ

(
1

n+ 1

)}
for if not the right-hand side will be O(1), therefore∣∣∣f̃(x)− tC2E1

n (x)
∣∣∣ = O

{(
1

n+ 1

)α

(n+ 1)
1
r

}
= O

(
1

(n+ 1)
α− 1

r

)
�
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6.4. Corollary 4. If r → ∞ in corollary 3, then the class Lip(α, r) reduces to the

class Lipα and then the degree of approximation of a function f̃ , conjugate to a
2π-periodic function f belonging to the class Lipα, 0 < α < 1 is given by

∥ f̃(x)− tC2E1
n (x) ∥r= O

{
1

(n+ 1)α

}
7. Conclusion and Research Perspective:

Motivated by the work of earlier authors on degree of approximation of function
using linear operators, we, in the present work, for the first time, studied the degree
of approximation of a function f̃ , conjugate to a periodic function f belonging to
different classes by (C, 2)(E, 1) product operators. The advantage of considering
product operators over linear operators can be understood with the observation that
the infinite series, which is neither summable by the left linear operators nor by
the right linear operators individually, is summable to some number by the product
operators obtained from the same linear operators placed in the same sequential
order. Thus, the method of product operators is more powerful than the methods
of individual linear operators. In studies of error estimates through trigonometric
Fourier approximation (TFA), product operators give better approximation than
individual linear operators. Further results can be obtained using other suitable
product operators that may allow someone to get better error estimates through
trigonometric Fourier approximation (TFA).

8. application

Theory of approximation of functions has wide applications in signal processing
and image processing. Currently, this theory is also being used to study the con-
vergence of wavelet packet expansions of functions.
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