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A CONSTRUCTION OF BEST FRACTAL APPROXIMATION

YONGSUK KANG, CHOLHUI YUN, DONGHYOK KIM

Abstract. In this paper we present a method for constructing the contin-

uous best fractal approximation in the space of bounded functions. We con-
struct the finite-dimensional subspace of the space of bounded functions whose

base consists of the continuous fractal functions, and propose how to find the

best approximation of given continuous function by element of the constructed
space.

1. Introduction

Fractal functions have been widely used in approximation theory, signal pro-
cess, computer graphics, modeling of natural objects. Fractal approximation is
important because there are a lot of objects which must be modeled by fractals in
the nature. Therefore, constructions of fractal interpolation functions and fractal
approximation have been studied in many papers [1]-[16].

Fractal interpolation has been used in a construction of fractal functions by many
scientists. In [1], a construction of one variable fractal functions by IFS with a data
set on R was presented and it was generalized in [3], [4] by using RIFS.

Constructions of bivariate fractal interpolation functions(BFIFs) have been con-
sidered in many papers. A method of constructing BFIFs by fractal interpolation
functions was introduced in [5], [15], and a construction of self-affine fractal in-
terpolation functions with data set on triangular domain where the interpolation
points on the boundary data are coplanar was presented in [10]. In [6], fractal
interpolation functions were constructed in the case where interpolation points on
the boundary data sets on a grid of rectangular are collinear, which were general-
ized in [9], [11], where any data set on the rectangular was used. The construction
of recurrent fractal interpolation function on Rn was presented in [4] and fractal
functions with function scaling factors were constructed in [7], [11], [14]. In [8],
super iterated function system (SIFS), which is a generalization of the IFS, was
used in the construction of more complicated fractal functions.

In [12], [16], construction and best approximation of functions by the fractal
functions have been studied. The fractal functions constructed by the interpolation
are always continuous, see [1]-[12],[14],[15]. But since in best approximation one
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tries to find an approximation which minimizes ‖f−Tf‖ in the L2 space by Collage
theorem, the found approximation is not always continuous [13], [16]. We present
a construction of continuous best approximation in the L2 space.

2. The space of fractal functions

Let us denote a closed interval [a, b] by Ω, Ω × R by X and let N ∈ N, N ≥ 2.
Let mappings ul : Ω → Ω, l = 1, · · · , N − 1 be contraction bijections with⋃N−1
l=0 ul(Ω) = Ω and function vl : X → R, l = 1, · · · , N − 1 be Lipschtz func-

tions with respect to second variable.

Definition 1 [4] A function f(x) defined by

f(x) =

N−1∑
l=0

[
vl
(
u−1
l (x), f(u−1

l (x))
)]
χul(Ω) (1)

is called a fractalfunction, where χul(Ω) is an indicator function of the set ul(Ω).
Then the graph of function f(x) consists of a finite number of copies of itself.

Lemma 1 Let us denote a linear space of the bounded functions on Ω by F .
Then F is a complete normed space with respect to the super norm ‖ · ‖∞.

Now, let a = x0 < x1 < · · · < xN = b be a partition of the interval [a, b]. We
define ul, vl as follows:

ul(x) = alx+ bl, ul(x0) = xl, ul(xN ) = xl+1, (2)

vl(x, y) = sly + λl(x), l = 1, · · · , N − 1,

where sl, λl, l = 1, · · · , N − 1 satisfy the conditions |sl| < 1, λl ∈ F . We denote

s := (s0, s1, · · · , sN−1), λ := (λ0, λ1, · · ·λN−1) ∈
N−1∏
l=0

F (3)

We define an operator B : F → F by

(Bf)(x) =

N−1∑
l=0

[
sl · f

(
u−1
l (x)

)
+ λl

(
u−1
l (x)

)]
χul(Ω), x ∈ [a, b) (4)

(Bf)(b) = lim
x→b−0

(Bf)(x)

Then the operator B is a contraction one on F and has the unique fixed point
f∗(∈ F ), which satisfies (1), and thus it is the fractal function.

In latter of this paper, we fix s in (3). Then the operator B and the fractal
function f satisfying (1) are dependent only on λ. So we denote them by Bλ, fλ
respectively.

Lemma 2 If f (1), f (2) are the fractal functions corresponding to λ(1), λ(2)(∈∏N−1
l=0 F ), then for any α1, α2(∈ R), α1f

(1) + α2f
(2) is the fractal function corre-

sponding to α1λ
(1) + α2λ

(2).

Proof. As s is fixed above, given λ(i) = (λ
(i)
0 , λ

(i)
1 , · · · , λ(i)

n−1), i = 1, 2, the operators
Bλ(i) , i = 1, 2 are defined by (4). Bλ(i) , i = 1, 2 are contraction operators on F and
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have the unique fixed points f∗
λ(i) , i = 1, 2, which are just the fractal functions f (i),

i = 1, 2. Since

f (i)(x) =

N−1∑
l=0

[
sl · f (i)

(
u−1
l (x)

)
+ λ

(i)
l

(
u−1
l (x)

)]
χul(Ω),

we have

αif
(i)(x) =

N−1∑
l=0

[
sl · αif (i)

(
u−1
l (x)

)
+ αiλ

(i)
l

(
u−1
l (x)

)]
χul(Ω),

thus, (
α1f

(1) + α2f
(2)
)

(x) =

N−1∑
l=0

[
sl ·
(
α1f

(1) + α2f
(2)
) (
u−1
l (x)

)
+
(
α1λ

(1)
l + α2λ

(2)
l

) (
u−1
l (x)

) ]
χul(Ω). (5)

We define an operator Bα1λ(1)+α2λ(2) : F → F by

(
Bα1λ(1)+α2λ(2)f

)
(x) =

N−1∑
l=0

[
sl · f +

(
α1λ

(1)
l + α2λ

(2)
l

) (
u−1
l (x)

)]
χul(Ω).

Then the operator is contractive and has a unique fixed point, which is α1f
(1) +

α2f
(2) by (5). That is, α1f

(1) + α2f
(2) is a fractal function corresponding to

α1λ
(1) + α2λ

(2). �

Given λ ∈
∏N−1
l=0 F , the fractal function that is the fixed point of Bλ is corre-

sponded uniquely to λ. Thus, we denote the fixed point by fλ and the set of such
fλ by B. From Lemma 2, B is the linear subspace in F .

Lemma 3 F and B are linearly isomorphic.

Theorem 1 Let fλ(i) , i = 1, . . . , n be fractal function corresponding to λ(i).
fλ(1) , fλ(2) ,· · · ,fλ(n) are linearly independent if and only if λ(1), λ(2), · · · , λ(n) are
linearly independent.

Proof. Let fλ(1) , fλ(2) ,· · · ,fλ(n) be linearly independent. It is enough to prove that
c1λ

(1) + c2λ
(2) + · · · + cnλ

(n) = 0 ⇔ c1 = 0, c2 = 0,· · · ,cn = 0.
Lemma 2 shows that the fractal function corresponding to c1λ

(1) + c2λ
(2) +

· · · + cnλ
(n) is c1fλ(1) + c2fλ(2) + · · · + cnfλ(n) . Since the fractal function f(x)

corresponding to 0 is the function with f(x) ≡ 0, if c1λ
(1) + c2λ

(2) + · · · +
cnλ

(n) = 0, then we have c1fλ(1) + c2fλ(2) + · · · + cnfλ(n) = 0. Therefore, by
hypothesis of the theorem c1fλ(1) + c2fλ(2) + · · · + cnfλ(n) = 0 if and only if
c1 = 0, c2 = 0,· · · , cn = 0. This means that λ(1), λ(2), · · · , λ(n) are linearly
independent.

Let λ(1), λ(2), · · · , λ(n) be linearly independent. We assume that c1fλ(1) + c2fλ(2)

+ · · · + cnfλ(n) = 0. By Lemma 2, we get

(c1fλ(1) + c2fλ(2) + · · ·+ cnfλ(n)) (x) =

N−1∑
l=0

[
sl ·
(
c1fλ(1) + c2fλ(2) + · · ·

+cnfλ(n)

) (
u−1
l (x)

)
+
(
c1λ

(1)
l + c2λ

(2)
l + · · ·+ cnλ

(n)
l

) (
u−1
l (x)

) ]
χul(Ω).
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Thus, we have

N−1∑
l=0

[(
c1λ

(1)
l + c2λ

(2)
l + · · ·+ cnλ

(n)
l

) (
u−1
l (x)

)]
χul(Ω) = 0,

i.e. for x ∈ ul(Ω),(
c1λ

(1)
l + c2λ

(2)
l + · · ·+ cnλ

(n)
l )(u−1

l (x)
)

= 0.

Therefore, we get
(
c1λ

(1)
l + c2λ

(2)
l + · · ·+ cnλ

(n)
l

)
(t) = 0, t ∈ Ω, l = 0, · · · , N − 1,

which means that c1λ
(1) + c2λ

(2) + · · · + cnλ
(n) = 0. Since λ(1), λ(2), · · · , λ(n)

are linearly independent, c1λ
(1) + c2λ

(2) + · · · + cnλ
(n) = 0 if and only if c1 = 0,

c2 = 0,· · · ,cn = 0 . Thus, fλ(1) , fλ(2) , · · · , fλ(n) are linearly independent. �

We can see that the space of fractal functions B has infinite dimension. If fλ ∈ B
is a continuous function, then we get

λl(b)− λl+1(a) = sl+1 ·
λ0(a)

1− s0
− sl ·

λN−1(b)

1− sN−1
, l = 0, · · · , N − 1. (6)

In fact, at a point x = xl+1, l = 0, · · · , N − 1,

f(xl+1−) = sl · f
(
u−1
l (xl+1)

)
+ λl

(
u−1
l (xl+1)

)
= slf(b) + λl(b),

f(xl+1+) = sl+1 · f
(
u−1
l+1(xl+1)

)
+ λl+1

(
u−1
l+1(xl+1)

)
= sl+1f(a) + λl+1(a),

where f(xl+1+), f(xl+1−) denote the right limit and the left limit, respectively. By

(1), f(a) = s0·f
(
u−1

0 (a)
)
+λ0

(
u−1

0 (a)
)

= s0f(a)+λ0(a). Hence f(a) = λ0(a)
1−s0 . Simi-

larly, we have f(b) = λ0(a)
1−s0 , which gives (6). In the case where λl(x), l = 0, · · · , N−1

are polynomials of degree d, we denote the fractal function space corresponding by
Bd. Let us denote a set of all the polynomials of degree less than or equal to d by

Pd. Similarly to Lemma 2 we can prove that
∏N−1
l=0 Pd and Bd are linearly isomor-

phic.

Theorem 2 Let φ0(x), φ1(x), · · · , φN (x) ∈ B1 be fractal interpolation functions
satisfying φi(xj) = δij , j = 0, 1, · · · , N . Then φ0, φ1, · · · , φN are linearly indepen-
dent.

Proof. The construction of fractal interpolation functions gives the result. �

Let us denote B′1 := span {φ0, φ1, · · · , φN}. Then B′1 is a subspace of B1 of
dimension N + 1 and the elements of B′1 are continuous fractal functions.

3. Construction of best fractal approximation

Given the continuous function f , we consider how to find best approximation ele-
ment of f by element ofB′1 in the sense of L2, which is one that find (α∗0, α

∗
1, · · · , α∗N )

satisfying the following condition:

min
(α0,··· ,αN )

∥∥∥∥∥f −
N∑
k=0

αkφk

∥∥∥∥∥
L2

=

∥∥∥∥∥f −
N∑
k=0

α∗kφk

∥∥∥∥∥
L2

. (7)

Theorem 3 There exists a unique best fractal approximation satisfying (7).
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Proof. Since B′1 ⊂ L2, f ∈ L2 and there is a unique best approximation by elements
of space of finite dimension in strictly normed space, we get the result. �

To solve (7), it is enough to solve the normal equation. But since φ0, φ1, · · · , φN
are fixed points of some contraction mappings, it is impossible to get the exact solu-
tions of (7). Furthermore, even though we calculate φ0, φ1, · · · , φN approximately,
it is impossible to get their exact representations. Therefore, we present how to
find the best approximation by Lemma 2.

It is obvious that we can define an operator T : B → B by

(Tg)(x) =

N−1∑
l=0

[
sl · g

(
u−1
l (x)

)
+

N−1∑
k=0

αkλ
(k)
l

(
u−1
l (x)

)]
χul

(Ω) (8)

and by Lemma 2,
∑N
k=0 αkφk is the fixed point of the operator T on B′1, where

λ(k) =
(
λ

(k)
0 , λ

(k)
1 , · · · , λ(k)

N−1

)
, k = 0, · · · , N−1 are functions corresponding to the

function φk.
Let us denote the fixed point of the operator T by fT and a contractive constant

of T by c. Then Collage Theorem shows that if ‖f − Tf‖ < ε for ε > 0, then
‖f − fT ‖ < ε

1−c . On the basis of the theorem, we find an operator, which is

denoted by T ∗, such that ‖f − Tf‖ is minimum.

‖f − Tf‖2L2
=

N−1∑
l=0

∫ xl+1

xl

[
sl · f

(
u−1
l (x)

)
+

N∑
k=0

αkλ
(k)
l

(
u−1
l (x)

)
− f(x)

]2

dx

=

N−1∑
l=0

al

∫ b

a

[
sl · f(x) +

N∑
k=0

αkλ
(k)
l (x)− f(ul(x))

]2

dx

=

N−1∑
l=0

al

(
slf +

N∑
k=0

αkλ
(k)
l − f ◦ ul, slf +

N∑
k=0

αkλ
(k)
l − f ◦ ul

)
,

which is denoted by φ(α0, α1, · · · , αN ). To minimize φ(α0, α1, · · · , αN ), we have to

solve the equations ∂φ
∂αk

= 0, k = 0, · · · , N , i.e.

N−1∑
l=0

al

2
(
slf, λ

(k)
l

)
+ 2

N∑
j=0

αk

(
λ

(k)
l , λ

(j)
l

)
− 2

(
λ

(k)
l , f ◦ ul

)
×
N−1∑
j=0

αj

N−1∑
l=0

al

(
λ

(k)
l , λ

(j)
l

)

=

N−1∑
l=0

al

(
−
(
slf, λ

(k)
l

)
+
(
λ

(k)
l , f ◦ ul

))
, k = 0, 1, · · · , N (9)
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Let us denote α = (α0, α1, · · · , αN )T and represent (9) by the form of Aα = β,
where A is as follows:

A =


∑N−1
l=0 al

(
λ

(0)
l , λ

(0)
l

) ∑N−1
l=0 al

(
λ

(0)
l , λ

(1)
l

)
· · ·

∑N−1
l=0 al

(
λ

(0)
l , λ

(N)
l

)
∑N−1
l=0 al

(
λ

(1)
l , λ

(0)
l

) ∑N−1
l=0 al

(
λ

(1)
l , λ

(1)
l

)
· · ·

∑N−1
l=0 al

(
λ

(1)
l , λ

(N)
l

)
· · · · · · · · · · · ·∑N−1

l=0 al

(
λ

(N)
l , λ

(0)
l

) ∑N−1
l=0 al

(
λ

(N)
l , λ

(1)
l

)
· · ·

∑N−1
l=0 al

(
λ

(N)
l , λ

(N)
l

)

 .
For example, in the case of a = 0, b = 1, the matrix A is calculated as follows:

λ
(0)
l (x) =

{
(s0 − 1)(x− 1), l = 0
sl(x− 1), otherwise

λ
(i)
l (x) =

 x, l = i− 1
−x+ 1, l = i
0, otherwise

λ
(N)
l (x) =

{
(1− sN−1)x, l = N − 1
−slx, otherwise

al =
1

N

.

Especially, in the case of s = 0 we have

A =


1

3N
1

6N 0 · · · · · · 0
1

6N
2

3N
1

6N 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1

6N
1

3N

 .
It is clear that the matrix A is non-degenerate, which gives a uniqueness and exis-
tence of our best approximation solution.

Finding α∗ which is the solution of (9) gives the expected fractal approximation

N∑
k=0

α∗kφk(x), (10)

which is just the fixed point of the operator T ∗. Therefore it is enough that when
finding (10), we calculate the fixed point of T ∗.
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4. Conclusion

In this paper we firstly provided a theoretical basis for construction of a finite-
dimensional space which consists of continuous fractal functions. Next we presented
a method how to calculate approximately the best approximation by the element of
the constructed space. The base of the constructed finite-dimensional space consists
of the fractal interpolation functions. When calculating the best approximation, we
use only coefficients of the contraction operator whose fixed points are those frac-
tal interpolation functions instead of interpolation functions themselves. Therefore,
the presented method has advantage that the calculation of the best approximation
is comfortable and the obtained best approximation is continuous.

Acknowledgement. We would like to thank editors and referees for their help-
ful comments and suggestions.
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