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NEW SUBCLASS OF ANALYTIC FUNCTIONS ASSOCIATED

WITH THE GENERALIZED HYPERGEOMETRIC FUNCTIONS

IBTISAM ALDAWISH AND MASLINA DARUS

Abstract. A certain subclass TQn
r,s,λ(η, β) consisting of analytic functions

with negative coefficients in the open unit disk U is introduced. In this paper
we obtain coefficient inequalities, extreme points, integral inequalities and the
(n, δ)−neighborhood.

1. Introduction

Euler, Gauss and Riemann were among the earliest mathematicians who studied
the hypergeometric functions. It starts of with the real functions and eventually
it becomes more effective in the complex domain. Because of its variety of appli-
cations, the theory of hypergeometric becomes the favourite topics to discuss by
many mathematicians. For instance, we can find this applications in a wide range of
subjects such as combinatorics, numerical analysis, dynamical systems and mathe-
matical physics. We can generalize numerous results of the classical hypergeometric
functions to the q−hypergeometric level. A generalized q−Taylor’s formula in frac-
tional q−calculus has recently been introduced by Purohit and Raina [13]. They
also derived q−generating functions for q−hypergeometric functions. In this work
some of the properties of the generalized differential operator are discussed.

Let A denote the class of functions of the form

f(z) = z +
∞∑
k=2

akz
k, (1)

which are analytic and normalized in the open unit disk U = {z : |z| < 1} .
Further, let T denote the subclass of A consisting of functions whose nonzero co-
efficients, from the second on, are negative. That is, an analytic and univalent
function f is in T if it can be expressed as

f(z) = z −
∞∑

n=2

akz
k. (2)
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A q−hypergeometric function is a power series in one complex variable z with
power series coefficients which depend, apart from q on r complex upper parameters
ai, bj , (i = 1, ..., r, j = 1, ..., s, bj ∈ C\{0,−1,−2, ...}) as follows

rΩs (a1, ...ar; b1, ...bs, q, z) =

∞∑
k=0

(a1, q)k...(ar, q)k
(q, q)k(b1, q)k...(bs, q)k

(−1)kq

 k
2


1+s−r

zk,

(3)

with

(
k
2

)
= k(k−1)

2 , where q ̸= 0 when r > s+ 1, (r, s ∈ N0 = N ∪ {0}; z ∈ U) ,N

denote the set of positive integers and (a, q)q is the q−shifted factorial defined by

(a, q)k =

{
1, k = 0;
(1− a)(1− aq)(1− aq2)...(1− aqk−1), k ∈ N.

By using the ratio test, one recognize that, if 0 < |q| < 1, the series (3) converges
absolutely for all z if r ≤ s and for |z| < 1 if r = s + 1. For brief survey on
q−hypergeometric functions, one may refer to [1, 2, 3], see also [18, 19].

Now for z ∈ U, 0 < |q| < 1, and r = s + 1, the q− hypergeometric function
defined in (3) takes the form

rυs (a1, ..., ar; b1, ..., bs, q, z) =
∞∑
k=0

(a1, q)k...(ar, q)k
(q, q)k(b1, q)k...(bs, q)k

zk

which converges absolutely in the open unit disk U.

Corresponding to a function rΛs(ai; bj ; q, z) defined by

rΛs(ai; bj ; q, z) = z rυs(ai; bj ; q, z) = z +
∞∑
k=2

(a1, q)k−1...(ar, q)k−1

(q, q)k−1(b1, q)k−1...(bs, q)k−1
zk.

We will use the following operator which defined and studied by the authors (see
[7] ).

M0
r,s,λ(ai, bj ; q)f(z) =f(z) ∗ rΛs(ai, bj ; q; z)

M1
r,s,λ(ai, bj ; q)f(z) =(1− λ)f(z) ∗ rΛs(ai, bj ; q; z) + λzDq (f(z) ∗ rΛs(ai, bj ; q; z))

...

Mn
r,s,λ(ai, bj ; q)f(z) =M1

r,s,λ

(
Mn−1

r,s,λ(f(z))
)

= z +
∞∑
k=2

[1 + (k − 1)λ]
n
Υkakz

k (4)

where ∗ denotes the usual Hadamard product of analytic functions and

Υk =
(a1, q)k−1...(ar, q)k−1

(q, q)k−1(b1, q)k−1...(bs, q)k−1
. (5)

Remark
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• When n = 0 we get the linear operator introduced and studied recently by
Mohammed and Darus [4].

• When n = 0, ai = qαi , bj = qβj , αi, βj ∈ C, βj ̸= 0,−1,−2, ..., (i = 1, ..., r, j = 1, ..., s)
and q → 1, we receive the well-known Daziok-Srivastava linear operator [8]
(for r = s+ 1).

• And when r = 1, s = 0, a1 = q and λ = 1, we obtain Sălăgean differential
operator (see [5]).

Many other differential operators studied by various authors can be seen in the
literature (see for examples [9],[10]).

In the following definitions, we introduce new subclass of analytic functions
containing q−hypergeometric functions Mn

r,s,λ(ai, bj ; q)f(z).

Definition 1.1 Let f ∈ A. Then f ∈ Qn
r,s,λ(η, β) if and only if

Re

{
(1− η)

Mn
r,s,λ(ai, bj ; q)f(z)

z
+ η

(
Mn

r,s,λ(ai, bj ; q)f(z)
)′}

> β, (6)

where 0 ≤ β < 1, η ≥ 0, z ∈ U and Mn
r,s,λ(ai, bj ; q)f(z) is given by (4).

We further let TQn
r,s,λ(η, β) = Qn

r,s,λ(η, β) ∩ T .

We present some examples by using specializing the values of r, s, a1, a2...ar, b1, b2, ...bs, q
and λ.

Example 1 For n = 0, r = s+1, ai = qαi , bj = qβj , αi, βj ∈ C, βj ̸= 0,−1,−2, ...(i =
1, 2, ...r, j = 1, ..., s) and q → 1, then

Q0
s+1,s(η, β) = H(ai, bj , η, β)

= Re

{
(1− η)

H(α1, ...αr, β1, ...βs)f(z)

z
+ η (H(α1, ...αr, β1, ...βs)f(z))

′
}

> β.

Example 2 For r = 1, s = 0, a1 = q, and λ = 1, then

Q1,0,1(η, β) = Sn(η, β) = Re

{
(1− η)

Snf(z)

z
+ η(Snf(z))′

}
> β.

Example 3 For n = 0, then

Q0
r,s(η, β) = Ms

r(η, β) = Re

{
(1− η)

Ms
r(ai, bj ; q)f(z)

z
+ η(Ms

r(ai, bj ; q)f(z))
′
}

> β.

Example 4 For λ = 0, r = 1, s = 0, a1 = q and q → 1 , then

Q1,0,0(η, β) = Q(η, β) = Re

{
(1− η)

f(z)

z
+ η(f(z))′

}
> β

where Q(η, β) denote the class of analytic functions which was studied by Ding et
al. [11].
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2. Coefficient inequalities

First, we prove a sufficient coefficient bound.

Theorem 2.1. If f(z) ∈ A be given by (1) satisfies

∞∑
k=1

Φ(η, λ, n, k)|ak| ≤ 1− β (7)

for some β(0 ≤ β < 1), η ≥ 0 and λ ≥ 0, where

Φ(η, λ, n, k) = (|1− η|+ ηk) (1 + (k − 1)λ)
n |Υk|, (8)

and Υk given by (5), then f ∈ Qn
r,s,λ(η, β).

Proof. Let, the expression (7) be true for f ∈ A. By using the fact Rew > β ↔
|1− β + w| > |1 + β − w|. It suffices to show that,∣∣(1− β)z + (1− η)Mn

r,s,λ(ai, bj ; q)f(z) + ηz(Mn
r,s,λ(ai, bj ; q)f(z))

′∣∣−∣∣(1 + β)z − (1− η)Mn
r,s,λ(ai, bj ; q)f(z)− ηz(Mn

r,s,λ(ai, bj ; qf(z)))
′∣∣ > 0.

(9)

So, we have∣∣(1− β)z + (1− η)Mn
r,s,λ(ai, bj ; q)f(z) + ηz(Mn

r,s,λ(ai, bj ; q)f(z))
′∣∣−∣∣(1 + β)z − (1− η)Mn

r,s,λ(ai, bj ; q)f(z)− ηz(Mn
r,s,λ(ai, bj ; qf(z)))

′∣∣
=

∣∣∣∣∣(1− β)z + (1− η)z

(
1 +

∞∑
k=2

(1 + (k − 1)λ)nΥkakz
k−1

)
+ ηz

(
1 +

∞∑
k=2

k(1 + (k − 1)λ)nΥkakz
k−1

)∣∣∣∣∣
−

∣∣∣∣∣(1 + β)z − (1− η)z

(
1 +

∞∑
k=2

(1 + (k − 1)λ)nΥkakz
k−1

)
− ηz

(
1 +

∞∑
k=2

k(1 + (k − 1)λ)nΥkakz
k−1

)∣∣∣∣∣
We impose

≥ (2− β)|z| − |1− η||z|
∞∑
k=2

(1 + (k − 1)λ)n|Υk||ak||z|k−1 − η|z|
∞∑
k=2

k(1 + (k − 1)λ)n|Υk||ak||z|k−1

− β|z| − |1− η||z|
∞∑
k=2

(1 + (k − 1)λ)n|Υk||ak||z|k−1 − η|z|
∞∑
k=2

k(1 + (k − 1)λ)n|Υk||ak||z|k−1

After simplification and by using (7), we get

2(1−β)−2

(
|1− η|

∞∑
k=2

(1 + (k − 1)λ)n|Υk||ak|+ η
∞∑
k=2

k(1 + (k − 1)λ)n||Υk||ak|

)
≥ 0.

This completes the proof of Theorem 2.1.

Corollary 2.2 A function f ∈ A, is in Sn(η, β) if

∞∑
k=2

(
|1− η|kn + ηkn+1

)
|ak| < 1− β

where n ≥ 0, η ≥ 0 and 0 ≤ β < 1.
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Corollary 2.3 A function f ∈ A, is in Ms
r(η, β) if

∞∑
k=2

(|1− η|+ ηk) |Υk||ak| < 1− β

where Υk is given by (5), η ≥ 0 and 0 ≤ β < 1.

We next show that condition (7) is also necessary for functions in TQn
r,s,λ(η, β).

Theorem 2.4 Let the function f(z) ∈ T be given by (2). Then f(z) ∈ TQn
r,s,λ(η, β)

if and only if (7) is satisfied.

Proof. In view of Theorem 2.1, it is sufficient to prove the ”only if ” part. Let us
assume that f(z) defined by (2) is in TQn

r,s,λ(η, β). We have

Re

{
(1− η)

Mn
r,s,λ(ai, bj ; q)f(z)

z
+ η

(
Mn

r,s,λ(ai, bj ; q)f(z)
)′}

> β.

Since Rez ≤ |z|, we have∣∣∣∣(1− η)
Mn

r,s,λ(ai, bj ; q)f(z)

z
+ η

(
Mn

r,s,λ(ai, bj ; q)f(z)
)′∣∣∣∣ > β.

By a computation, we obtain∣∣∣∣∣1− (1− η)
∞∑
k=2

(1 + (k − 1)λ)
n
Υkakz

k−1 − η
∞∑
k=2

k (1 + (k − 1)λ)
n
Υkakz

k−1

∣∣∣∣∣ > β.

(10)
Set z = reiθ(θ ∈ R) in (10). Hence

∞∑
k=2

(|1− η|+ ηk)(1 + (k − 1)λ)n|Υk||ak|rk−1 ≤ 1− β. (11)

Letting r → 1− in (11), we get (7). Thus, this completes the proof of the theorem.

Corollary 4.5 If f ∈ TQn
r,s,λ(η, β), then

|ak| ≤
1− β

Φ(η, λ, n, k)
, 0 ≤ β < 1, η ≥ 0, λ ≥ 0, and n ≥ 0.

Equality holds for the function

f(z) = z − 1− β

Φ(η, λ, n, k)
zn.

3. Extreme points

The determination of the extreme points of a family f(z) of univalent functions
enables us to solve many external problems for f(z) (see[6]).

Theorem 3.1 Let

f1(z) = z and fk(z) = z − 1− β

Φ(η, λ, n, k)
zk, (k ≥ 2).



168 I. ALDAWISH AND M. DARUS EJMAA-2014/2(2)

Then f ∈ TQn
r,s,λ(η, β), if and only if, it can be represented in the form

f(z) =

∞∑
k=1

µkfk(z), (µk ≥ 0,

∞∑
k=1

µk = 1). (12)

Proof. Suppose f(z) can be expressed as in (12). Then

f(z) =
∞∑
k=1

µkfk(z)

=µ1f1(z) +

∞∑
k=2

µkfk(z)

=µ1z +
∞∑
k=2

µk(z −
1− β

Φ(η, λ, n, k)
zk)

=z −
∞∑
k=2

µk
1− β

Φ(η, λ, n, k)
zk.

Therefore,
∞∑
k=2

Φ(η, λ, n, k)

(1− β)

(1− β)

Φ(η, λ, n, k)
µk

=
∞∑
k=2

µk = 1− µ1 ≤ 1.

So by Theorem 2.1, f ∈ TQn
r,s,λ(η, β).

Conversely, we suppose f ∈ TQn
r,s,λ(η, β). Since

|ak| ≤
1− β

Φ(η, λ, n, k)
, k ≥ 2.

We set

µk =
Φ(η, λ, n, k)

1− β
|ak|, k ≥ 2

and

µ1 = 1−
∞∑
k=2

µk.

Then we have

f(z) =

∞∑
k=1

µkfk(z)

=µ1f1(z) +
∞∑
k=2

µkfk(z)

and the proof is complete.

Corollary 3.2 The extreme points of TQn
r,s,λ(η, β) are the functions f1(z) = z and

fk(z) = z − 1− β

Φ(η, λ, n, k)
zk, (k ≥ 2),

for 0 ≤ β < 1 and n ≥ 0.
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4. Integral means inequalities

For any two functions f and g analytic in U, f is said to be subordinate to g
in U, denote by f ≺ g if there exists an analytic function ω defined U satisfying
ω(0) = 0 and |ω(z)| < 1 such that f(z) = g(ω(z)), z ∈ U.
In particular, if the function g is univalent in U, the above subordination is equiva-
lent to f(0) = g(0) and f(U) ⊂ g(U). In 1925, Littlewood [12] proved the following
subordination theorem.

Theorem 4.1[12]. If f and g are any two functions, analytic in U, with f ≺ g,
then for µ > 0 and z = reiθ, (0 < r < 1),∫ 2π

0

|f(z)|µdθ ≤
∫ 2π

0

|g(z)|µdθ.

Now

Theorem 4.2 Let f ∈ TQn
r,s,λ(η, β) and fk be defined by

fk(z) = z − (1− β)

Φ(η, λ, n, k)
zk (k = 2, 3, ..., ).

If there exists an analytic function ω(z) given by

[ω(z)]k−1 =
∞∑
k=2

Φ(η, λ, n, k)

(1− β)
akz

k−1

then for z = reiθ and 0 < r < 1,∫ 2π

0

|f(reiθ)|µdθ ≤
∫ 2π

0

|fk(reiθ)|µdθ.

Proof. We want to prove that

∫ 2π

0

∣∣∣∣∣1−
∞∑
k=2

akz
k−1

∣∣∣∣∣
µ

dθ ≤
∫ 2π

0

∣∣∣∣1− 1− β

Φ(η, λ, n, k)
zk−1

∣∣∣∣µ dθ.
By Theorem 4.1, it suffices to show that

1−
∞∑
k=2

akz
k−1 ≺ 1− 1− β

Φ(η, λ, n, k)
zk−1.

We may write

1−
∞∑
k=2

akz
k−1 = 1− 1− β

Φ(η, λ, n, k)
[ω(z)]k−1

which implies

[ω(z)]k−1 =
∞∑
k=2

Φ(η, λ, n, k)

1− β
akz

k−1.

Clearly, ω(0) = 0. By (7), we have

|ω(z)|k−1 =

∣∣∣∣∣
∞∑
k=2

Φ(η, λ, n, k)

1− β
akz

k−1

∣∣∣∣∣
≤

∞∑
k=2

Φ(η, λ, n, k)

(1− β)
|ak||z|k−1 ≤ |z| < 1.
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5. Neighborhoods of the class TQn
r,s,λ(η, β)

The concept of neighborhoods was first introduced by Goodman in [14] and
then generalized by Ruscheweyh in [9]. Also refer to Silverman [15], Ahuja and
Nunokawa [16] and Frasin and Darus [17].

We would like to investigate the (n, δ)−neighborhoods of the subclass TQn
r,s,λ(η, β).

First, we define (n, δ)−neighborhoods of the function f ∈ T as the following:

Definition 5.1 For any f(z) ∈ T and δ ≥ 0, we define

Nn,δ(f) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k,

∞∑
k=2

k · |ak − bk| ≤ δ

}
. (13)

So, for e(z) = z, we observe that

Nn,δ(e) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k,

∞∑
k=2

k · |bk| ≤ δ

}
. (14)

Next we give the following:

Theorem 5.2 Let

δ =
2(β − 1)

(1 + λ)n (|1− η|+ 2η) ||Υ2|

where Υ2 = (1−a1)...(1−ar)
(1−q)(1−b1)...(1−bs)

, then TQn
r,s,λ(η, β) ⊂ Nn,δ(e).

Proof. For f(z) ∈ TQn
r,s,λ(η, β) and making use of the condition (7), we obtain

∞∑
k=2

|ak| ≤
1− β

(1 + λ)n (|1− η|+ 2η) |Υ2|
. (15)

On the other hand, we also find from (7) and (15) that

(1 + λ)n|Υ2|
∞∑
k=2

(|1− η|+ ηk) |ak| ≤ 1− β

η(1 + λ)n|Υ2|
∞∑
k=2

k|ak| ≤ (1− β)− (1 + λ)n|Υ2||1− η|
∞∑
k=2

|ak|.

Thus,
∞∑
k=2

k · ak ≤ 2(1− β)

(1 + λ)n (|1− η|+ 2η) |Υ2|
= δ

which in view of (14), proves Theorem 5.2.
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