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SOME SUBORDINATION AND SUPERORDINATION RESULTS

WITH AN INTEGRAL OPERATOR

H. E. DARWISH, A. Y. LASHIN, AND S. M. SOILEH

Abstract. In this article, we obtain some subordination and superordination
preserving properties of meromorphic multivalent functions in the punctured
open unit disc associated with an integral operator. Sandwich-type result is
also obtained.

1. Introduction

Let H = H(U) denote the class of analytic functions in the open unit disc

U = {z ∈ C : |z| < 1}.

For n ∈ N = {1, 2, ...} and a ∈ C, let

H[a, n] = {f ∈ H : f(z) = a+ anz
n + an+1z

n+1 + ...}.

Let f and g be members of H. The function f is said to be subordinate to g, or
g is said to be superordinate to f , if there exists a function w analytic in U, with
w(0) = 0 and |w(z)| < 1(z ∈ U), such that f(z) = g(w(z))(z ∈ U).

In such a case, we write

f ≺ g (z ∈ U) or f(z) ≺ g(z) (z ∈ U).

If the function g is univalent in U, then we have (cf. [5]),

f ≺ g (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).
Definition 1 [5]. Let ϕ : C2 → C and let h(z) be univalent in U. If p(z) is analytic
in U and satisfies the differential subordination:

ϕ(p(z); zp′(z)) ≺ h(z) (z ∈ U), (1.1)

then p(z) is called a solution of the differential subordination. The univalent func-
tion q(z) is called a dominant of the solutions of the differential subordination, or
more simply a dominant, if p(z) ≺ q(z) for all p(z) satisfying (1.1). A dominant
q̃ that satisfies q̃ ≺ q for all dominants q of (1.1) is said to be the best dominant.
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Definition 2 [6]. Let φ : C2 → C and let h(z) be analytic in U. If p(z) and
φ(p(z), zp′(z)) are univalent in U and satisfy the differential superordination:

h(z) ≺ φ(p(z), zp′(z)) (z ∈ U), (1.2)

then p(z) is called a solution of the differential superordination. An analytic func-
tion q(z) is called a subordinant of the solutions of the differential superordination,
or more simply a subordinant if q(z) ≺ p(z) for all p(z) satisfying (1.2). A univalent
subordinant q̃ that satisfies q ≺ q̃ for all subordinants q of (1.2) is said to be the
best subordinant.
Definition 3 [5]. Denote by F the set of all functions q(z) that are analytic and
injective on U\E(q), where

E(q) =

{
ζ ∈ ∂U : lim

z→ζ
q(z) = ∞

}
,

and are such that

q′(ζ) ̸= 0 (ζ ∈ ∂U\E(q)) .

Further let the subclass of F for which q(0) = a be denoted by F(a), F(0) ≡ F0 and
F(1) ≡ F1.
Definition 4 [6]. A function L(z, t) (z ∈ U, t ≥ 0) is said to be a subordination
chain if L(., t) is analytic and univalent in U for all t ≥ 0, L(z, .) is continuously
differentiable on [0,+∞) for all z ∈ U and L(z, t1) ≺ L(z, t2) for all 0 ≤ t1 ≤ t2.

Let Σ denote the class of functions of the form

f(z) =
1

z
+

∞∑
k=1

akz
k (1.3)

which are analytic in the punctured unit open unit disc U∗. For functions f ∈ Σ
given by (1.3), and g ∈ Σ given by

g(z) :=
1

z
+

∞∑
k=1

bkz
k,

define the Hadamard product (or convolution) of f and g by

(f ∗ g)(z) := 1

z
+

∞∑
k=1

akbkz
k = (g ∗ f)(z).

Analogous to the integral operator defined by Jung et al. [1], Lashin [2] intro-
duced and investigated the following integral operator

Qα,β : Σ → Σ (1.4)

defined in terms of the familiar Gamma function by

Qα,βf(z) =
Γ(β + α)

Γ(β)Γ(α)

1

zβ+1

z∫
0

tβ(1− t

z
)α−1f(t)dt

=
1

z
+

Γ(β + α)

Γ(β)

∞∑
k=1

Γ(k + β + 1)

Γ(k + β + α+ 1)
akz

k (α > 0; β > 0; z ∈ U∗),
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By setting

fα,β(z) :=
1

z
+

Γ(β)

Γ(β + α)

∞∑
k=1

Γ(k + β + α+ 1)

Γ(k + β + 1)
akz

k (α > 0; β > 0; z ∈ U∗), (1.5)

Wang et al. [8] defined and studied an integral operator Qλ
α,β : Σ → Σ which is

defined as follows:
Let fλ

α,β(z) be defined such that

fα,β(z) ∗ fλ
α,β(z) =

1

z(1− z)λ
(α > 0; β > 0; λ > 0; z ∈ U∗). (1.6)

Then
Qλ

α,βf(z) := fλ
α,β(z) ∗ f(z) (z ∈ U∗, f ∈ Σ. (1.7)

From (1.5), (1.6) and (1.7) it follows that

Qλ
α,βf(z) =

1

z
+

Γ(β + α)

Γ(β)

∞∑
k=1

(λ)k+1Γ(k + β + 1)

(k + 1)!Γ(k + β + α+ 1)
akz

k ( z ∈ U∗), (1.8)

where (λ)k is the Pochhammer symbol defined by

(λ)k =
{
1, k=0
λ(λ+1)...(λ+k−1), (k∈N:={1,2,...})

}
. (1.9)

Clearly, we know that
Q1

α,β = Qα,β .

It is readily verified from (1.8) that

z(Qλ
α,βf)

′(z) = λQλ+1
α,β f(z)− (λ+ 1)Qλ

α,βf(z) (1.10)

z(Qλ
α,βf)

′(z) = (β + α− 1)Qλ
α−1,βf(z)− (β + α)Qλ

α,βf(z). (1.11)

2. A Set of Lemmas

The following lemmas will be required in our present investigation.
Lemma 1 [7]. The function L(z, t) : U× [0, 1) −→ C of the form

L(z, t) = a1(t)z + a2(t)z
2 + ... with (a1(t) ̸= 0, t ≥ 0 ) and lim

t→∞
|a1(t)| = ∞ is a

subordination chain if and only if

ℜ

{
z∂L(z,t)

∂z
∂L(z,t)

∂t

}
> 0 (z ∈ U; 0 ≤ t < ∞).

Lemma 2 [3]. Suppose that the function H : C2 → C satisfies the following
condition:

ℜ{H(is, t)} ≤ 0

for all real s and
t ≤ −n(1 + s2)/2, (n ∈ N).

If the function p(z) = 1 + pnz
n + pn+1z

n+1... is analytic in U and

ℜ{H(p(z), zp′(z))} > 0 (z ∈ U),
then,

ℜ{p(z)} > 0 (z ∈ U).
Lemma 3 [4]. Let k, γ ∈ C with k ̸= 0 and h ∈ H(U) with h(0) = c. If

ℜ{kh(z) + γ} > 0 (z ∈ U),
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then, the solution of the following differential equation

q(z) +
zq′(z)

kq(z) + γ
= h(z) (z ∈ U; q(0) = c)

is analytic in U and satisfies the inequality

ℜ{kq(z) + γ} > 0 (z ∈ U).
Lemma 4 [5]. Let p ∈ F(a) and let

q(z) = a+ anz
n + an+1z

n+1 + ...

be analytic in U with
q(z) ̸= a and n ≥ 1.

If q is not subordinate to p, then there exist two points

z0 = r0e
iθ ∈ U and ζ0 ∈ ∂U\E(q),

such that

q(Ur0) ⊂ p(U), q(z0) = p(ζ0) and z0q
′(z0) = mζ0p

′(ζ0) (m ≥ n).

Lemma 5 [6]. Let q ∈ H[a, 1] and φ : C2 → C. Also set

φ(q(z), zq′(z)) ≡ h(z) (z ∈ U).
If L(z, t) = φ(q(z), tzq′(z)) is a subordination chain and p ∈ H[a, 1] ∩ F(a), then.

h(z) ≺ φ(q(z), zq′(z)) (z ∈ U).
implies that

q(z) ≺ p(z) (z ∈ U).
Furthermore, if φ(q(z), zq′(z)) = h(z) has a univalent solution q ∈ F(a), then q is
the best subordinant.

In this article, we investigate the subordination and superordination preserving
properties of the integral operator Qλ

α,β with the Sandwich-type Theorems.

2. Main Results

We begin with proving the following subordination theorem involving the oper-
ator Qλ

α,βf defined by (1.8).
Theorem 1. Let f, g ∈ Σ and

ℜ
{
1 +

zϕ′′(z)

ϕ′(z)

}
> −δ

(
ϕ(z) =

(
Qλ

α−1,β(g)(z)

Qλ
α,β(g)(z)

)(
zQλ

α,β(g)(z)
)µ

; z ∈ U

)
,

(3.1)

(λ > 0; α > 1; β > 0; µ > 0),

where δ is given by

δ =
1 + µ2(β + α− 1)2 −

∣∣1− µ2(β + α− 1)2
∣∣

4µ(β + α− 1)
(z ∈ U). (3.2)

Then the subordination condition(
Qλ

α−1,β(f)(z)

Qλ
α,β(f)(z)

)(
zQλ

α,β(f)(z)
)µ ≺

(
Qλ

α−1,β(g)(z)

Qλ
α,β(g)(z)

)(
zQλ

α,β(g)(z)
)µ

, (3.3)
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implies that (
zQλ

α,β(f)(z)
)µ ≺

(
zQλ

α,β(g)(z)
)µ

, (3.4)

where
(
zQλ

α,β(g)(z)
)µ

is the best dominant.

Proof. Let us define the functions F (z) and G(z) in U by

F (z) :=
(
zQλ

α,β(f)(z)
)µ

and G(z) :=
(
zQλ

α,β(g)(z)
)µ

(z ∈ U). (3.5)

We first show that if the function q is defined by

q(z) := 1 +
zG′′(z)

G′(z)
(z ∈ U), (3.6)

then,

ℜ{q(z)} > 0 (z ∈ U).
From (1.11) and the definition of functions G and ϕ, we obtain that

ϕ(z) = G(z) +
zG

′
(z)

µ(β + α− 1)
. (3.7)

Differentiating both sides of (3.7) with respect to z yields

ϕ′(z) =

(
1 +

1

µ(β + α− 1)

)
G′(z) +

zG
′′
(z)

µ(β + α− 1)
. (3.8)

Combining (3.6) and (3.8), we easily get

1 +
zϕ′′(z)

ϕ′(z)
= q(z) +

zq′(z)

µ(β + α− 1) + q(z)
= h(z) (z ∈ U). (3.9)

It follows from (3.1) and (3.9) that

ℜ{h(z) + µ(β + α− 1)} > 0 (z ∈ U). (3.10)

Moreover, by using Lemma 3, we conclude the differential equation (3.9) has a
solution q(z) ∈ H(U) with h(0) = q(0) = 1. Let

H(u, v) = u+
v

u+ µ(β + α− 1)
+ δ, (3.11)

where δ is given by (3.2). From (3.9), and (3.10), we obtain

ℜ{H(q(z), zq′(z))} > 0 (z ∈ U).

To verify the condition

ℜ{H(iv, t)} ≤ 0

(
v ∈ R; t ≤ −1

2
(1 + v2)

)
, (3.12)

we proceed as follows:

ℜ{H(iv, t)} = ℜ
{
iv +

t

µ(β + α− 1) + iv
+ δ

}
=

tµ(β + α− 1)

|µ(β + α− 1) + iv|2
+ δ ≤ − Eδ(v)

2 |µ(β + α− 1) + iv|2
,

where

Eδ(v) := [µ(β + α− 1)− 2δ] v2 − µ(β + α− 1) [2δµ(β + α− 1)− 1] . (3.13)
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For δ given by (3.2), we can prove easily that the expression Eδ(v) given by (3.13)
is greater than or equal to zero. Hence, from (3.11), we see that (3.12) holds true.
Thus, using Lemma 2, we conclude that

ℜ{q(z)} > 0 (z ∈ U).

Moreover, we see that the condition:

G′(0) ̸= 0

is satisfied. Hence, the function G defined by (3.5) is convex (univalent) in U.
Next, we prove that the subordination condition (3.3) implies that

F (z) ≺ G(z) (z ∈ U),

for the functions F and G defined by (3.5). Without loss of generality, we can
assume that G is analytic and univalent on U and

G′(ζ) ̸= 0 (ζ ∈ ∂U).

For this purpose, we consider the function L(z, t) given by

L(z, t) := G(z) +
(1 + t)

µ(β + α− 1)
zG′(z), (3.14)

(0 ≤ t < ∞; z ∈ U; α > 1; β > 0; µ > 0).

We note that

∂L(z, t)

∂z

∣∣∣∣
z=0

= G′(0)

(
1 +

(1 + t)

µ(β + α− 1)

)
̸= 0,

(0 ≤ t < ∞; z ∈ U; α > 1; β > 0; µ > 0).

This shows that the function

L(z, t) = a1(t)z + ...

satisfies the condition a1(t) ̸= 0 (0 ≤ t < ∞). Furthermore, we have

ℜ
{
z∂L(z, t)/∂z

∂L(z, t)/∂t

}
= ℜ

{
µ(β + α− 1) + (1 + t)(1 +

zG′′(z)

G′(z)
)

}
> 0.

Therefore, by using of Lemma 1, we deduce that L(z, t) is a subordination chain.
It follows from the definition of subordination chain that

ϕ(z) = G(z) +
zG

′
(z)

µ(β + α− 1)
= L(z, 0)

and

L(z, 0) ≺ L(z, t) (0 ≤ t < ∞),

which implies that

L(ζ, t) /∈ L(U, 0) = ϕ(U) (ζ ∈ ∂U; 0 ≤ t < ∞), (3.15)

if F is not subordinate to G, by using Lemma 4, we know that there exists two
points z0 ∈ U and ζ0 ∈ ∂U, such that

F (z0) = G(ζ0) and z0F
′(z0) = (1 + t)ζ0G

′(ζ0) (0 ≤ t < ∞). (3.16)

Hence, by using (3.5), (3.14), (3.16) and (3.3), we have

L(ζ0, t) = G(ζ0) +
(1 + t)

µ(β + α− 1)
ζ0G

′(ζ0) = F (z0) +
1

µ(β + α− 1)
z0F

′(z0)
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=

(
Qλ

α−1,β(f)(z0)

Qλ
α,β(f)(z0)

)(
z0Q

λ
α,β(f)(z0)

)µ ∈ ϕ(U).

This contradicts (3.15). Thus, we deduce that F ≺ G. Considering F = G, we see
that the function G is the best dominant. This completes the proof of Theorem 1.
Theorem 2. Let f, g ∈ Σ and

ℜ
{
1 +

zϕ′′(z)

ϕ′(z)

}
> −δ

(
ϕ(z) =

(
Qλ+1

α,β (g)(z)

Qλ
α,β(g)(z)

)(
zQλ

α,β(g)(z)
)µ

; z ∈ U

)
, (3.17)

(λ > 0; α > 0; β > 0; µ > 0),

where δ is given by

δ =
1 + λ2µ2 −

∣∣1− λ2µ2
∣∣

4µλµ
(z ∈ U). (3.18)

Then the subordination condition(
Qλ+1

α,β (f)(z)

Qλ
α,β(f)(z)

)(
zQλ

α,β(f)(z)
)µ ≺

(
Qλ+1

α,β (g)(z)

Qλ
α,β(g)(z)

)(
zQλ

α,β(g)(z)
)µ

, (3.19)

implies that (
zQλ

α,β(f)(z)
)µ ≺

(
zQλ

α,β(g)(z)
)µ

, (3.20)

where
(
zQλ

α,β(g)(z)
)µ

is the best dominant.

Proof. Let us define the functions F (z) and G(z) in U by

F (z) :=
(
zQλ

α,β(f)(z)
)µ

and G(z) :=
(
zQλ

α,β(g)(z)
)µ

(z ∈ U). (3.21)

Taking the logarithmic differentiation on both sides of the second equation in (3.21)
and using the equation (1.10). The proof is similar to that of Theorem 1.

We now derive the following superordination result.
Theorem 3. Let f.g ∈ Σ. and

ℜ
{
1 +

zϕ′′(z)

ϕ′(z)

}
> −δ

(
ϕ(z) =

(
Qλ

α−1,β(g)(z)

Qλ
α,β(g)(z)

)(
zQλ

α,β(g)(z)
)µ

; z ∈ U

)
,

(3.22)

(λ > 0; α > 1; β > 0; µ > 0),

where δ is given by (3.2). If the function(
Qλ

α−1,β(f)(z)

Qλ
α,β(f)(z)

)(
zQλ

α,β(f)(z)
)µ

is univalent in U and
(
zQλ

α,β(f)(z)
)µ

∈ F , Then the superordination condition(
Qλ

α−1,β(g)(z)

Qλ
α,β(g)(z)

)(
zQλ

α,β(g)(z)
)µ ≺

(
Qλ

α−1,β(f)(z)

Qλ
α,β(f)(z)

)(
zQλ

α,β(f)(z)
)µ

, (3.23)

implies that (
zQλ

α,β(g)(z)
)µ ≺

(
zQλ

α,β(f)(z)
)µ

, (3.24)
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where
(
zQλ

α,β(f)(z)
)µ

is the best subordinant.

Proof. Suppose that the function F,G and q are defined by (3.5)and (3.6), respec-
tively. By applying similar method as in the proof of Theorem 1, we get

ℜ{q(z)} > 0 (z ∈ U).

Next to arrive at our desired result, we show that G ≺ F. For this, we suppose that
the function L(z, t) be define by (3.14). Since G is convex, by applying a similar
method as in Theorem 1, we deduce that L(z, t) is subordination chain. There-
fore, by using Lemma 5, we conclude that G ≺ F. Moreover, since the differential
equation

ϕ(z) = G(z) +
zG

′
(z)

µ(β + α− 1)
= ϕ(G(z), G′(z))

has a univalent solution G, it is the best subordinant. This completes the proof of
Theorem 3.
Theorem 4. Let f, g ∈ Σ and

ℜ
{
1 +

zϕ′′(z)

ϕ′(z)

}
> −δ

(
ϕ(z) =

(
Qλ+1

α,β (g)(z)

Qλ
α,β(g)(z)

)(
zQλ

α,β(g)(z)
)µ

; z ∈ U

)
, (3.25)

(λ > 0; α > 0; β > 0; µ > 0),

where δ is given by (3.18). If the function(
Qλ+1

α,β (f)(z)

Qλ
α,β(f)(z)

)(
zQλ

α,β(f)(z)
)µ

is univalent in U and
(
zQλ

α,β(f)(z)
)µ

∈ F , Then the superordination condition(
Qλ+1

α,β (g)(z)

Qλ
α,β(g)(z)

)(
zQλ

α,β(g)(z)
)µ ≺

(
Qλ

α−1,β(f)(z)

Qλ
α,β(f)(z)

)(
zQλ

α,β(f)(z)
)µ

, (3.26)

implies that (
zQλ

α,β(g)(z)
)µ ≺

(
zQλ

α,β(f)(z)
)µ

(3.27)

where
(
zQλ

α,β(f)(z)
)µ

is the best subordinant.

Proof. the proof is similar to that of Theorem 3.
Combining the above - mentioned subordination and superordination results

involving the operator Qλ
α,β the following ”Sandwich-type result ” is derived.

Theorem 5. Let f, gj ∈ Σ (j = 1, 2). and

ℜ

{
1 +

zϕ′′
j (z)

ϕ′
j(z)

}
> −δ

(
ϕj(z) =

(
Qλ

α−1,β(gj)(z)

Qλ
α,β(gj)(z)

)(
zQλ

α,β(gj)(z)
)µ)

,

( j = 1, 2; λ > 0; α > 1; β > 0; µ > 0; z ∈ U),
where δ is given by (3.2). If the function(

Qλ
α−1,β(f)(z)

Qλ
α,β(f)(z)

)(
zQλ

α,β(f)(z)
)µ
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is univalent in U and
(
zQλ

α,β(f)(z)
)µ

∈ F , then the condition(
Qλ

α−1,β(g1)(z)

Qλ
α,β(g1)(z)

)(
zQλ

α,β(g1)(z)
)µ ≺

(
Qλ

α−1,β(f)(z)

Qλ
α,β(f)(z)

)(
zQλ

α,β(f)(z)
)µ

≺

(
Qλ

α−1,β(g2)(z)

Qλ
α,β(g2)(z)

)(
zQλ

α,β(g2)(z)
)µ

, (3.28)

implies that (
zQλ

α,β(g1)(z)
)µ ≺

(
zQλ

α,β(f)(z)
)µ ≺

(
zQλ

α,β(g2)(z)
)µ

, (3.29)

where
(
zQλ

α,β(g1)(z)
)µ

and
(
zQλ

α,β(g2)(z)
)µ

are respectively, the best subordinant

and the best dominant.
Theorem 6. Let f, gj ∈ Σ(j = 1, 2) and

ℜ

{
1 +

zϕ′′
j (z)

ϕ′
j(z)

}
> −δ

(
ϕj(z) =

(
Qλ+1

α,β (gj)(z)

Qλ
α,β(gj)(z)

)(
zQλ

α,β(gj)(z)
)µ

; z ∈ U

)
,

(λ > 0; α > 0; β > 0; µ > 0),

where δ is given by (3.18). If the function(
Qλ+1

α,β (f)(z)

Qλ
α,β(f)(z)

)(
zQλ

α,β(f)(z)
)µ

,

is univalent in U and
(
zQλ

α,β(f)(z)
)µ

∈ F , then the condition(
Qλ+1

α,β (g1)(z)

Qλ
α,β(g1)(z)

)(
zQλ

α,β(g1)(z)
)µ ≺

(
Qλ+1

α,β (f)(z)

Qλ
α,β(f)(z)

)(
zQλ

α,β(f)(z)
)µ

≺

(
Qλ+1

α,β (g2)(z)

Qλ
α,β(g2)(z)

)(
zQλ

α,β(g2)(z)
)µ

, (3.30)

implies that(
zQλ

α,β(g1)(z)
)µ ≺

(
zQλ

α,β(f)(z)
)µ ≺

(
zQλ

α,β(g2)(z)
)µ

, (3.31)

where
(
zQλ

α,β(g1)(z)
)µ

and
(
zQλ

α,β(g2)(z)
)µ

are respectively, the best subordinant

and the best dominant.
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