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COMPOSITE FINITE DIFFERENCE SCHEME APPLIED TO A

COUPLE OF NONLINEAR EVOLUTION EQUATIONS

M. S. EL-AZAB, I. L. EL-KALLA AND S. A. EL MORSY

Abstract. In this paper, a new finite difference scheme called Composite

Finite Difference Scheme (CFDS) is improved to solve linear and nonlinear
high order partial differential equations. The CFDS is applied to a class of

nonlinear evolution equations especially Korteweg de Vries Burger equation
(KdVB). Comparisons between the classical explicit finite difference method

(FDM) and the new suggested scheme are presented. Using Von Neumann

stability analysis, we study the stability of each method.

1. Introduction

The search for a better and easy tool for the solution of nonlinear evolution equa-
tions illuminating the nonlinear phenomena of our life keeps continuing. A variety of
methods therefore were proposed to nd solutions of these kinds of equations [1]-[13].
Several numerical methods have been intensively investigated for the numerical so-
lution of partial differential equations. Spectral methods are often an efficient and
highly accurate schemes when compared with local methods. There are three pri-
mary types of spectral methods based on the choice of test functions, namely, the
Galerkin, tau and collocation methods. A. Bhrawy use the Jacobi-Gauss-Lobatto
collocation method for solving generalized Fitzhugh-Nagumo equation [13]. KdVB,
have especial importance as it describe various physical phenomenas. The KdVB
equation represent a couple of two important equations the Kortewegde Vries equa-
tion (KdV) and Burger equation. The KdV describe the behavior of long waves
in shallow water waves and waves of the plasma. It was discovered by Kortewegde
Vries in 1895. As it is an important equation many papers try to present its analytic
or numerical solutions. Adomian decomposition method (ADM) used in solving it
in [14], Variational iteration method (VIM) [15], Homotopy perturbation method
(HPM) [16] and many other analytical solution methods such as inverse scattering
transform (IST) [17] and traveling wave solution [17]-[19]. In [20] A. Biswas solve
the generalized KdV equation with time-dependent damping and dispersion. The
Burgers equations have been found to describe various kind of phenomena such
as a mathematical model of turbulence [21] and the approximate theory of flow
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through a shock wave traveling in viscous fluid [22, 23]. Fletcher using the Hopf-
Cole transformation [24] gave an analytic solution of the system of two dimensional
Burger’s equations, several numerical methods of this equation system have been
given such as algorithms based on cubic spline function technique [25], Wubs apply
an explicitimplicit method [26], implicit finite-difference scheme [27]. As far as we
know that little numerical works has been done to solve the KdVB equation. Re-
cently a numerical method proposed for solving the KdVB equation by Zaki [28],
he uses the collocation method with quintic B-spline finite element. Soliman [29]
use the collocation solution of the KdV equation using septic splines as element
shape function.

In this paper, our aim is to solve a class of nonlinear evolution equations using
CFDS. In section 2, we use the CFDS and the explicit finite-difference technique
to solve KdVB equation. A network of grid points is first established throughout
the region occupied by the independent variables. In section 3, the stability of the
CFDS was discussed using Von Neumann approach and we found that the CFDS
is un conditionally stable for solving KdVB equation. In the last section, some
illustrative numerical examples are given and numerical comparisons between both
methods are introduced.

2. Composite Finite Difference Scheme (CFDS)

Consider the KdVB equation has the form,

ut + εuux + vuxx + µuxxx = 0, (x, t) ∈ QT (1)

Here QT = Ω×I,Ω ≡ (a, b), I ≡ (0, T ), a and b are real positive constants, ε, µ and v
are parameters. We consider equation (1) associated with initial condition u(x, 0) =
u0(x). In Finite difference method (FDM) the domain is discretized to a finite
number of points forming a mesh with horizontal step size h = b−a

N , N is the
number of intervals, 0 ≤ i ≤ N and k is the time step such that T = kj, 0 ≤ j ≤M.
The derivatives are replaced by difference formulas [30, 31] as follows, for i = 1, 2
we use the forward formulas

(ux)ji =
−3uji + 4uji+1 − u

j
i+2

2h
,

(uxx)ji =
2uji − 5uji+1 + 4uji+2 − u

j
i+3

h2
,

(uxxx)ji =
−5uji + 18uji+1 − 24uji+2 + 14uji+3 − 3uji+4

2h3
.

(2)

while for i = 3 : N − 2 we use central formulas

(ux)ji =
uji+1 − u

j
i−1

2h
,

(uxx)ji =
uji+1 − 2uji + uji−1

2h2
,

(uxxx)ji =
uji+2 − 2uji+1 + 2uji−1 − u

j
i−2

2h3

(3)
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and for i = N − 1,N we use the backward formulas

(ux)ji =
3uji − 4uji−1 + uji−2

2h
,

(uxx)ji =
2uji − 5uji−1 + 4uji−2 − u

j
i−3

h2
,

(uxxx)ji =
5uji − 18uji−1 + 24uji−2 − 14uji−3 + 3uji−4

2h3
.

(4)

We assume that F (u) denote any continuous and differentiable function, multiply
equation (1) by the derivative of F , we have

∂F

∂u

∂u

∂t
= −F ′(u) (εuux + vuxx + µuxxx) (5)

and
∂F

∂u
= −F ′(u) (εuux + vuxx + µuxxx) (6)

The usual forward difference formula leads to, ∂F∂u = (
F
(
u
(j+1)
i

)
−F(uj

i)
k , k is the time

step. Substitute in (6), we have

F
(
uj+1
i

)
= F

(
uji

)
− kF ′

(
uji

)(
εuji (ux)

j
i + v (uxx)

j
i + µ (uxxx)

j
i

)
(7)

To obtain the logarithmic finite difference method (Log FDM) assume F (u) = eu,
and substitute in (7) we have,

F
(
uj+1
i

)
= F

(
uji

)(
1− k

(
ε(uji )(ux)ji + v (uxx)

j
i + µ (uxxx)

j
i

))
(8)

taking the inverse function (ln) to both sides of (8), we obtain

uj+1
i = uji + ln

(
1− k

(
ε(uji )(ux)ji + v (uxx)

j
i + µ (uxxx)

j
i

))
(9)

In (7) if we choose F (u) = lnu, we obtain the Exponential finite difference method
(Exp FDM) that is developed by Bhattachary [32, 33]. He used Exp FDM to solve
the one dimensional heat conduction in a solid slab. In [34] R. F. Handschuh and
T.G. Keith, apply the Exp FDM technique to some classes of partial differential
equations. A. R. Bahadir [35] apply Exp FDM to KdV equation.

3. Von Neumann stability

In this section, we will study the stability of explicit finite difference method and
Composite finite difference methods using Von Neumann stability analysis.

3.1. Stability of explicit finite difference method. To study the stability of
the KdVB equation by Von Neumann analysis [36]. Define,

Zi,j = eαteIβx = eαjkeIβih = ξjeIβih (10)

where ξ = eαk. Rewrite the nonlinear term in (1) εuux in the form ε
2u

2
x, we obtain

ut +
ε

2
u2x + vuxx + µuxxx = 0 (11)
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From (10) substitute in (11), we get

Zji = Zj−1i − εk

4h

((
Zji+1

)2

−
(
Zji−1

)2
)
− vk

h2

(
Zji+1 − 2Zji + Zji−1

)
− µk

2h3

(
Zji+2 − 2Zji+1 + 2Zji−1 − Z

j
i−2

)
(12)

For simplicity we will use the linearized form of KdVB, thus (12) transformed to

Zji = Zj−1i − εk

4h

(
Zji+1 − Z

j
i−1

)
− vk

h2

(
Zji+1 − 2Zji + Zji−1

)
− µk

2h3

(
Zji+2 − 2Zji+1 + 2Zji−1 − Z

j
i−2

)
(13)

Substitute (10) in (13), we obtain

ξjeIβih − ξj−1eIβih + r
(
ξjeIβ(i+1)h − ξjeIβ(i−1)h

)
+ s

(
ξjeIβ(i+1)h − ξjeIβ(i−1)h − 2ξjeIβih

)
+ p

(
ξjeIβ(i+2)h − 2ξjeIβ(i+1)h + 2ξjeIβ(i−1)h − ξjeIβ(i−2)h

)
= 0, (14)

where, r = εk
4h , s = vk

h2 and p = µk
2h3 . Cancellation of ξjeIβih in (14) leads to

1− 1
ξ + 2Ir sinβh− 2s (1− cosβh) + 2Ip (sin 2βh− 2 sinβh) = 0, (15)

1− 1
ξ + 2Ir sinβh− 4s sin2 βh

2 + 2Ip (2 sinβh cosβh− 2 sinβh) = 0, (16)

1− 1
ξ + 2Ir sinβh− 4s sin2 βh

2 − 4Ip sinβh (1− cosβh) = 0, (17)

1− 1
ξ + 2Ir sinβh− 4s sin2 βh

2 − 8Ip sinβh sin2 βh
2 = 0, (18)

1− 4s sin2 βh
2 + 2I sinβh

(
r − 4p sin2 βh

2

)
= 1

ξ . (19)

Take v ≤ 0, then s ≤ 0 and,

ξ =
1

1− 4s sin2 βh
2 + 2I sinβh

(
r − 4p sin2 βh

2

) (20)

It is clear that |ξ| ≤ 1∀s, r and p.

3.2. Stability of Composite finite difference scheme. In this subsection we
investigate the stability of the CFDS for the KdVB equation in its linearized form.

3.2.1. Stability of Exponential finite difference method. Consider the lin-
earized version of KdVB equation that takes the form,

ut +
ε

2
ux + vuxx + µuxxx = 0. (21)

Multiply (21) by 1
u , we get

1

u

∂u

∂t
= − 1

u

( ε
2
ux + vuxx + µuxxx

)
(22)

or,

∂ lnu

∂t
= − 1

u

( ε
2
ux + vuxx + µuxxx

)
, (23)

∂ lnu

∂t
=

∂

∂t
ln

(
eαteIβx

)
=

∂

∂t
(αt+ Iβx) = α. (24)
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Substitute from (24) into (22), we obtain

α = − 1

u

( ε
2
ux + vuxx + µuxxx

)
. (25)

Using (10) and substituting in (25) we have,

α =
−1

kξjeIβih

[
r
(
ξjeIβ(i+1)h − ξjeIβ(i−1)h

)
+s

(
ξjeIβ(i+1)h + ξjeIβ(i−1)h − 2ξjeIβih

)
+ p

(
ξjeIβ(i+2)h − 2ξjeIβ(i+1)h − 2ξjeIβ(i−1)h − ξjeIβ(i−2)h

)]
(26)

αk = − (2rI sinβh+ s(2 cosβh− 2) + 2pI(sin 2βh− 2 sinβh)) (27)

Real(αk) = −s(2 cosβh− 2) =
4vk

h2

(
sin2 βh

2

)
(28)

as v ≤ 0, this leads to Real(αk) ≤ 0 and from the relation, ξ = eαk this implies
| ξ |≤ 1 and the method is unconditionally stable.

3.2.2. Stability of Logarithmic finite difference method. For logarithmic finite dif-
ference method multiply (21) by eu,

eu
∂u

∂t
= −eu

( ε
2
ux + vuxx + µuxxx

)
. (29)

eu
∂u

∂t
=
∂eu

∂t
=

∂

∂t
eαteIβx = α

(
eαteIβx

)
eαteIβx = αueu. (30)

Substitute (30) in (29), we get

αueu = −eu
( ε

2
ux + vuxx + µuxxx

)
(31)

α = − 1

u

( ε
2
ux + vuxx + µuxxx

)
(32)

Equation (32) is exactly the same as equation (25), similarly; we will have the same
stability condition (28).

4. Numerical Experiments

Case 1:
For purpose of illustration of the CFDS for solving the KdVB equation (1),

−10 ≤ x ≤ 10 in case of ε = 1, v = −2, µ = 1 and k = 0.0001, start with an initial
approximation,

u(x, 0) =
6v2

25εµ

[
1− tanh

(
v

10µ
x

)
+

1

2
sech2

(
v

10µ
x

)]
. (33)

Case 2:
Consider the Burger equation (1) with ε = 1, v = −2, µ = 0, h = 1 and k =

0.0001, and have initial approximation u(x, 0) = 2x. The exact solution, u(x, t) =
2x

1+2t .

Tables (1-4)illustrate the numerical results of solving KdVB and Burger equa-
tions using FDM and CFDS at t = 0.01, t = 0.1, t = 1.0 and t = 5.0 in comparison
with the analytical solution.

Figures (1- 4) illustrate the numerical results of solving KdVB and Burger equa-
tions using FDM and CFDS at t = 0.01, t = 0.1, t = 1.0 and t = 5.0in comparison
with the analytical solution.
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Table 1. Solution of KdVB equation at t = 0.01

ε = 1, v = −2, µ = 1 withh = 1 and k = 0.0001 at t = 0.01
x FDM CFDS Exact

-10 1.9193 1.9193 1.9193
-8 1.9170 1.9170 1.9170
-6 1.9068 1.9068 1.9062
-4 1.8661 1.8661 1.8640
-2 1.7364 1.7364 1.7305
0 1.4418 1.4418 1.4307
2 1.0081 1.0081 0.9951
4 0.5925 0.5925 0.5823
6 0.3071 0.3071 0.3010
8 0.1479 0.1480 0.1448
10 0.0686 0.0686 0.0672

Table 2. Solution of KdVB equation at t = 0.1

ε = 1, v = −2, µ = 1 withh = 1 and k = 0.0001at t = 0.01
x FDM CFDS Exact
-10 1.91946 1.91937 1.91909
-8 1.91731 1.9171 1.91575
-6 1.90774 1.90692 1.90117
-4 1.86941 1.86651 1.8458
-2 1.74522 1.73718 1.68141
0 1.45822 1.4426 1.34373
2 1.02747 1.00812 0.9951
4 0.60792 0.59187 0.50929
6 0.31648 0.306415 0.25816
8 0.15289 0.14753 0.12294
10 0.07086 0.06846 0.05676

Table 3. Solution of Burger equation at t = 1.0

ε = 1, v = −2, µ = 0 withh = 1 and k = 0.0001 at t = 1
x FDM CFDS Exact
-10 -16.6662 -16.6664 -16.6667
-8 -13.3329 -13.3331 -13.3333
-6 -9.9997 -9.99985 -10.000
-4 -6.66646 -6.66657 -6.66667
-2 -3.33323 -3.33328 -3.33333
0 0 0 0
2 3.33323 3.33328 3.33333
4 6.6664 6.66657 6.66667
6 9.9997 9.99985 10.000
8 13.332 13.3331 13.3333
10 16.6662 16.6664 16.6667
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Table 4. Solution of Burger equation at t = 5.0

ε = 1, v = −2, µ = 1 withh = 1 and k = 0.0001 at t = 5
x FDM CFDS Exact
-10 -9.99931 -9.99965 -10
-8 -7.99945 -7.99972 -8
-6 -5.99958 –5.99979 -6
-4 -3.99972 -3.99986 -4
-2 -1.99986 -1.99993 -2
0 0 0 0
2 1.99986 1.99993 2
4 3.99972 3.99986 4
6 5.99958 5.99979 6
8 7.99945 7.99972 8
10 9.99931 9.99965 10

Figure 1. KdVB at t = 0.01

Figure 2. KdVB at t = 0.1

5. Conclusion

The CFDS is effective for solving linear and nonlinear partial differential equa-
tions especially for small time intervals. A comparison between CFDS, the classical
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Figure 3. Burger at t = 1

Figure 4. Burger at t = 5

FDM and the exact solution is performed. The numerical results show that the
solution using CFDS give high accuracy and no more conditions or restrictions
are needed. Von Neumann stability showed that CFDS is unconditionally stable
method.

References

[1] A. J. Jawad, M. Petkovic and A. Biswas, Soliton solutions of Burgers equations and per-

turbted Burgers equations, Appl. Math. and Comp., 216, 11, (2010), 3370-3377.

[2] A. Biswas, H. Triki, T. Hayat and O. M. Aldossary, 1-Soliton solution of the generalized
Burgers equations with generalized evolution, Appl. Math. and Comp., 217, 24, (2011), 10289-

10294.

[3] G. Ebadi, N. Yousefzadeh, H. Triki, A. Yildirim and A. Biswas, Envelope solutions, periodic
waves and other solutions to Boussinesq- Burgers equation, Romanian Reports in Physics,

64, 4, (2012), 915-932.

[4] S. Kumar, E. Zerrad, A. Yildirim and A. Biswas, Topological Solitons and Lie symmetry
analysis for the Kadomtsev-Petviashil- Burgers equation with power law nonlinearity in Dust

Plasmas, Proceedings of the Romanian Academy, Series A., 14, 3, (2013), 204-210.

[5] H. Triki and A. Biswas, Solitons solutions for a generalized fifth order KdV equation with t-
dependent coefficients, Waves in Random and Complex Media, 21, 1, (2011), 151-160.

[6] G. Ebadi, A. H. Kara, M. D. Petkovic and A. Biswas, Soliton solutions and conservation

laws of the Gilson Pickering equation, Waves in Random and Complex Media, 21, 2, (2011),
378-385.

[7] ] G. Ebadi, E. V. Krishnan, M. Labidi, E. Zerrad and A. Biswas, Analytical and numerical
solutions for Davey-Stewartson equation. with power law nonlinearity, Waves in Random and

Complex Media, 21, 4, (2011), 559-590.



262 M. S. EL-AZAB, I. L. EL-KALLA ,S. A. EL MORSY EJMAA-2014/2(2)

[8] A.H. Bhrawya, M.A. Abdelkawy and Anjan Biswas, Cnoidal And Snoidal Wave Solutions

To Coupled Nonlinear Wave Equations By The Extended Jacobi’s Elliptic Function Method,

Commun Nonlinear Sci Numer Simulat, 18, (2013), 915-925.
[9] A. H. Khater, D. K. Callebaut, A. H. Bhrawy and M. A. Abdelkawy, Nonlinear periodic

solutions for isothermal magnetostatic atmospheres, Journal of Computational and Applied

Mathematics, 242, (2013), 28-40.
[10] A. H. Bhrawy, A. Biswas, M. Javidi, W. X. Ma, Z. Pnar, and A. Yldrm, New Solutions for

(1+1)-Dimensional and (2+1)-Dimensional KaupKupershmidt Equations, Results. Math., 63,

(2013), 675-686.
[11] A. H. Bhrawy, M. M. Tharwat and M. A. Abdelkawy, Integrable system modelling shallow

water waves: Kaup-Boussinesq shallow water system Indian Journal of Physics, Volume 87,

Issue 7 (2013), Page 665-671
[12] A. H. Bhrawy and M. A. Abdelkawy, Computational Study of Some Nonlinear Shallow Water

Equations, Central European Journal of Physics, 11, (2013), 518-525.
[13] A. H. Bhrawy, A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh-

Nagumo equation with time-dependent coefficients, Applied Mathematics and Computation,

222, (2013), 255-264.
[14] T. A. Abassy, M. El-Tawil, H. Kamel, The solution of KdV and mKdV equations using

Adomian Pad approximation, Int. J. Nonlinear Sci. Numer. Simulation, 5, 4, (2004), 327339.

[15] J. H. He, A new approach to nonlinear partial differential equations, Comm. Nonlinear Sci.
Numer. Simul, 2, 4, (1997), 203205.

[16] Q. Wang, Homotopy perturbation method for fractional KdVBurgers equation, Chaos Soli-

tons and Fractals, 35, (2008), 843850.
[17] M. J. Ablowitz and P. A. Clarkson, Solitons Nonlinear Evolution Equations and Inverse

Scattering, Cambridge Univ. Press, 1991.

[18] O. Comejo-Perez, J. Negro, L.M. Nieto and H.C. Rosu, Travelling-wave solutions for Kd-
VBurgers equation through factorization, Found at Phys., 36, (2006), 15871599.

[19] H. Triki, D. Milovic, T. Hayat, O. M. Aldossary and A. Biswas, Topological solitons solu-
tions of (2+1)-Dimentional KdV equation with power law nonlinearity and time dependent

coefficients, Inter. J. of Nonl. Sc. and Numer. Simul., 12, 1-8, (2011), 45-50.

[20] A. Biswas, Solitary wave solution for the generalized KdV equation with time dependent
damping and dispersion, Commun. in Non. Sc. and Numer. Simul., 14, 9-10, (2009), 3503-

3506.

[21] J. M. Burger, A mathematical model illustrating the theory of turbulence, Adv. Appl., Mech.,
1, (1948), 171199.

[22] J. D. Cole, On a quasilinear parabolic equations occurring in thermodynamics, Q. Appl.

Math. 9, (1951), 225236.
[23] H. Triki, T. Hayat, O. M. Aldossary and A. Biswas, Solutions and shock waves solutions to

Degasperis-Procesi equation with power law nonlinearity, Waves in Random and Complex

Media, 21, 4, (2011), 543-553.
[24] J. D. Fletcher, Generating exact solutions of the two-dimensional Burgers equations, Int. J.

Numer. Meth. Fluids, 3, (1983), 213226.
[25] P.C. Jain and D.N. Holla, Numerical solution of coupled Burgers D equations, Int. J. Numer.

Meth. Eng., 12, (1978), 21322.

[26] F. W. Wubs and E.D. Goede, An explicitimplicit method for a class of time-dependent partial
differential equations, Appl. Numer. Math., 9, (1992), 15781.

[27] A. R. Bahadir, A fully implicit finite-difference scheme for two-dimensional Burgers- equa-
tions, Appl. Math. Comput., 137, (2003), 131137.

[28] S. I. Zaki, A quintic B-spline finite elements scheme for the KdVB equation, Comput. Meth.

Appl. Mech. Eng., 188, (2000), 121-134.

[29] A. A. Soliman, Collocation solution of the Korteweg-de Vries equation using septic splines,
Int. J. Comput. Math., 81, (2004), 325-331.

[30] J. H. Mathews and K. D. Fink, Numerical methods using matlab, Fourth Edition, Pearson
Education International (2004).

[31] S. A. El Morsy and M. S. El-Azab, Logarithmic Finite Difference Method Applied to KdVB

Equation, American Academic Scholarly Research Journal (AASRJ), 4 , 2, 2012.

[32] M. C. Bhattacharya, A new improved finite difference equation for heat transfer during
transient change, Appl. Math. Model., 10, 1, (1986), 6870.



EJMAA-2014/2(2) COMPOSITE FINITE DIFFERENCE SCHEME 263

[33] M. C. Bhattacharya, M. G. Davies, The comparative performance of some finite difference

equations for transient heat conduction problems, Int. J. Numer. Meth. Eng., 21, 7, (1987),

13171331.
[34] R. F. Handschuh, T. G. Keith, Applications of an exponential finite-difference technique,

Numer. Heat Transfer Part A, 22, (1992), 363378.

[35] A. R. Bahadir, Exponential finite difference method applied to Kortewge de Vries equation
for small times, Appl. Math. and Comp. ,160, 3, (2005), 675- 682.

[36] Y. M. Abo Essa, T. S. Amer and Ibrahim B. Abdul-Moniem, Applications of the multigrid

technique for the numerical solution of the non-linear dispersive waves equations, Interna-
tional Journal of Mathematical Archive, 3, 12, 2012, 4903-4910.

M. S. El-Azab

Mathematical and Physical Sciences Department, Faculty of Engineering, Mansoura
University, Mansoura , Egypt

E-mail address: ms elazab@hotmail.com

I. L. El-Kalla

Mathematical and Physical Sciences Department, Faculty of Engineering, Mansoura

University, Mansoura , Egypt
E-mail address: al kalla@mans.edu.eg

S. A. El Morsy

Mathematical and Physical Sciences Department, Faculty of Engineering, Mansoura
University, Mansoura , Egypt

E-mail address: salwazaghrot@yahoo.com


	1. Introduction
	2. Composite Finite Difference Scheme (CFDS) 
	3. Von Neumann stability 
	3.1. Stability of explicit finite difference method
	3.2. Stability of Composite finite difference scheme

	4. Numerical Experiments
	5. Conclusion
	References

