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DYNAMICAL BEHAVIORS OF A NEW HYPERCHAOTIC
SYSTEM WITH ONE NONLINEAR TERM

A.M.A. EL-SAYED, H.M. NOUR, A. ELSAID, A. ELSONBATY

Abstract. This paper is devoted to introduce a novel hyperchaotic system
with only one nonlinear term. Existence and uniqueness of the solution of the
proposed system are studied. Continuous dependence on initial conditions of
the system�s solution and stability of system�s equilibrium points are investi-
gated. Dynamical behaviors are explored via theoretical analysis, bifurcation
diagrams, and phase portraits of the new system. Finally, a circuit implemen-
tation of the novel hyperchaotic system is proposed.

1. Introduction

In various disciplines of engineering, physics, biology, chemistry, and economy,
we encounter systems that undergo spatial and temporal evolution [1] and [2]. To
model, understand, and analyze these phenomena, the study of dynamical systems
is a useful tool that helps in achieving these aims. One important behavior that
exists in some dynamical systems is chaos.
Chaotic dynamical system is characterized by its sensitive dependence on initial

conditions and by having positive Lyapunov exponents for its attractor. When the
system�s attractor has more than one positive Lyapunov exponents, it is called a
hyperchaotic system. Any hyperchaotic system has the following properties: (i) an
autonomous system with a phase space of dimension at least four, (ii) dissipative,
and (iii) has at least two unstable directions. Thus, the hyperchaotic systems have
higher unpredictability and more randomness than simple chaotic systems. Some
of the applications of dynamical systems and chaos involve mathematical biology,
�nancial systems, chaos control, synchronization, electronic circuits, and neuro-
science research, while hyperchaotic systems are preferred in many applications
including secure communications, chaos based image encryption, and cryptography
[3]-[23].
Various new hyperchaotic systems are introduced and studied in literatures, see

for example [24]-[29] and references therein. However, the most of the presented
hyperchaotic system in literatures have multiterms with quadratic nonlinearity or
linear piecewise terms. The other hyperchaotic systems such as [24] contain cubic
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nonlinearity in one of the state variables of the systems. Based on modifying the
system introduced in [6], we propose a new hyperchaotic system with one cubic
nonlinear term contains two of system�s state variables. The dynamics of the new
hyperchaotic system are explored via theoretical and numerical techniques which
include center manifold theorem [30]-[33], �rst Lyapunov coe¢ cients [32], Lyapunov
exponents [34], bifurcation diagrams, and phase portraits. It is shown that the
proposed system has rich dynamics and chaotic behavior exists over a wide range
of parameters.
The rest of the paper is organized as follows: The proposed system is introduced

in section 2 along with examination of existence, uniqueness, and continuous de-
pendence on initial conditions of solution. The Hopf bifurcation and stability of
equilibrium points of the system in hyperbolic and nonhyperbolic cases are studied
in section 3. Numerical simulations are performed in section 4 to verify hyperchaos
existence. Circuit implementation of the model is presented in section 5. Section 6
contains the conclusion and the general discussions of this work.

2. The proposed hyperchaotic system

We modify the memristor based chaotic system presented in [6] to get following
hyperchaotic system

dx(t)

dt
= a1x+ b1y + c1xw

2; (1)

dy(t)

dt
= a2x+ b2y + h1z + c2w; (2)

dz(t)

dt
= b3y; (3)

dw(t)

dt
= a3x+ h2z; (4)

where a1; a2; a3; b1; b2; b3; c1; c2; h1; h2 are the parameters of system (1)-(4). The
proposed system has three equilibrium points given by E0 = (0; 0; 0; 0) and E� =

(�h2
a3
�z; 0; �z; (

a2h2
a3c2

�h1
c2
)�z); where �z = �

vuut �a1

c1(
a2h2
a3c2

� h1
c2
)2
and c1(a2h2�a3h1) 6= 0:

2.1. Existence and uniqueness of the solution. System (1)-(4) can be written
in the following form:

DX(t) = F(X(t)); (5)

t 2 (0; T ];

with initial conditions of the system given by

X(0) = X0; (6)

where

X =

2664
x
y
z
w

3775 ; X0=

2664
x0
y0
z0
w0

3775 ; and F(X) =
2664

a1x+ b1y + c1xw
2

a2x+ b2y + h1z + c2w
b3y

a3x+ h2z

3775 : (7)
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The supremum norm utilized in the following analysis is de�ned for the class of
continuous function C[0; T ] by

k	k = sup
t2(0;T ]

j	(t)j ; 	(t) 2 C[0; T ]; (8)

and for a matrix M =[mij [t]], it is de�ned by

kMk =
X
i;j

sup
t2(0;T ]

jmij [t]j : (9)

The existence and uniqueness of the solution is studied in the region 
�J where
J = (0; T ] and


 = f(x; y; z; w) : maxfjxj ; jyj ; jzj ; and jwjg � Ag: (10)

The solution of (5) and (6) is given by:

X = X0 +

Z t

0

F(X(s))ds: (11)

From the equivalence of the integral equation (11) and the system (5)-(6), de-
noting the right hand side of (11) by G(X); then

G(X1)�G(X2) =

Z t

0

(F(X1(s))� F(X2(s)))ds; (12)

and therefore

jG(X1)�G(X2)j �
Z t

0

j(F(X1(s))� F(X2(s)))jds: (13)

After some calculations, the following inequality is obtained

kG(X1)�G(X2)k � K kX1 �X2k ; (14)

where

K = T maxf(
3X
i=1

jaij+ jc1jA2); (
3X
i=1

jbij); (2 jc1jA2 + jc2j); (
2X
i=1

jhij)g: (15)

Then if K < 1; the mapping X = G(X) is a contraction mapping and the fol-
lowing theorem gives the su¢ cient condition for existence and uniqueness of the
solution of system (1)-(4).

Theorem 1. The su¢ cient condition for existence and uniqueness of the solu-
tion of system (1)-(4) with initial conditions X(0) = X0 in the region 
 � J is:
T maxf(

P3
i=1 jaij+ jc1jA2); (

P3
i=1 jbij); (2 jc1jA2 + jc2j); (

P2
i=1 jhij)g < 1:

2.2. Continuous dependence on initial conditions. In this subsection we de-
termine the range of values for the parameters where the solution of system (1)-(4)
exhibits continuous dependence on initial conditions. As continuous dependence on
initial conditions opposes sensitive dependence on initial conditions that character-
izes the chaotic behavior. The main bene�t from knowing this range of parameters
is that it theoretically enables researchers to determine the range of values of the
system�s parameters and time T where the system do not exhibit chaotic behavior.

Assume that there are two sets of initial conditions to system (5), X01 and X02;
which satisfy

kX01 �X02k � �: (16)
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Also, assume that the condition of Theorem (1) is satis�ed. Then

X1 = X01 +

Z t

0

F(X1(s))ds; (17)

X2 = X02 +

Z t

0

F(X2(s))ds; (18)

and the following inequality is obtained

kX1�X2k � kX01�X02k+K kX1 �X2k ; (19)

and therefore
(1�K) kX1�X2k � kX01 �X02k ; (20)

where
K < 1; (21)

is de�ned by (15).

Denoting
�

(1�K) by �; then the following relation holds

kX1�X2k � �: (22)

Theorem 2. For system (1)� (4) satisfying the condition of Theorem (1) and K
de�ned by (15): Then, 8 � > 0 9 �(�) = (1�K)� > 0 such that kX01 �X02k � �
implies that kX1�X2k � � i.e. the solution exhibits continuous dependence on
initial conditions.

It is important to notice that the condition of preserving continuous dependence
on initial conditions for the proposed system implies the existence of small range of
time and values of system�s parameters that are corresponding to regular behavior.
Therefore, it can be estimated that the nonregular and chaotic behavior will exist
for a wide range of values. This result is veri�ed by numerical simulations in section
4.

3. Dynamical analysis of the proposed hyperchaotic system

To simplify study of dynamical behavior of system (1)-(4) in the following subsec-
tions, the values of some system�s parameters are �xed as follows: a2 = 7:82; a3 =
11:6; b2 = �1:5; b3 = 7:8125; c1 = �19; h1 = �8:5; and h2 = �5:731; whereas, the
remaining parameters are allowed to vary.

3.1. Stability of E0.

Theorem 3. The equilibrium point E0 of system (1)-(4) is local asymptotically
stable if the following conditions are satis�ed: (1): a1 < 1:5; (2): c2(44:7734 �
11:6b1) > 66:4063a1; (3): a1c2 < 0; and (4): 44: 773a31c2 � 134: 56b21c22 � 17: 4
a21b1c2 � 90: 712a1b21c2 � 99: 609a31 � 519: 29a21b1 � 67: 160a21c2 +136: 07b21c2 +1038:
7b1c

2
2 � 394: 08a1b1c2 +149: 41a21 � 2004: 6c22 +778: 94a1b1 +2973: 2a1c2 � 1680: 7b1

c2 � 6614: 7a1 + 4459: 8c2 > 0:

Proof. The Jacobian of system (1)-(4) evaluated at E0 is given by

J =

2664
a1 b1 0 0
7:82 �1:5 �8:5 c2
0 7:8125 0 0
11:6 0 �5:731 0

3775 ; (23)
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where the characteristic equation is

�4 + (1: 5� a1)�3 + (66: 406� 1:5a1 � 7:82b1)�2 + (44: 773c2 � 66: 406a1
�11: 6b1c2)�� 44: 773a1c2 = 0: (24)

Let p1 = 1: 5 � a1; p2 = 66: 406 � 1:5a1 � 7:82b1; p3 = 44: 773c2 � 66: 406a1 � 11:
6b1c2; and p4 = �44: 773a1c2 then all the roots of equation (24) have negative real
parts if the conditions of Routh Hurwitz criterion are satis�ed i.e.

pi > 0; i = 1; 3; 4 and p1p2p3 > p21p4 + p
2
3; (25)

and therefore the conditions of the theorem are obtained. �

Fig.1 shows the results of numerical simulations for a1 = 0:6; b1 = 5 and c2 = �4
which satisfy the stability conditions of E0 and the corresponding Jacobian matrix
has the following eigenvalues: �0:185463� 4:59221i and �0:264537� 2:23992i:

Fig.1 (a): x� y plane Fig.1 (b): y � z plane
Fig.1: Stable equilibrium point E0 of system (1)-(4) at a1 = 0:6; b1 = 5 and c2 = �4:

3.2. Stability of E+ and E�.

Theorem 4. The equilibrium point E+ (E�) of system (1)-(4) is local asymptot-

ically stable if the following conditions are satis�ed: (1): b1 <
3: 708a1 + 44: 773

11: 6

for c2 > 0 or b1 >
3: 708a1 + 44: 773

11: 6
for c2 < 0; (2): a1c2 > 0; and (4):

43: 013a1b1c
2
2 � 134: 56b21c22 � 166: 03a1c22 + 136: 07b21c2 + 1038: 7b1c22 � 43: 495a1b1

c2 + 167: 89a1c2 � 1680: 7b1c2 � 2004: 6c22 + 4459: 85c2 > 0:

Proof. The Jacobian of system (1)-(4) evaluated at E1 (E2) is given by

J =

2664
0 b1 0 �0:2131a1c2
7:82 �1:5 �8:5 c2
0 7:8125 0 0
11:6 0 �5:731 0

3775 ; (26)
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where the characteristic equation is

�4 + 1: 5�3 + (2: 472a1c2 � 7: 82b1 + 66: 406)�2 + (3: 708a1c2 � 11: 6b1c2
+44: 773c2)�+ 89: 547a1c2: (27)

Let p1 = 1: 5; p2 = 2: 472a1c2 � 7: 82b1 + 66: 406; p3 = 3: 708a1c2 � 11: 6b1c2 + 44:
773c2; and p4 = 89: 547a1c2 then all the roots of equation (27) have negative real
parts if the conditions of Routh Hurwitz criterion (25) are satis�ed. From (25),
the conditions of local asymptotic stability of equilibrium point E+ (E�) can be
obtained. �

Fig.2 shows the results of numerical simulations for a1 = 0:5; b1 = 2 and c2 = 2 at
which E+ = (0:0346; 0; 0:07; 0:162) is local asymptotically stable where �0:300466�
7:13091i and �0:449534 � 1:24732i are the eigenvalues of corresponding Jacobian
matrix .

Fig.2 (a): x� y plane Fig.2 (b): x� w plane

Fig.2: Stable equilibrium point E+ of system (1)-(4) at a1= 0:5; b1= 2 and c2= 2:

3.3. Hopf bifurcation about E0. Substitute � = i! in (24), where ! 2 R+ and
i is the imaginary unit, yields

!4 � i(1: 5� a1)!3 � (66: 406� 1:5a1 � 7:82b1)!2 + i(44: 773c2 � 66: 406a1
�11: 6b1c2)! � 44: 773a1c2 = 0; (28)

then solving the following two equations

!4 � (66: 406� 1:5a1 � 7:82b1)!2 � 44: 773a1c2 = 0; (29)

(1: 5� a1)!3 + (44: 773c2 � 66: 406a1 � 11: 6b1c2)! = 0; (30)

we can obtain

! = !0 =

r
44: 773c2 � 66: 406a1 � 11: 6b1c2

1: 5� a1
; b1 = b

� (31)

where b� is depending on a1 and c2:
We set a1 = 5:9 and c2 = 2:7 and take b1 as a bifurcation parameter, then

b� = 0:467049; !0 = 8: 055 7: (32)
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From (24), let � = �+ i! and compute the value of
d�

db1
at b1 = b� and ! = !0 to

obtain �
d�

db1

�
b1=b

�
!=!0

= �0:328557 6= 0 (33)

and therefore the conditions of existence of Hopf bifurcation are satis�ed.
The stability of limit cycle is determined using the �rst Lyapunov coe¢ cient as

follows:
At the critical parameter value the Jacobian matrix evaluated at critical point

b� has the form

J =

2664
5:9 0:467049 0 0
7:82 �1:5 �8:5 2:7
0 7:8125 0 0
11:6 0 �5:731 0

3775 ; (34)

and the vectors

q =

2664
�0:0180353� i0:024625

0:652566
�i0:632863

0:414772 + i0:0259703

3775 ; p =
2664
�0:503485 + i0:400889
0:72189� i0:142706
0:0215536� i0:79573
0:0478301 + i0:241953

3775 (35)

are eigenvectors of J and JT that are corresponding to the eigenvalues i8: 0557 and
�i8: 0557; respectively, i.e.

Jq = i8: 0557q; JT p = �i8: 0557p and hp; qi = 1 (36)

where hp; qi =
nX
k=1

�pkqk:

Suppose that the system (1)-(4) is written as

_X(t) = A(�) + F1(X; �); (37)

where F1 = O(kXk2) and � = b1 is the bifurcation parameter. Then F1(X; �0) can
be represented by

F1(X; �) =
1

2
B(X;X) +

1

6
C(X;X;X) +O(kXk4); (38)

in which B(X;Y ) and C(X;Y; U) are bilinear and trilinear vector functions of X;Y;
and U 2 Rn, n = 4; and they can be obtained by

Bi(X;Y ) =
nX

j;k=1

@2Fi(�; b
�)

@�j@�k
j
�=0
xjyk; i = 1; 2; :::; n (39)

Ci(X;Y; U) =
nX

j;k;m=1

@3Fi(�; b
�)

@�j@�k@�m
j
�=0
xjykum; i = 1; 2; :::; n: (40)

After some calculations, we obtain the forms of B(X1; X2) and C(X1; X2; X3)
as
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B(X1; X2) =

2664
0
0
0
0

3775 ; C(X1; X2; X3) =
2664
�38(x1w2w3 � x2w1w3 � x3w1w2)

0
0
0

3775 ;
(41)

for Xi = [xi; yi; zi; wi]T : Then the the �rst Lyapunov coe¢ cient l1 is given by [32]

l1 =
1

2!0
Re[hp; C(q; q; �q)i]

� �0:05 < 0: (42)

The Lyapunov coe¢ cient is negative, thus the Hopf bifurcation is nondegenerate
and supercritical such that a stable limit cycle is generated for b1 > b�; see Fig.3.
Now, we �x b1 = 0:467049, �nd the other values of a1 and c2 at which Hopf

bifurcation occurs, and represent these values by a curve in the plane of parameters
a1 and c2 as shown in Fig.4. Generalized Hopf (GH) bifurcation or Bautin bifur-
cation occurs when the equilibrium point in two parameter family of autonomous
system of di¤erential equations has a pair of purely imaginary eigenvalues and the
�rst Lyapunov coe¢ cient for the Andronov-Hopf bifurcation vanishes. Zero-Hopf
(ZH) bifurcation or saddle-node Hopf bifurcation occurs when the equilibrium point
in two parameter family of autonomous system of di¤erential equations has a zero
eigenvalue and a pair of purely imaginary eigenvalues [32].
Choosing di¤erent set of values of parameters, b1 = 5 and c2 = �4; and vary-

ing parameter a1; we illustrate the dynamics examined from computations such as
Pitchfork bifurcation (or Branch Point (BP)) and Hopf bifurcation (H) in bifurca-
tion diagram of Fig.5.

Fig.3 (a) Fig.9 (b)

Fig.3: A stable limit cycle around E0 exists at b1 = 0:51:
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Fig.4: The double parameters Hopf bifurcation diagram
in a1�c2 plane.

Fig.5: Di¤erent dynamics of system (1)-(4) exist at
b1 = 5 and c2 = �4:

3.4. Nonhyperbolic case of E0. Let a1 = ac where the critical value ac = 0;
then one of the roots of equation (24) equals zero and the equilibrium point E0
is nonhyperbolic. We use the center manifold theorem to investigate the stability
of E0 when one root of equation (24) equals zero and the other roots are negative
reals as follows:
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Proposition 5. Suppose that the following relations hold

b1 = 0:127 88(�22 + �2�3 + �
2
3)� 0:191 82(�2 + �3) + 8: 491 9, (43)

c2 =
�2�3(50048(�2 + �3)� 75072)

74240(�22 + �2�3 + �
2
3)� 111360(�2 � �3) + 2:68918� 106

; (44)

�1 = 0:5(3� 2(�2 + �3)); (45)

where �i 2 R�; then the characteristic equation corresponding to E0 is given by

�(�� �1)(�� �2)(�� �3) = 0: (46)

For example, assume that b1 = 8:39722 and c2 = �0:00228; then the eigenvalues
of Jacobian matrix corresponding to E0 are 0;�0:4;�0:5; and �0:6: To study the
stability of E0; the following transformations are de�ned

0BB@
x
y
z
w

1CCA =

0BB@
�0:000243 �0:0793 0:0949 0:06357

0 0:00472 �0:00678 �0:003028
�0:000492 �0:0738 0:0883 0:05915

1 0:9941 �0:9915 �0:99622

1CCA
0BB@
x1
y1
z1
w1

1CCA ;
(47)

� = a1 � ac; (48)

then the system (1)-(4) is transformed to the following standard form

0BB@
_x1
_y1
_z1
_w1

1CCA =

0BB@
0 0 0 0
0 �0:5 0 0
0 0 �0:6 0
0 0 0 �0:4

1CCA
0BB@
x1
y1
z1
w1

1CCA+
0BB@
g1
g2
g3
g4

1CCA ; (49)

_� = 0;
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where

g1 = �0:85�x1 � 277:7�y1 + 332:3�z1 + 222:6�w1 + 16:2x31 + 5213:7y31
� 6208:13z31 � 4197:62w31 � 4261:7x21w1 + 5307:91x21y1 � 6346:6x21z1
� 16640:81y21z1 � 14629:42y21w1 + 10505:21x1y21 + 12538:06x1z21
+ 8443:14x1w

2
1 + 17635:21y1z

2
1 + 13613:32y1w

2
1 � 16633:104w1z21

� 14622:6z1w21 � 23048:6x1y1z1 � 18952:8x1y1w1 + 21000:7x1
z1w1 + 31267:7y1z1w1;

g2 = �20:3�x1 � 6611�y1 + 7912:8�z1 + 5300�w1 + 385x31 + 124133:4y31
� 147808:8z31 � 99941:11w31 + 126374:92x21y1 � 151105:5x21z1
� 101468:1x21w1 � 396200:8y21z1 � 396017z21w1 + 250119x1y21
+ 298518:8x1z

2
1 + 201023x1w

2
1 + 419876:1y1z

2
1 + 324120y1w

2
1�

451247:3x1y1w1 � 348312y21w1 � 348150:7z1w21 � 548765x1y1z1
+ 500006:4x1z1w1 + 744455:2y1z1w1;

g3 = �8:5�x1 � 2758:6�y1 + 3302�z1 + 2211:6�w1 + 1601x31 + 51798y31
� 61677:4z31 � 41703:1w31 + 52733:4x21y1 � 63053x21z1 � 42340:4x21w1
� 165326y21z1 � 145342:9y21w1 � 165249:3z21w1 + 104369:2x1y21
+ 124565:3x1z

2
1 + 83882:4x1w

2
1 + 175205y1z

2
1 + 135248:1y1w

2
1

� 145276z1w21 � 228987x1y1z1 � 188295:5x1y1w1 + 208642x1z1w1
+ 310644:7y1z1w1:

g4 = �12:7�x1 � 4130�y1 + 4943:28�z1 + 3311�w1 + 240:4x31 + 77548:9y31
� 92339:4z31 � 62435:4w31 + 78949:2x21y1 � 94399x21z1 � 63389:4x21w1
� 247515:5y21z1 � 217598y21w1 � 247401z21w1 + 156255x1y21 + 186491x1z21
+ 125584x1w

2
1 + 262306y1z

2
1 + 202485y1w

2
1 � 217497z1w21 � 342826x1y1z1

� 281904x1y1w1 + 312365x1z1w1 + 465078y1z1w1:
We take the parameter � as the bifurcation parameter of system (49) and also

as a new independent variable of system (49). Thus, from center manifold theory
[30]-[33], there exists a center manifold for (49) that is given by:

	c(0) = f(x1; y1; z1; w1; �) 2 R5jy1 = �1(x1; �); z1 = �2(x1; �); w1 = �3(x1; �);
jx1j < �; j�j < �; �i(0; 0) = 0; D�i(0; 0) = 0; i = 1; 2; 3g; (50)

for " and � su¢ ciently small. The center manifold 	c(0) is computed by assuming
that �i(x1; �) have the following forms

�1(x1; �) = �1x
2
1 + �2�x1 + �3�

2 + :::;

�2(x1; �) = �1x
2
1 + �2�x1 + �3�

2 + :::; (51)

�3(x1; �) = 1x
2
1 + 2�x1 + 3�

2 + :::;

The center manifold must satisfy

Dx1�(x1; �)[Ax1 + g1(x1; �(x1; �); �)]�B�(x1; �)� ĝ(x1; �(x1; �); �) = 0; (52)
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where A = 0; B =

0@ �0:6 0 0
0 �0:5 0
0 0 �0:4

1A ; � =
0@ �1
�2
�3

1A ;and ĝ =
0@ g2
g3
g4

1A : By
substituting from Eq. (51) into Eq. (52) and then equating terms of like powers to
zero, we get

�1 = �3 = 0; �2 = �40:51; (53)

�1 = �3 = 0; �2 = �14:085; (54)

1 = 3 = 0; 2 = �31:63; (55)

and therefore the vector �eld reduces to the center manifold that is de�ned by

_x1 = �0:851�x1 + 16:16x31 � 475:2�2x1 + 9197:2�x31 + 94527:2�2x31
+245122�3x31; (56)

_� = 0: (57)

Lemma 6. The dynamics of system (1)-(4) about E0 at parameters values used
in subsection 3.4 is restricted locally to dynamics of center manifold (56)-(57).

4. Examination of chaotic behavior

In this section, we examine and illustrate the existence of chaotic behavior of
the new system using di¤erent approaches.
First, the values of the system�s parameters are chosen as follows: a1 = 5:9; c1 =

�19; a2 = 7:82; b2 = �1:5; h1 = �8:5; c2 = 2:7; b3 = 7:8125; a3 = 11:6, and h2 =
�5:731: We vary the value of parameter b1 to change the dynamical behavior of
the system (1)-(4). Table 1 illustrates the values of Lyapunov exponents (LEs),
calculated using the algorithm given in [34], for some selected values of parameter
b1:

Table 1: The values of Lyapunov exponents computed at di¤erent values of b1:
b1 LEs Notes
0:99 0:00863944; 0:00572583;�0:118931;�1:20856 Torus
1:36 0:76076; 0:1281503;�0:0883511;�2:84797 Hyperchaotic
2:11 1:015304; 0:027329;�0:9708;�2:4902 Hyperchaotic
2:65 0:0263368;�0:445012;�0:462173;�3:6269 Periodic
5:1 0:786302;�0:00914677;�1:19776;�7:17582 Chaotic

The bifurcation diagrams are used to give a full view of the dynamics of the new
system (1)-(4) and illustrate the complexity of system�s behavior. Fig.6 shows the
bifurcation diagrams that are obtained at di¤erent values of parameter b1: Second,
we �x b1 = 1:36 and vary parameter a1 of system (1)-(4) to obtain the bifurcation
diagram in Fig.7 (a). Then we also �x b1 = 1:36 but vary parameter b3 to get the
bifurcation diagrams in Fig.7 (b) to Fig.7 (d).
From the bifurcation diagrams, we deduce that the proposed system does not

exhibit classical period doubling route to chaos for the selected values of parame-
ters. But, the system shows the existence of tangent bifurcation that produces the
periodic windows exist in Fig.6 and Fig.7 along with sudden changes in chaotic at-
tractors with parameter variation and intermittency route to chaos. These sudden
changes are called crises and there are three types of crises [35]. In the �rst type,
the boundary crisis, a chaotic attractor is suddenly destroyed (or created) as the
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parameter passes through a critical value. In the second type, the interior crisis,
the size of the attractor in phase space suddenly increases. In the third type, the
attractor merging crisis, two or more chaotic attractors merge to form one chaotic
attractor. So, the investigated behaviors include cascades of tangent bifurcations
(and therefore periodic windows), intermittency route to chaos, and crises.

Fig.6 (a) Fig.6 (b)

Fig.6 (c) Fig.6 (d)

Fig.6: Bifurcation diagrams of the system (1)-(4) obtained via state variable x for (a)
b1 2 [1; 4:3], (b) b1 2 [4:3; 5:3];(c) b1 2 [1:8; 2]; and (d) b1 2 [4:37; 4:9]
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Fig.7 (a) Fig.7 (b)

Fig.7 (c) Fig.7 (d)

Fig.7: Bifurcation diagrams of the system (1)-(4) obtained via state variable x at
b1= 1:36 for (a) 4 � a1� 7;(b) 6 � b3� 10; (c) 8:5 � b3� 9;and (d) 8:6 � b3� 8:8:
Also, from Fig.6 and Fig.7, it is shown that numerical results agree with previous

estimates in section 2 that there are wide ranges of values of systems�s parameters
at which nonregular behavior exists. Examples of phase portraits of state variables
x and y obtained at di¤erent values of parameter b1 of the system (1)-(4) are
illustrated in Fig.8.

5. Circuit realization of the proposed system

Fig.9 illustrates the proposed circuit implementation of system (1)-(4) where the
values of circuit elements used are illustrated in the �gure. The value of parameter

b1 is related to resistor R in circuit schematic by b1 =
1

R
where R is measured in

mega ohms.
Circuit simulations are carried out using Multisim 11 and the outputs of the

proposed circuit are illustrated on the oscilloscope. Fig.10 shows some examples of
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the results of circuit simulations where it is clear that these results agree with the
results of numerical simulations, see Fig.8 (c) and Fig.8 (d).

Fig.8 (a) Fig.8 (b)

Fig.8 (c) Fig.8 (d)

Fig.8: Phase portraits of state variables x and y of the system (1)-(4) obtained for (a)
b1= 0:99; (b) b1= 1:36; (c) b1= 2:11; and (d) b1= 5:1:
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Fig.9: Circuit implementation of new hyperchaotic system (1)-(4) for b1= 1:36:

Fig.10 (a) Fig.10 (b)

Fig.10: The outputs of circuit simulations represent phase portraits of state variables
x and y in cases of (a) b1= 2:11 and (b) b1= 5:1

6. Conclusion

This paper is an attempt to introduce and investigate the dynamical behavior of a new
4D hyperchaotic system using theoretical and numerical methods, then realize these dy-
namics using an electronic circuit. It is shown that the proposed model has rich dynamics
and chaos that exists over a wide range of parameters of the system and therefore has
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the advantage of possessing a large domain of secret keys which is more suitable for ap-
plications related to chaos based image and real-time video encryption. The future work
can include the design and implementation of secure communication scheme based on the
proposed new hyperchaotic system.
Acknowledgment The authors thank the referees for their valuable comments

and suggestions.

References

[1] P. N.V. Tu, Dynamical Systems- An Introduction with Applications in Economics
and Biology, Springer-Verlag, 1995.

[2] S.H. Strogatz, Nonlinear dynamics and chaos with applications to Physics, Biology,
Chemistry, and Engineering, Westview Press, 2001.

[3] A. Elsonbaty, A. Elsaid, and H.M. Nour, Circuit realization, chaos synchronization
and estimation of parameters of a hyperchaotic system with unknown parameters,
Journal of the Egyptian Mathematical Society, (2014) In Press, Available online 23
January 2014.

[4] E.M. Elabbasy, A.A. Elsadany, and Y. Zhang, Bifurcation analysis and chaos in a
discrete reduced Lorenz system, Appl. Math Comp. 228 (2014) 184-194.

[5] A.S. Hegazi and A.E. Matouk, Chaos synchronization of the modi�ed autonomous
Van der Pol-Du¢ ng circuits via active control, Applic. Chaos Nonlinear Dyn Sci.
Engineering-Understanding Complex Systems, 3 (2013) 185-202.

[6] A.M.A. El-Sayed, A. Elsaid, H.M. Nour, and A. Elsonbaty, Dynamical behavior, chaos
control and synchronization of a memristor-based ADVP circuit, Commun. Nonlinear
Sci. Numer. Simulat. 18 (2013) 148�170.

[7] A. Talukdar, A.G. Radwan, and K.N. Salama, Nonlinear dynamics of memristor based
3rd order oscillatory system, Microelectronics journal 43 (2012) 169-175.

[8] A.A. Elsadany, Competition analysis of a triopoly game with bounded rationality,
Chaos, Solitons & Fractals 45 (2012) 1343-1348.

[9] C. Zhu, A novel image encryption scheme based on improved hyperchaotic sequences,
Optic. Communic. 285 (2012) 29-37.

[10] M.M. El-Dessoky, M. T. Yassen, and E. Saleh, Adaptive modi�ed function projective
synchronization between two di¤erent hyperchaotic dynamical systems, Mathematical
Problems in Engineering, Volume 2012, Article ID 810626, 16 pages.

[11] L. Kocarev and S. Lian, Chaos-Based Cryptography, Springer, 2011.
[12] M.L. Barakat, A.G. Radwan, and K.N. Salama, Hardware realization of chaos based

block cipher for image encryption, International Conference on Microelectronics
(ICM) (2011) 1-5.

[13] M.M. El-Dessoky, Anti-synchronization of four scroll attractor with fully unknown
parameters, Nonlin. Anal.: Real World Applic 11(2010) 778�783.

[14] G.M. Mahmoud and E.E. Mahmoud, Complete synchronization of chaotic complex
nonlinear systems, Nonlinear Dyn. 62 (2010) 875-882.

[15] B. Muthuswamy and L.O. Chua, Simplest chaotic circuit, Internat. J. Bifur. Chaos,
20 (2010) 1567�1580.

[16] S. Banerjee, Synchronization of time-delayed systems with chaotic modulation and
cryptography, Chaos, Solitons & Fractals 42 (2009) 745-750.

[17] H.N. Agiza, E.M. Elabbasy, H. El-Metwally, and A.A. Elsadany, Chaotic dynamics of
a discrete prey-predator model with Holling type II, Nonlinear Analysis: Real World
Applications 10 (2009) 116�129.

[18] A.E. Matouk, Dynamical analysis, feedback control and synchronization of Liu dy-
namical system, Nonlinear Analysis: Theory Methods Applic. 69 (2008) 3213�3224.

[19] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability
and Bursting, Mit Press 2007.

[20] P. Stavroulakis, Chaos Applications in Telecommunications, CRC Press, 2006.
[21] A.G. Radwan, A.M. Soliman, and A. El-Sedeek, MOS realization of the modi�ed

Lorenz chaotic system, Chaos, Solitons & Fractals 21 (2004) 553-561.



18 A. M. A. EL-SAYED, H. M. NOUR, A. ELSAID, A. ELSONBATY EJMAA-2015/3(1)

[22] E.M. Elabbasy, H.N. Agiza, and M.M. El-Dessoky, Synchronization of modi�ed Chen
system, Internat. J. Bifur. Chaos 14 (2004) 3969-3979.

[23] H.N. Agiza, Controlling chaos for the dynamical system of coupled dynamos, Chaos,
Solitons & Fractals, 13 (2002) 341-352.

[24] A. Hoof, D.T. da Silva, C. Manchein, and H.A. Albuquerque, Bifurcation structures
and transient chaos in a four-dimensional Chua model, Phys. Lett. A 378 (2014)
171�177.

[25] K. Deng and S. Yu, Hopf bifurcation analysis of a new modi�ed hyperchaotic Lü
system, Optik 124 (2013) 6265�6269.

[26] D.E. Zeng, C.Z. Qiang, C.Z. Ping, and N.J. Yun ,Pitchfork bifurcation and circuit im-
plementation of a novel Chen hyper-chaotic system, Chin. Phys. B 21 (2012) 030501-9.

[27] Q. Yang and Y. Liu, A hyperchaotic system from a chaotic system with one saddle
and two stable node-foci, J. Math. Anal. Appl. 360 (2009) 293�306.

[28] Z. Chen, Y. Yang, G. Qi, and Z. Yuan, A novel hyperchaos system only with one
equilibrium, Phys. Lett. A 360 (2007) 696�701.

[29] O.E. Rossler, An equation for hyperchaos, Phys. Lett. A 71 (1979) 155-157.
[30] M. Han and P. Yu, Normal Forms, Melnikov Functions and Bifurcations of Limit

Cycles, Springer-Verlag 2012.
[31] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos,

Springer-Verlag, New York 2003.
[32] Y.A. Kuznetsov, Elements of applied bifurcation theory. 2nd ed. New York: Springer-

Verlag 1998.
[33] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bi-

furcations of Vector Fields, Springer-Verlag, New York 1983.
[34] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov expo-

nents from a time series, Phys. D 16 (1985) 285-317.
[35] E. Ott, Chaos in dynamical systems, Cambridge University Press 1993.

Ahmed M. A. El-Sayed, Faculty of Science, Alexandria University, Alexandria, Egypt
E-mail address : amasayed5@yahoo.com, amasayed@hotmail.com

�H.M. Nour
E-mail address : hanour@mans.edu.eg

�A. Elsaid
E-mail address : a.elsaid@ymail.com

�A. Elsonbaty
E-mail address : sonbaty2010@gmail.com

�Mathematics & Engineering Physics Department, Faculty of Engineering, Mansoura
University, Mansoura, 35516, Egypt


	1. Introduction
	2. The proposed hyperchaotic system
	2.1. Existence and uniqueness of the solution
	2.2. Continuous dependence on initial conditions

	3. Dynamical analysis of the proposed hyperchaotic system
	3.1. Stability of E0
	3.2. Stability of E+ and E-
	3.3. Hopf bifurcation about E0
	3.4. Nonhyperbolic case of E0

	4. Examination of chaotic behavior
	5. Circuit realization of the proposed system
	6. Conclusion
	References

