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EXISTENCE AND STABILITY OF SOLUTIONS FOR SOME

CLASS OF NEUTRAL STOCHASTIC PARTIAL

INTEGRO-DIFFERENTIAL SYSTEMS WITH INFINITE DELAY

CHINNASAMY. PARTHASARATHY

Abstract. This paper is concerned with the existence, uniqueness and sta-
bility of mild solution to neutral stochastic functional integrodifferential equa-

tions with non-Lipschitz condition and Lipschitz condition. Furthermore, we
discuss the existence of mild solutions for the equations are discussed by means
of semigroup theory and theory of resolvent operator. Under some suitable as-
sumptions, the results are obtained by using the method of successive approx-

imation and Bihari’s inequality. Moreover, an example is given to illustrate
our results.

1. Introduction

Neutral stochastic differential equation occurs in many areas of science and en-
gineering and has attained much attention in the past decades. The partial inte-
grodifferential equations has wide applications in the field of mechanical, electrical
and so on., and refer [14]. For abstract model of partial integrodifferential equa-
tions with resolvent operators, see for instance [7, 9, 13]. The deterministic model
often fluctuate due to noise. Under this circumstance we move the deterministic
model problems to stochastic model problems, for more details reader may refer
[4, 8, 10, 12, 19]. The existence and uniqueness of the neutral stochastic differential
equations with infinite delay have been studied by many authors [6, 17]. Recently,
the authors have established the problem with Lipschitz and non-Lipschitz condi-
tion, we suggest [2, 3, 11, 18, 21, 22, 24] and reference therein.

In [1] Anguraj et al. studied the impulsive stochastic neutral functional differ-
ential equations under non-Lipschitz condition and Lipschitz condition, whereas
A. Lin et al. [18] has established on neutral impulsive stochastic integrodifferential
equations with infinite delay via fractional operators and H. Bin Chen [6] has proved
the existence and uniqueness for the solution of neutral stochastic functional dif-
ferential equations with infinite delay, then A. Vinodkumar [24] has examined the
existence, uniqueness and stability results of impulsive stochastic semilinear func-
tional differential equations with infinite delay. Recently, Y. Ren [23] has described
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the existence, uniqueness and stability of mild solutions for time-dependent stochas-
tic evolution equations with poisson jums and infinite delay. Moreover, we study
the stability through the continuous dependence on the initial values by means of
Bihari’s inequality. For more details reader may refer [2, 12, 20].

Inspired by the above mentioned works [6, 9, 23, 24], the purpose of this paper
is to study the existence, uniqueness and stability for neutral stochastic functional
integrodifferential equations with infinite delay in a real separable Hilbert space:

d[x(t)− g(t, xt)] = A

[
x(t) +

∫ t

0

f(t− s)x(s)ds

]
dt+ h(t, xt)dt

+ σ(t, xt)dw(t), t ∈ J := [0, T ], (1.1)

x0 = φ ∈ B. (1.2)

Here, the state x(·) takes the values in a real separable Hilbert space H with
inner product (·, ·) and the norm ∥ · ∥, A is the infinitesimal generator of strongly
continuous semigroup of bounded linear operator {R(t), t ≥ 0} on H, and f(t), t ∈
J is a bounded linear operator. The history xt : (−∞, 0] → H, xt(θ) = x(t + θ),
for t ≥ 0, belongs to the phase space B, which will be described axiomatically in
Preliminaries. Suppose {w(t); t ≥ 0} is a given K-valued Brownian motion with a
finite trace nuclear covariance operator Q ≥ 0 defined on a complete probability
space (Ω,F , P ) equipped with a normal filtration {Ft}t≥0, which is generated by
Wiener process w. we are also employing the same notation ∥ · ∥ for the norm
L(K,H), where L(K,H) denotes the space of all bounded linear operator from
K into H. Assume that h : R+ × B → H and σ : R+ × B → LQ(K,H), where
R+ = [0,∞) are Borel measurable and g : R+ → B is continuous. Here, LQ(K,H)
denotes the space of all Q-Hilbert-Schmidt operator from K into H, which will be
defined in Section 2.

The substance of the paper is organised as follows. In Section 2, we recapitulate
some basic definitions, lemmas, notations, and theorems which will be used to
develop our results. In Section 3 and 4, we give several sufficient conditions to
prove the existence, uniqueness and stability for the problem (1.1)-(1.2) respectively.
Section 5 is reserved for an example is to illustrate the efficiency of the obtained
results.

2. Preliminaries

Let (K, ∥ · ∥K) and (H, ∥ · ∥H) be the two real separable Hilbert space with inner
product ⟨·, ·⟩K and ⟨·, ·⟩H , respectively. We denote L(K,H) be the set of all linear
bounded operator from K into H, equipped with the usual operator norm ∥ · ∥. In
this article, we use the symbol ∥ · ∥ to denote norms of operator regardless of the
space involved when no confusion possibly arises.

Let (Ω,F , P ;H) be the complete probability space furnished with a complete
family of right continuous increasing σ- algebra {Ft, t ∈ J} satisfying Ft ⊂ F .
An H- valued random variable is an F- measurable function x(t) : Ω → H and a
collection of random variables S = {x(t, ω) : Ω → H \ t ∈ J} is called stochastic
process. Usually we write x(t) instead of x(t, ω) and x(t) : J → H in the space of S.
Let {ei}∞i=1 be a complete orthonormal basis of K. Suppose that {w(t) : t ≥ 0} is a
cylindrical K-valued wiener process with a finite trace nuclear covariance operator
Q ≥ 0, denote Tr(Q) =

∑∞
i=1 λi = λ < ∞, which satisfies that Qei = λiei. So,
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actually, ω(t) =
∑∞

i=1

√
λiωi(t)ei, where {ωi(t)}∞i=1 are mutually independent one-

dimensional standard Wiener processes. We assume that Ft = σ{ω(s) : 0 ≤ s ≤ t}
is the σ-algebra generated by ω and Ft = F . Let Ψ ∈ L(K,H) and define

∥Ψ∥2Q = Tr(ΨQΨ∗) =
∞∑

n=1

∥
√

λnΨen∥2.

If ∥Ψ∥Q < ∞, then Ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H)
denote the space of all Q-Hilbert-Schmidt operators Ψ : K → H. The completion
LQ(K,H) of L(K,H) with respect to the topology induced by the norm ∥ · ∥Q
where ∥Ψ∥2Q = ⟨Ψ,Ψ⟩ is a Hilbert space with the above norm topology.

In this work we will employ an axiomatic definition of the phase space B intro-
duced by Hale et al. [15]. To establish the axioms of the phase space B, we use
the following terminology used in Hinto et al. [16]. The axioms of the space B
are established for F0-measurable functions from (−∞, 0] into H, endowed with a
seminorm ∥ · ∥B which satisfies the following axioms:

(A1) If x : (−∞, T ] → H, T > 0 is such that x0 ∈ B then for every t ∈ [0, T ],
the following conditions hold:

(i) xt ∈ B;
(ii) ∥x(t)∥ ≤ L∥xt∥B;
(iii) ∥xt∥B ≤ M(t) sup

0≤s≤t
∥x(s)∥+N(t)∥x0∥B, where L > 0 is a constant; M(·),

N(·) : [0,+∞) → [1,+∞), is continuous N(·) is locally bounded, and
L,M(·), N(·) are independent of x(·).

(A2) For the function, x(·) in (A1), xt is a B-valued continuous function on [0, b].
(A3) The space B is complete.
The B- valued stochastic process xt : Ω → B, t ≥ 0, is defined by xt(s) =

{x(t + s)(ω) : s ∈ (−∞, 0]}. The collection of all strongly measurable, square
integrable, H-valued random variables, denoted by L2(Ω,F , P ;H) ≡ L2(Ω;H),
is a Banach space equipped with norm ∥x(·)∥2L2

= E∥x(·, w)∥2H , where E denotes

expectation defined by E(h) =
∫
Ω
h(w)dP . Let C(J, L2(Ω;H)) be the Banach space

of all continuous map from J into L2(Ω;H) satisfying the condition sup
t∈J

E∥x(t)∥2 <

∞. An important subspace is given by L0
2(Ω,H) = {f ∈ L2(Ω,H) : f isF0 −

is measurable}.
Let Z be the closed subspace of all continuously differentiable process x that

belongs to the space C(J, L2(Ω;H)) consisting of Ft- adapted measurable process
such that the F0-adapted process φ ∈ L0

2(Ω,B). Let ∥ · ∥Z be a seminorm in Z
defined by

∥x∥Z =

(
sup
t∈J

∥xt∥2B
) 1

2

,

where

∥xt∥B ≤ NTE∥φ∥B +MT sup{E∥x(s)∥ : 0 ≤ s ≤ T},

MT = supt∈J{M(t)}, NT = supt∈J{N(t)}. It is easy to verify that Z furnished
with the norm topology as defined above, is a Banach space.

The resolvent operator plays an important role in the study of the existence of
solutions and to give a variation of constant formula for linear systems. However,
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we need to know when the linear system (2.1) has a resolvent operator. For more
details on resolvent operator, reader may refer [13].

To obtain our results, consider the integrodifferential abstract Cauchy problem

dx(t) =

[
Ax(t) +

∫ t

0

f(t− s)x(s)ds

]
dt, t ≥ 0, (2.1)

x(0) = x0 ∈ H.

Definition 2.1. [13] A family of bounded linear operator R(t) ∈ P(H), t ∈ J is
called a resolvent operator for

dx

dt
= A

[
x(t) +

∫ t

0

f(t− s)x(s)ds

]
,

if
(i) R(0) = I, the identity operator on H;
(ii) for all x ∈ H, R(t)x is continuous for t > 0;
(iii) R(t) ∈ P(Y ), t ∈ J . For x ∈ Y , R(·)x ∈ C1(J,H) ∩ C(J, Y ) and

d

dt
R(t)x = A

[
R(t)x+

∫ t

0

f(t− s)R(s)xds

]
= R(t)Ax+

∫ t

0

R(t− s)Af(s)xds, for t ≥ 0.

In what we make the following assumptions:

(H1) A is the infinitesimal generator of a strongly continuous semigroup on H.
(H2) For all t ≥ 0, f(t) is a closed linear operatorD(A) toX, and f(t) ∈ f(Y,H).

For any y ∈ Y , the map t → f(t)y is bounded differentiable and the
derivative t → f ′(t)y is bounded and uniformly continuous on R+.

Let 0 ∈ ρ(A), then it is possible to define the fractional power (Aα), 0 < α ≤ 1, as
a closed linear operator with its domain D(Aα) being dense in H. If Hα represent
the space D(Aα) endowed with the norm ∥ · ∥, which is equivalent to the graph
norm of Aα, then we have the following properties:

Lemma 2.1. [20] Assume that the following properties hold:

(i) If Aα : Hα → Hα, then Hα is a Banach space for 0 ≤ α ≤ 1.
(ii) If the resolvent operator operator of A is compact, then the embedding Hβ ⊂

Hα is continuous and compact for 0 < α ≤ β.
(iii) There exists a constant Mα > 0 depending on 0 < α ≤ 1 such that

∥AαR(t)∥ ≤ Mα

tα
, t > 0.

Remark 2.1. Let us give some concrete functions K(·). Let γ0 > and δ(0, 1) be
sufficiently small. Define

K1(u) = γ0u, u ≥ 0.

K2(u) =

{
u log(u−1), 0 ≤ u ≤ δ,

δ log(δ−1) +K ′
2(δ−)(u− δ), u > δ.

K3(u) =

{
u log(u−1)loglog(u−1), 0 ≤ u ≤ δ,

δ log(δ−1)loglog(δ−1) +K ′
3(δ−)(u− δ), u > δ.
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They are all concave nondecreasing functions satisfying
∫
0+

du
Kj(u)

= +∞(j =

1, 2, 3). In particular, we see that the Lipschitz condition is a special case of the
proposed conditions.

In order to obtain the uniqueness of solutions, we give the Bihari inequality
which appeared in reference [5].

Lemma 2.2. [5] Let T > 0 and u0 ≥ 0, u(t), v(t) be the continuous function on
[0, T ]. Let K : R+ → R+ be a concave continuous and nondecreasing function such
that K(r) > 0 for r > 0. If

u(t) ≤ u0 +

∫ t

0

v(s)K(u(s))ds for all 0 ≤ t ≤ T,

then

u(t) ≤ G−1
(
G(u0) +

∫ t

0

v(s)ds
)
for all t ∈ [0, T ] such that

G(u0) +

∫ t

0

v(s)ds ∈ Dom(G−1),

where G(r) =
∫ r

1
ds

K(s) for r ≥ 0 and G−1 is the inverse function of G. In particular,

moreover if, u0 = 0 and
∫
0+

ds
K(s) = ∞, then u(t) = 0 for all t ∈ [0, T ].

Lemma 2.3. [22] Let the assumption of Lemma 2.2 holds. If

u(t) ≤ u0 +

∫ t

0

v(s)K(u(s))ds for all 0 ≤ t ≤ T,

then

u(t) ≤ G−1
(
G(u0) +

∫ t

0

v(s)ds
)
for all t ∈ [0, T ] such that

G(u0) +

∫ t

0

v(s)ds ∈ Dom(G−1),

where G(r) =
∫ r

1
ds

K(s) for r ≥ 0 and G−1 is the inverse function of G.

Corollary 2.1. [22] Let the assumption of Lemma 2.2 hold and v(t) ≥ 0 for t ∈
[0, T ]. If for all ϵ > 0, there exists t1 ≥ 0 such that for 0 ≤ u0 ≤ ϵ,

∫ T

t1
v(s)ds ≤∫ ϵ

u0

ds
K(s) holds, then for every t ∈ [t1, T ], the estimate u(t) ≤ ϵ holds.

Lemma 2.4. [8] For any r ≥ 1 and for arbitrary L0
2-valued predictable process Ψ(·)

sup
s∈[0,t]

E∥
∫ s

0

Ψ(u)dw(u)∥2rX = (r(2r − 1))r
(∫ t

0

(E∥Ψ(s)∥2rL0
2
)ds

)r

.

Now, we present the definition of the mild solution of the system (1.1)-(1.2).

Definition 2.2. A stochastic process {x(t) ∈ C(J, L2(Ω;H)), t ∈ (−∞, T ]}, (0 <
T < ∞), is said to be a mild solution of the equation (1.1)-(1.2) if
(i) x(t) ∈ H is Ft-adapted;
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(ii) for each t ∈ J , x(t) satisfies the following integral equation

x(t) =


φ(t), for t ∈ (−∞, 0],

R(t)
[
φ(0)− g(0, φ)

]
+ g(t, xt) +

∫ t

0

AR(t− s)g(s, xs)ds

+

∫ t

0

R(t− s)h(s, xs)ds+

∫ t

0

R(t− s)σ(s, xs)dw(s), for a.s t ∈ [0, T ].

(2.2)

3. Existence and Uniqueness

In this section, we discuss the existence and uniqueness of mild solution of the
system (1.1)-(1.2). We will work under the following assumptions:

(H3) A is the infinitesimal generator of a strongly continuous semigroup R(t),
whose domain D(A) is dense in H such that ∥R(t)∥2 ≤ M1, for all t ∈ J .

(H4) For each x, y ∈ B and for all t ∈ [0, T ] such that

∥h(t, xt)− h(t, yt)∥2 ∨ ∥σ(t, xt)− σ(t, yt)∥2 ≤ K(∥xt − yt∥2B),

where K(·) is a concave non-decreasing function from R+ to R+, K(0) = 0,
K(u) > 0, for u > 0 and

∫
0+

du
K(u) = ∞.

(H5) Assuming that there exists a positive number Mg > 0 such that for any
x, y ∈ B and for t ∈ [0, T ], we have

∥Aαg(t, xt)−Aαg(t, yt)∥2 ≤ Mg∥xt − yt∥2B.

(H6) For all t ∈ [0, T ], it follows that G(t, 0), h(t, 0), Aαg(t, 0) ∈ L2 such that

∥σ(t, 0)∥2 ∨ ∥h(t, 0)∥2 ∨ ∥Aαg(t, 0)∥2 ≤ γ0,

where κ0 > 0 is a constant.

Let us now introduce the successive approximation to equation (2.2) as follows

x0(t) =

{
φ(t) for t ∈ (−∞, 0],

R(t)φ(0) for t ∈ [0, T ].
(3.1)

and, for n = 1, 2, . . . ,

xn(t) =


φ(t), for t ∈ (−∞, 0],

R(t)
[
φ(0)− g(0, φ)

]
+ g(t, xn

t ) +

∫ t

0

AR(t− s)g(s, xn
s )ds

+

∫ t

0

R(t− s)h(s, xn−1
s )ds+

∫ t

0

R(t− s)σ(s, xn−1
s )dw(s), for a.s, t ∈ J.

(3.2)

with an arbitrary non-negative initial approximation x0 ∈ C(J, L2(Ω;H)).

Theorem 3.1. Assume that (H3) − (H6) hold. Then the system (1.1)-(1.2) has

unique mild solution x(t) in C(J, L2(Ω;H))provided that E∥xn(t)∥2 ≤ Q̃.

Proof. Let x0 ∈ C(J, L2(Ω;H)) be a fixed initial approximation to (3.2). To begin
with our assumptions (H3) − (H6) and observing that ∥R(t)∥2 ≤ M1 for some
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M1 ≥ 1 and for all t ∈ [0, T ]. Then for any n ≥ 1, we have

∥xn(t)∥2 ≤ 5M1∥
[
φ(0)− g(0, φ)

]
∥2 + 10∥A−α∥2

[
∥Aαg(t, xn

t )−Aαg(t, 0)∥2

+ ∥Aαg(t, 0)∥2
]
+ 5T

∫ t

0

∥A1−αR(t− s)∥2
[
∥Aαg(s, xn

s )−Aαg(s, 0)∥2

+ ∥Aαg(s, 0)∥2
]
ds+ 10M1T

∫ t

0

[∥h(s, xn−1
s )− h(s, 0)∥2 + ∥h(s, 0)∥2]ds

+ 10M1

∫ t

0

[∥σ(s, xn−1
s )− σ(s, 0)∥2 + ∥σ(s, 0)∥2]ds.

From the Lemma 2.1, (H5) and (H6), we get

E∥
∫ t

0

AR(t− s)g(s, xn
s )ds∥2

= E∥
∫ t

0

A1−αR(t− s)Aαg(t, xn
t )ds∥2

≤ 2T

∫ t

0

M2
1−α

(t− s)
2(1−α)

E
[
∥Aαg(s, xn

s )−Aαg(s, 0)∥2
]
+ 2E∥Aαg(s, 0)∥2ds

≤ 2T 2α M2
1−α

2α− 1

[
MgE∥xn

t ∥2B + κ0

]
.

Thus from the above, we have

E∥xn
t ∥2B ≤ 10M1

[
E∥φ(0)∥+ E∥g(0, φ)∥2

]
+ 10∥A−α∥2

[
MgE∥xn

t ∥2B + κ0

]
+ 10T 2α M2

1−α

2α− 1

[
MgE∥xn

t ∥2B + κ0

]
+ 10M1(T + 1)E

∫ t

0

[K(∥xn−1
s ∥2B) + κ0]ds

E∥xn
t ∥2B ≤ Q1

1−Q2
+

10M1(T + 1)

1−Q2
E

∫ t

0

K(∥xn−1
s ∥2B)ds,

whereQ1 = 10M1

[
E∥φ(0)∥+E∥g(0, φ)∥2

]
+10

[
M1T (T+1)+∥A−α∥2+T 2αM2

1−α

2α−1

]
κ0

and Q2 = 10

[
∥A−α∥2 + T 2αM2

1−α

2α−1

]
Mg.

Given that K(·) is concave and K(0) = 0, we can find a pair of positive constants
a and b such that

K(u) ≤ a+ bu, for allu ≥ 0.
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Then, we have

E∥xn
t ∥2B ≤ Q3 +

10M1(T + 1)b

1−Q2

∫ t

0

E∥xn−1
s ∥2Bds

≤ Q3 +
10M1(T + 1)b

1−Q2

∫ t

0

[
N(t)E∥φ∥2B +M(t) sup

0≤s≤T
E∥xn−1(s)∥2

]
ds

≤ Q3 +
10M1T (T + 1)b

1−Q2
NTE∥φ∥2B

+
10M1MT (T + 1)b

1−Q2

∫ t

0

sup
0≤s≤T

E∥xn−1(s)∥2ds,

where Q3 = Q1

1−Q2
+ 10M1(T+1)Ta

1−Q2
.

Therefore,

E∥xn
t ∥2B ≤ Q4 +

10M1MT (T + 1)b

1−Q2

∫ t

0

sup
0≤s≤T

E∥xn−1(s)∥2ds, n = 1, 2, . . . , (3.3)

where, Q4 = Q3 +
10M1T (T+1)b

1−Q2
NTE∥φ∥2B.

For any k ≥ 1, it follows from equation (3.3),

max
1≤n≤k

E∥xn
t ∥2B ≤ Q4 +

10M1MT (T + 1)b

1−Q2

∫ t

0

[
E∥x0(s)∥2 + E max

1≤n≤k

(
sup

0≤s≤T
∥xn(s)∥2

)]
ds

≤ Q4 +
10M1MTT (T + 1)b

1−Q2
E∥φ∥2B

+
10M1MTT (T + 1)b

1−Q2

∫ t

0

E max
1≤n≤k

(
sup

0≤s≤T
∥xn(s)∥2

)
ds

≤ Q5 +
10M1MTT (T + 1)b

1−Q2

∫ t

0

E max
1≤n≤k

(
sup

0≤s≤T
∥xn(s)∥2

)
ds,

where Q5 = Q4 +
10M1MTT (T+1)b

1−Q2
E∥φ∥2B Therefore,

max
1≤n≤k

E∥xn
t ∥2B ≤ Q5 +

∫ t

0

E max
1≤n≤k

(
sup

0≤s≤T
∥xn(s)∥2

)
ds

≤ Q5 +Q6

∫ t

0

E max
1≤n≤k

(
sup

0≤s≤T
∥xn(s)∥2

)
ds,

where Q6 = 10M1MTT (T+1)b
1−Q2

.

From the Gronwall inequality, we obtain that

max
1≤n≤k

E∥xn
t ∥2B ≤ Q5e

Q6T .

While k is arbitrary, we have

E∥xn
t ∥2B ≤ Q5e

Q6T , for all, 0 ≤ t ≤ T, n ≥ 1.

As a result, which holds with Q̃ = max{Q5e
Q6T , E∥φ∥2B}.

Lemma 3.5. Under the assumption, there exists a positive constant N1 such that

E∥xn+m
t − xn

t ∥2B ≤ N1

∫ t

0

K
(
E∥xn+m−1

s − xn−1
s ∥2B

)
ds

for all 0 ≤ t ≤ T , n, m ≥ 1.
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Proof. From (3.2), n, m ≥ 1 and 0 ≤ t ≤ T , we derive that

xn+m(t)− xn(t)

= R(t− s)
[
g(s, xn+m

t )− g(s, xn
t )
]
+

∫ t

0

R(t− s)

[
h(s, xn+m−1

s − h(s, xn−1
s ))

]
ds

+

∫ t

0

R(t− s)

[
σ(s, xn+m−1

s )− σ(s, xn−1
s )

]
dw(s).

Therefore, we have

E∥xn+m
t − xn

t ∥2B ≤ 3MgE∥xn+m
t − xn

t ∥2B + 3M1(T + 1)E

∫ t

0

K(∥xn+m−1
s − xn−1

s ∥2B)

≤ 3M1(T + 1)

1−Mg
E

∫ t

0

K(∥xn+m−1
s − xn−1

s ∥2B)ds.

From the Jensen inequality, we get

E∥xn+m
t − xn

t ∥2B ≤ 3M1(T + 1)

1−Mg

∫ t

0

K

(
E∥xn+m−1

s − xn−1
s ∥2B

)
ds.

If we prefer N1 = 3M1(T+1)
1−Mg

, we acquire the desired results. �

Lemma 3.6. Under assumptions, there exists a positive constant N2 such that

E∥xn+m
t − xn

t ∥2 ≤ N2t (3.4)

for all 0 ≤ t ≤ T , n, m ≥ 1.

Proof. From Theorem 3.1 and Lemma 3.5, we have

E∥xn+m
t − xn

t ∥2 ≤ N1

∫ t

0

K

(
E∥xn+m−1

s − xn−1
s ∥2B

)
ds

≤ N1

∫ t

0

K

(
2Q̃

)
ds

≤ N1K(2N1)t = N2t.

Hence the proof.
Define

ζ1(t) = N2t,

ζn+1(t) = N1

∫ t

0

K(ζn(s))ds, n ≥ 1,

ζn,m(t) = E∥xn+m
t − xn

t ∥2, n,m ≥ 1.

Choose T1 ∈ [0, T [ such that

N1K(N2t) ≤ N2, for all 0 ≤ t ≤ T1.

�

Lemma 3.7. There exists a positive 0 ≤ T1 < T such that for all n, m ≥ 1,

0 ≤ ζn,m(t) ≤ ζn(t) ≤ ζn−1(t) ≤ . . . ≤ ζ1(t) (3.5)

for all 0 ≤ t ≤ T1.
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Proof. We prove this Lemma by induction with respect to n. By Lemma 3.6, we
have

ζ1,m(t) = E∥x1+m
t − x1

t∥2 ≤ N2t = ζ1(t)

By Lemma 3.6,

ζ2,m(t) = E∥x1+m
t − x1

t∥2

≤ N1

∫ t

0

K
(
E∥x2+m

t − x2
t∥2

)
ds

≤ N1

∫ t

0

K
(
ζ1,m(s)

)
ds

≤ N1

∫ t

0

K
(
ζ1(s)

)
ds = ζ1(t).

Thus, we also have

ζ2(t) = N1

∫ t

0

K
(
ζ1(s)

)
ds ≤ N1

∫ t

0

K
(
N2s

)
ds

≤ N1

∫ t

0

N2ds = ζ1(t).

We have previously shown that

ζ2,m(t) ≤ ζ2(t) ≤ ζ1(t), for all 0 ≤ t ≤ T1.

Now, we assume that (3.5) holds for some n ≥ 1. Then, using the same inequalities
as above capitulate that

ζn+1,m(t) = N1

∫ t

0

K
(
E∥x2+m

t − x2
t∥2

)
ds

≤ N1

∫ t

0

K
(
ζn,m(s)

)
ds

≤ N1

∫ t

0

K
(
ζn(s)

)
ds = ζn+1(t)

for all 0 ≤ t ≤ T1. On other hand, we have

ζn+1(t) = N1

∫ t

0

K
(
ζn(s)

)
ds ≤ N1

∫ t

0

K
(
ζn−1(s)

)
ds = ζn(t),

for all 0 ≤ t ≤ T1. Hence the proof. �

Now, we prove the uniqueness of the solutions of (2.2). Let x, y ∈ C(J, L2(Ω;H))
be the two solution of (1.1)-(1.2) on some interval (−∞, T ]. Then, for t ∈ (−∞, 0],
the uniqueness is obvious and for 0 ≤ t ≤ T , we have

E∥x(t)− y(t)∥2 ≤ 4

[
∥A−α∥2 + T 2α M2

1−α

2α− 1

]
MgE∥xt − yt∥2B

+ 4M1(T + 1)

∫ t

0

K(E∥xs − ys∥2B)ds.
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Thus,

E∥xt − yt∥2B ≤ Q7E∥xt − yt∥2B +Q8

∫ t

0

K(E∥xs − ys∥2B)ds

≤ Q8

1−Q7

∫ t

0

K(E∥xs − ys∥2B)ds.

Thus, Bihari’s inequality yield that

sup
t∈[0,T ]

E∥xt − yt∥2B = 0, 0 ≤ t ≤ T. (3.6)

Thus, x(t) = y(t), for all 0 ≤ t ≤ T . Therefore, for all −∞ ≤ t ≤ T , x(t) = y(t).
This completes the proof.

Existence: We claim that

E∥xn+m
t − xn

t ∥2 → 0 (3.7)

for all 0 ≤ t ≤ T1, as n, m → ∞. Note that ζn is continuous on [0, T1]. Note also
that for each n ≥ 1, ζn(·) is decreasing on [0, T1] and for each t, ζn(t) is decreasing
sequence. Thus we define the function ζ(t) as

ζ(t) = lim
n→∞

ζn(t) = N1 lim
n→∞

∫ t

t0

K(ζn−1(s))ds = N1

∫ t

t0

K(ζ(s))ds

for all 0 ≤ t ≤ T1. The Bihari inequality implies that ζ(t) = 0 for all 0 ≤ t ≤ T1.
Now from Lemma 3.7, we have

ζn,n(t) ≤ sup
t0≤t≤T1

ζn(t) ≤ ζn(T1) → 0

as n → ∞. That is xn(t) is a Cauchy sequence in L2 on ]−∞, T1]. From Theorem
3.1, we derive that

∥x(t)∥2 ≤ Q,

where Q is a positive constant. �
On the other hand, by (H4) then, letting n → ∞, we can also claim that for

t ∈ [0, T ]

E∥
∫ t

0

R(t− s)

[
h(t, xn−1

s )− h(t, xs)

]
ds∥2B → 0,

E∥
∫ t

0

R(t− s)

[
σ(t, xn−1

s )− σ(t, xs)

]
dw(s)∥2B → 0.

On further, by applying (H5), we can also assert, for t ∈ [0, T ], that

E∥g(s, xn
s )− g(s, xs)∥2 ≤ MgE sup

0≤s≤t
∥xn(s)− x(s)∥2B → 0

E∥
∫ t

0

AR(t− s)

[
g(t, xn

s )− g(t, xs)

]
ds∥2 ≤ 2T 2α M2

1−α

2α− 1
E∥xn(s)− x(s)∥2B → 0.

At this instant, taking limits in both sides of (3.2) leads, for t ≥ 0, to

x(t) = R(t)
[
φ(0)− g(0, φ)

]
+ g(t, xt) +

∫ t

0

AR(t− s)g(s, xs)ds

+

∫ t

0

R(t− s)h(s, xs)ds+

∫ t

0

R(t− s)σ(s, xs)dw(s).
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Thus, the above term exhibit that x(t) is a mild solution of (1.1)-(1.2) on the
interval [0, T1]. By iteration, the existence of solutions (1.1)-(1.2) on [0, T ] can be
obtained.

4. Stability

In this section, we study the stability through the continuous dependence on
initial values.

Definition 4.3. A mild solution x(t) of the system (1.1)-(1.2) with initial value φ
is said to be stable in the mean square if for all ϵ > 0, there exists δ > 0 such that

E∥xt − x̂t∥2B ≤ ϵ whenever E∥φ− φ̂∥2 ≤ δ for all t ∈ [0, T ],

where x̂(t) is another mild solution of the system (1.1)-(1.2) with initial data φ̂.

Theorem 4.2. Let x(t) and y(t) be the mild solution of the system (1.1)-(1.2) with
initial values φ1 and φ2 respectively. If the assumption of Theorem 3.1 are satisfied,
then the mild solution of the system (1.1)-(1.2) is stable in the mean square.

Proof. By the assumption, x(t) and y(t) are two mild solutions of equations (1.1)-
(1.2) with initial values φ1 and φ2 respectively, then for 0 ≤ t ≤ T ,

x(t)− y(t) = R(t)
[
φ1(0)− φ2(0) + g(0, φ1)− g(0, φ2)

]
+
[
g(t, xt)− g(t, yt)

]
+

∫ t

0

AR(t− s)
[
g(s, xs)− g(s, ys)

]
ds+

∫ t

0

R(t− s)
[
h(s, xs)− h(s, ys)

]
ds

+

∫ t

0

R(t− s)
[
σ(s, xs)− σ(s, ys)

]
dw(s).

So, estimating as before, we get

E∥x(t)− y(t)∥2

≤ 6M1

[
1 + ∥A−α∥2Mg

]
E∥φ1 − φ2∥2 + 6

[
∥A−α∥2 + T 2α M2

1−α

2α− 1

]
MgE∥xt − yt∥2B

+ 6M1(T + 1)

∫ t

0

K(E∥xs − ys∥2B)ds.

Thus,

E∥xt − yt∥2B ≤
6M1

[
1 + ∥A−α∥2Mg

]
1−Q10

E∥φ1 − φ2∥2

+
6M1(T + 1)

1−Q10

∫ t

0

K(E∥xs − ys∥2B)ds,

where Q10 = 6

[
∥A−α∥2 + T 2αM2

1−α

2α−1

]
Mg.

Let K1(u) =
6M1(T+1)
1−Q10

K(u), where K is concave increasing function from R+ to

R+ such that K(0) = 0, K(u) > 0 for u > 0 and
∫
0+

du
K(u) = +∞. So, K1(u) is

obviously, a concave function from R+ to R+ such that K1(0) = 0, K1(u) ≥ K(u),
for 0 ≤ u ≤ 1 and

∫
0+

du
K1(u)

= +∞. Now for any ϵ > 0, ϵ1 = 1
2ϵ, we have

lim
s→0

∫ ϵ1

s

du

K1(u)
= ∞. So, there is a positive constant δ < ϵ1, such that

∫ ϵ1
δ

du
K1(u)

≥

T .
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Let

u0 =
6M1

[
1 + ∥A−α∥2Mg

]
1−Q10

E∥φ1 − φ2∥2,

u(t) = E∥xt − yt∥2B, v(t) = 1,

when u0 ≤ δ ≤ ϵ1. From Corollary 2.1 we have∫ ϵ1

u0

du

K1(u)
≥

∫ ϵ1

δ

du

K1(u)
≥ T =

∫ T

0

v(s)ds.

So, for any t ∈ [0, T ], we estimate u(t) ≤ ϵ1 holds. This completes the proof. �

5. Example

Consider the following stochastic partial integrodifferential equation of the form

d

[
u(t, ξ) +

∫ π

0

a(y, ξ)u(tsint, y)dy

]
=

∂2

∂ξ2

[
u(t, ξ) +

∫ t

0

f(t− s)u(s, ξ)ds

]
dt

+H(t, u(tsint, ξ))dt+G(t, u(tsint, ξ))dβ(t),

0 ≤ ξ ≤ π, τ > 0, t ∈ J = [0, T ], (5.1)

u(t, 0) = u(t, π) = 0, t ∈ J, (5.2)

u(θ, ξ) = φ(θ, ξ), θ ∈ (−∞, 0], 0 ≤ ξ ≤ π, (5.3)

where β(t) denotes a standard cylindrical Wiener process in H defined on a sto-
chastic process (Ω,F , P ) and H = L2([0, π]).

To rewrite (5.1)-(5.3) into the form (1.1)-(1.2), define A : H → H by Az = z′′

with domain

D(A) =

{
z ∈ H, z, z′are absolutely continuousz′′ ∈ H, z(0) = z(π) = 0

}
.

Then, A generates a strongly continuous semigroup R(t) on H, thus (H1) is true.
Moreover, the operator A can be expressed as

Az =

∞∑
n=1

n2 < z, zn > zn, z ∈ D(A),

where zn(s) =
√

2
π sin(ns), n = 1, 2, . . ., is orthonormal set of eigenvectors of A.

We assume the following condition hold:

(i) The function b is measurable and∫ π

0

a2(y, ξ)dydξ < ∞.

(ii) The function ∂
∂tb(y, ξ) is measurable b(y, 0) = b(y, π) = 0 and let

Mg =

[ ∫ π

0

∫ π

0

( ∂

∂t
a(t, ξ)

)2
dydξ

] 1
2

< ∞.

Let α < 0, define the phase space

B =

{
ϕ ∈ C((−∞, 0], H) : lim

θ→−r
eαθϕ(θ) exists in H

}
,
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and let ∥ϕ∥B = sup
θ∈(−∞,0]

{
eαθ∥ϕ(θ)∥L2

}
. Then, (B, ∥ · ∥B) is a Banach space and

satisfied axioms(1)-(2) with L = 1, N(t) = e−αt, M(t) = max{1, e−αt}. Thus for
(t, ϕ) ∈ J × B, where ϕ(θ)(ξ) = φ(θ, ξ), (θ, ξ) ∈ (−∞, 0]× [0, π].

Suppose that conditions (i) and (ii) are verified, then the problem (5.1)-(5.3) can
be represent as the abstract neutral stochastic integrodifferential equation of the
form (1.1)-(1.2), as follows

g(t, xt) =

∫ π

0

a(y, ξ)u(tsint, y)dy, h(t, xt) = H(t, u(tsint, ξ)),

σ(t, xt) = G(t, u(tsint, ξ))

Hence, we can conclude that the system (5.1)-(5.3) has unique mild solution on J .
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