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EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR TWO

KINDS OF NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

WITH VARIABLE DELAY

ABDELOUAHEB ARDJOUNI, AHCENE DJOUDI

Abstract. In this paper, we consider two kinds of nonlinear neutral difference
equations with variable delay. By choosing available operators and applying

Krasnoselskii’s fixed point theorem, we obtain sufficient conditions for the

existence of positive periodic solutions to such equations.

1. INTRODUCTION

In recent years, there have been a few papers written on the existence of periodic
solutions, nontrivial periodic solutions and positive periodic solutions for several
classes of functional differential and difference equations with delays, which arise
from a number of mathematical ecological models, economical and control models,
physiological and population models and other models, see the references in this
article and references therein.

In this paper, we are interested in the analysis of qualitative theory of positive pe-
riodic solutions of delay difference equations. Motivated by the papers [1]-[6],[8],[9]
and the references therein, we concentrate on the existence of positive periodic so-
lutions for the following two kinds of nonlinear neutral difference equations with
variable delay

x (n+ 1) = a (n)x (n) +4g (n, x (n− τ (n))) + f (n, x (n− τ (n))) , (1)

and

x (n+ 1) = a (n)x (n) +4
−1∑

r=−∞
Q (r) g (n, x (n+ r))

+ b (n)

−1∑
r=−∞

Q (r) f (n, x (n+ r)) , (2)

where
g, f : Z× R→ R,
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with Z is the set of integers and R is the set of real numbers. Throughout this
paper 4 denotes the forward difference operator 4x (n) = x (n+ 1)−x (n) for any
sequence {x (n) , n ∈ Z}. Also, we define the operator E by Ex (n) = x (n+ 1).
For more on the calculus of difference equations, we refer the reader to [7].

The purpose of this paper is to use Krasnoselskii’s fixed point theorem to show
the existence of positive periodic solutions for equations (1) and (2). To apply
Krasnoselaskii’s fixed point theorem we need to construct two mappings, one is a
contraction and the other is completely continuous.

The organization of this paper is as follows. In Section 2, we present the inver-
sions of difference equations (1) and (2), and we give the Green’s functions of (1)
and (2), which play an important role in this paper. Also, we present the Kras-
noselskii’s fixed point theorem. For details on Krasnoselskii’s theorem we refer the
reader to [10]. In Section 3 and Section 4, we present our main results on existence
of positive periodic solutions of (1) and (2), respectively.

2. PRELIMINARIES

Let T be an integer such that T ≥ 1. Define PT = {ϕ ∈ C (Z,R) : ϕ (n+ T ) =
ϕ (n)} where C (Z,R) is the space of all real valued functions. Then (PT , ‖.‖) is a
Banach space with the maximum norm

‖x‖ = sup
n∈[0,T−1]∩Z

|x (n)| .

Since we are searching for the existence of periodic solutions for equations (1) and
(2), it is natural to assume that

a (n+ T ) = a (n) , b (n+ T ) = b (n) , τ (n+ T ) = τ (n) , (3)

with τ being scalar sequence and τ (n) ≥ τ∗ > 0. Also, we assume

0 < a (n) < 1, Q (n) > 0,

−1∑
r=−∞

Q (r) = 1. (4)

We also assume that the functions g (n, x) and f (n, x) are continuous in x and
periodic in n with period T , that is,

g (n+ T, x) = g (n, x) , f (n+ T, x) = f (n, x) . (5)

The following lemmas are fundamental to our results.

Lemma 2.1. Suppose (3)–(5) hold. If x ∈ PT , then x is a solution of equation (1)
if and only if

x (t) = g (n, x (n− τ (n)))

+

n+T−1∑
u=n

G (n, u) [f (u, x (u− τ (u)))− (1− a (u)) g (u, x (u− τ (u)))] , (6)

where

G (n, u) =

n+T−1∏
s=u+1

a (s)

1−
n+T−1∏
s=n

a (s)

. (7)
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Proof. We consider two cases, n ≥ 1 and n ≤ 0. Let x ∈ PT be a solution of (1).
For n ≥ 1 equation (1) is equivalent to

4

[
x (n)

n−1∏
s=0

a−1 (s)

]
= [4g (n, x (n− τ (n))) + f (n, x (n− τ (n)))]

n∏
s=0

a−1 (s) .

(8)
By summing (8) from n to n+ T − 1, we obtain

n+T−1∑
u=n

4

[
x (u)

u−1∏
s=0

a−1 (s)

]

=

n+T−1∑
u=n

[4g (u, x (u− τ (u))) + f (u, x (u− τ (u)))]

u∏
s=0

a−1 (s) .

As a consequence, we arrive at

x (n+ T )

n+T−1∏
s=0

a−1 (s)− x (n)

n−1∏
s=0

a−1 (s)

=

n+T−1∑
u=n

[4g (u, x (u− τ (u))) + f (u, x (u− τ (u)))]

u∏
s=0

a−1 (s) .

Since x (n+ T ) = x (n), we obtain

x (n)

[
n+T−1∏
s=0

a−1 (s)−
n−1∏
s=0

a−1 (s)

]

=

n+T−1∑
u=n

[4g (u, x (u− τ (u))) + f (u, x (u− τ (u)))]

u∏
s=0

a−1 (s) . (9)

Rewrite

n+T−1∑
u=n

4g (u, x (u− τ (u)))

u∏
s=0

a−1 (s)

=

n+T−1∑
u=n

E

[
u−1∏
s=0

a−1 (s)

]
4g (u, x (u− τ (u))) .
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Performing a summation by parts on the on the above equation, we get

n+T−1∑
u=n

4g (u, x (u− τ (u)))

u∏
s=0

a−1 (s)

= g (n, x (n− τ (n)))

[
n+T−1∏
s=0

a−1 (s)−
n−1∏
s=0

a−1 (s)

]

−
n+T−1∑
u=n

g (u, x (u− τ (u)))4

[
u−1∏
s=0

a−1 (s)

]

= g (n, x (n− τ (n)))

[
n+T−1∏
s=0

a−1 (s)−
n−1∏
s=0

a−1 (s)

]

−
n+T−1∑
u=n

g (u, x (u− τ (u))) [1− a (u)]

u∏
s=0

a−1 (s) . (10)

Substituting (10) into (9), we obtain

x (n)

[
n+T−1∏
s=0

a−1 (s)−
n−1∏
s=0

a−1 (s)

]

= g (n, x (n− τ (n)))

[
n+T−1∏
s=0

a−1 (s)−
n−1∏
s=0

a−1 (s)

]

−
n+T−1∑
u=n

g (u, x (u− τ (u))) [1− a (u)]

u∏
s=0

a−1 (s)

+

n+T−1∑
u=n

f (u, x (u− τ (u)))

u∏
s=0

a−1 (s) .

Dividing both sides of the above equation by
n+T−1∏
s=0

a−1 (s)−
n−1∏
s=0

a−1 (s), we obtain

(6).
Now for n ≤ 0, equation (1) is equivalent to

4

[
x (n)

0∏
s=n

a−1 (s)

]
= [4g (n, x (n− τ (n))) + f (n, x (n− τ (n)))]

0∏
s=n+1

a−1 (s) .

Summing the above expression from n to n + T − 1, we obtain (6) by a similar
argument. This completes the proof. �
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Lemma 2.2. Suppose (3)–(5) hold. If x ∈ PT , then x is a solution of equation (2)
if and only if

x (t) =

−1∑
r=−∞

Q (r) g (n, x (n+ r))

+

n+T−1∑
u=n

G (n, u)

[
b (u)

−1∑
r=−∞

Q (r) f (u, x (u+ r))

− (1− a (u))

−1∑
r=−∞

Q (r) g (u, x (u+ r))

]
, (11)

where G is given by (7).

The proof is similar to that of Lemma 2.1, and hence we omit it.
It is easy to see that for all n, u ∈ Z,

G (n+ T, u+ T ) = G (n, u) , (12)

and
n+T−1∑
u=n

G (n, u) (1− a (u)) = 1. (13)

Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables
us to prove the existence of positive periodic solutions to (1) and (2). For its proof
we refer the reader to [10].

Theorem 2.3 (Krasnoselskii). Let D be a closed convex nonempty subset of a
Banach space (B, ‖.‖) . Suppose that A and B map D into B such that

(i) x, y ∈ D, implies Ax+ By ∈ D,
(ii) A is completely continuous,
(iii) B is a contraction mapping.

Then there exists z ∈ D with z = Az + Bz.

3. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR (1.1)

To apply Theorem 2.3, we need to define a Banach space B, a closed convex subset
D of B and construct two mappings, one is a contraction and the other is completely
continuous. So, we let (B, ‖.‖) = (PT , ‖.‖) and D = {ϕ ∈ B : L ≤ ϕ ≤ K}, where L
is non-negative constant and K is positive constant. We express equation (6) as

ϕ (n) = (B1ϕ) (n) + (A1ϕ) (n) := (H1ϕ) (n) ,

where A1,B1 : D→ B are defined by

(A1ϕ) (n) =

n+T−1∑
u=n

G (n, u) [f (u, ϕ (u− τ (u)))− (1− a (u)) g (u, ϕ (u− τ (u)))] ,

(14)
and

(B1ϕ) (n) = g (n, ϕ (n− τ (n))) . (15)

In this section we obtain the existence of a positive periodic solution of (1) by
considering the two cases; g (n, x) ≥ 0 and g (n, x) ≤ 0 for all n ∈ Z, x ∈ D. We
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assume that function g (n, x) is locally Lipschitz continuous in x. That is, there
exists a positive constant k such that

|g (n, x)− g (n, y)| ≤ k ‖x− y‖ , for all n ∈ [0, T − 1] ∩ Z, x, y ∈ D. (16)

Denote

F (n, x) =
f (n, x)

1− a (n)
− g (n, x) .

In the case g (n, x) ≥ 0, we assume that there exist a non-negative constant k1
and positive constant k2 such that

k1x ≤ g (n, x) ≤ k2x, for all n ∈ [0, T − 1] ∩ Z, x ∈ D, (17)

k2 < 1, (18)

and for all n ∈ [0, T − 1] ∩ Z, x ∈ D

(1− k1)L ≤ F (n, x) ≤ (1− k2)K. (19)

Lemma 3.1. Suppose that the conditions (3)–(5) and (17)–(19) hold. Then A1 :
D→ B is completely continuous.

Proof. We first show that (A1ϕ) (n+ T ) = (A1ϕ) (n).
Let ϕ ∈ D. Then using (14) we arrive at

(A1ϕ) (n+ T )

=

n+2T−1∑
u=n+T

G (n+ T, u) [f (u, ϕ (u− τ (u)))− (1− a (u)) g (u, ϕ (u− τ (u)))] .

Let j = u− T , then

(A1ϕ) (n+ T )

=

n+T−1∑
j=n

G (n+ T, j + T ) [f (j + T, ϕ (j + T − τ (j + T )))

− (1− a (j + T )) g (j + T, ϕ (j + T − τ (j + T )))]

=

n+T−1∑
j=n

G (n, j) [f (j, ϕ (j − τ (j)))− (1− a (j)) g (j, ϕ (j − τ (j)))]

= (A1ϕ) (n) ,

by (3), (5) and (12).
To see that A1 (D) is uniformly bounded, we let n ∈ [0, T − 1]∩Z and for ϕ ∈ D,

we have by (19) that

|(A1ϕ) (n)|

=

∣∣∣∣∣
n+T−1∑
u=n

G (n, u) [f (u, ϕ (u− τ (u)))− (1− a (u)) g (u, ϕ (u− τ (u)))]

∣∣∣∣∣
≤ (1− k2)K.

From the estimation of |(A1ϕ) (n)| it follows that

‖A1ϕ‖ ≤ (1− k2)K.

This shows that A1 (D) is uniformly bounded.
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Next, we show that A1 maps bounded subsets into compact sets. As A1 (D)
is uniformly bounded in RT , then A1 (D) is contained in a compact subset of B.
Therefore A1 is completely continuous. This completes the proof. �

Lemma 3.2. Suppose that (3)–(5) and (16) hold. If B1 is given by (15) with

k < 1, (20)

then B1 : D→ B is a contraction.

Proof. Let B1 be defined by (15). Obviously, (B1ϕ) (n+ T ) = (B1ϕ) (n). So, for
any ϕ,ψ ∈ D, we have

|(B1ϕ) (n)− (B1ψ) (n)| ≤ |g (n, ϕ (n− τ (n)))− g (n, ψ (n− τ (n)))|
≤ k ‖ϕ− ψ‖ .

Then ‖B1ϕ− B1ψ‖ ≤ k ‖ϕ− ψ‖. Thus B1 : D→ B is a contraction by (20). �

Theorem 3.3. Suppose (3)–(5) and (16)–(20) hold and there exists a n0 ∈ [0, T − 1]∩
Z such that F (n0, x) > (1− k1)L for any x ∈ D. Then equation (1) has a positive
T -periodic solution x in the subset D1 = {ϕ ∈ B : L < ϕ ≤ K}.

Proof. By Lemma 3.1, the operator A1 : D → B is completely continuous. Also,
from Lemma 3.2, the operator B1 : D→ B is a contraction. Moreover, if ϕ,ψ ∈ D,
we see that

(B1ψ) (n) + (A1ϕ) (n)

= g (n, ψ (n− τ (n)))

+

n+T−1∑
u=n

G (n, u) [f (u, ϕ (u− τ (u)))− (1− a (u)) g (u, ϕ (u− τ (u)))]

≤ k2K + (1− k2)K

n+T−1∑
u=n

G (n, u) (1− a (u))

= k2K + (1− k2)K = K.

On the other hand,

(B1ψ) (n) + (A1ϕ) (n)

= g (n, ψ (n− τ (n)))

+

n+T−1∑
u=n

G (n, u) [f (u, ϕ (u− τ (u)))− (1− a (u)) g (u, ϕ (u− τ (u)))]

≥ k1L+ (1− k1)L

n+T−1∑
u=n

G (n, u) (1− a (u))

= k1L+ (1− k1)L = L.

This shows that B1ψ + A1ϕ ∈ D. Clearly, all the hypotheses of the Krasnoselskii
theorem are satisfied. Thus there exists a fixed point x ∈ D such that x = A1x+B1x.
By Lemma 2.1 this fixed point is a solution of (1).
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Next, we prove that x ∈ D1. We just need to prove that for all n ∈ [0, T − 1]∩Z,
x (n) > L. Otherwise, there exists n∗ ∈ [0, T − 1] ∩ Z satisfying x (n∗) = L. From
(6), we have

L = g (n∗, ψ (n∗ − τ (n∗)))

+

n∗+T−1∑
u=n∗

G (n∗, u) [f (u, ϕ (u− τ (u)))− (1− a (u)) g (u, ϕ (u− τ (u)))]

≥ k1L+

n∗+T−1∑
u=n∗

G (n∗, u) (1− a (u))

{
f (u, ϕ (u− τ (u)))

(1− a (u))
− g (u, ϕ (u− τ (u)))

}
.

From
∑n∗+T−1

u=n∗ G (n∗, u) (1− a (u)) = 1, it follows that

n∗+T−1∑
u=n∗

G (n∗, u) (1− a (u)) [F (u, x)− (1− k1)L] ≤ 0.

Noting that F (u, x) ≥ (1− k1)L and F (n0, x) > (1− k1)L, n0 ∈ [0, T − 1] ∩ Z,
we obtain

n∗+T−1∑
u=n∗

G (n∗, u) (1− a (u)) [F (u, x)− (1− k1)L] > 0.

This is a contraction. So, x ∈ D1. The proof is complete. �

In the case g (n, x) ≤ 0, we substitute conditions (17)–(19) with the following
conditions respectively. We assume that there exist a negative constant k3 and a
non-positive constant k4 such that

k3x ≤ g (n, x) ≤ k4x, for all n ∈ [0, T − 1] ∩ Z, x ∈ D, (21)

− k3 < 1, (22)

and for all n ∈ [0, T − 1] ∩ Z, x ∈ D

L− k3K ≤ F (n, x) ≤ K − k4L. (23)

Theorem 3.4. Suppose (3)–(5), (16) and (20)-(23) hold and there exists a n0 ∈
[0, T − 1] ∩ Z such that F (n0, x) > L− k3K for any x ∈ D. Then equation (1) has
a positive T -periodic solution x in the subset D1.

The proof follows along the lines of Theorem 3.3, and hence we omit it.

4. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR (1.2)

We express equation (11) as

ϕ (n) = (B2ϕ) (n) + (A2ϕ) (n) := (H2ϕ) (n) ,

where A2,B2 : D→ B are defined by

(A2ϕ) (n) =

n+T−1∑
u=n

G (n, u)

[
b (u)

−1∑
r=−∞

Q (r) f (u, ϕ (u+ r))

− (1− a (u))

−1∑
r=−∞

Q (r) g (u, ϕ (u+ r))

]
, (24)
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and

(B2ϕ) (n) =

−1∑
r=−∞

Q (r) g (n, ϕ (n+ r)) . (25)

Denote

H (n, x) =
b (n)

1− a (n)
f (n, x)− g (n, x) .

We substitute conditions (19) and (23) with the following conditions respectively.
we assume that for all n ∈ [0, T − 1] ∩ Z, x ∈ D,

(1− k1)L ≤ H (n, x) ≤ (1− k2)K, (26)

and

L− k3K ≤ H (n, x) ≤ K − k4L. (27)

Lemma 4.1. Suppose that the conditions (3)–(5) and (17)–(18) and (26) hold.
Then A2 : D→ B is completely continuous.

Proof. Obviously, (A2ϕ) (n+ T ) = (A2ϕ) (n). To see that A2 (D) is uniformly
bounded, we let n ∈ [0, T − 1] ∩ Z and for ϕ ∈ D, we have by (26) that

|(A2ϕ) (n)|

≤

∣∣∣∣∣
n+T−1∑
u=n

G (n, u)

[
b (u)

−1∑
r=−∞

Q (r) f (u, ϕ (u+ r))

− (1− a (u))

−1∑
r=−∞

Q (r) g (u, ϕ (u+ r))

]∣∣∣∣∣
≤

n+T−1∑
u=n

G (n, u) (1− a (u))

−1∑
r=−∞

Q (r)

∣∣∣∣ b (u)

1− a (u)
f (u, ϕ (u+ r))− g (u, ϕ (u+ r))

∣∣∣∣
≤ (1− k2)K

n+T−1∑
u=n

G (n, u) (1− a (u))

−1∑
r=−∞

Q (r)

= (1− k2)K.

From the estimation of |(A2ϕ) (n)| it follows that

‖A2ϕ‖ ≤ (1− k2)K.

This shows that A2 (D) is uniformly bounded.
Next, we show that A2 maps bounded subsets into compact sets. As A2 (D)

is uniformly bounded in RT , then A2 (D) is contained in a compact subset of B.
Therefore A2 is completely continuous. This completes the proof. �

Lemma 4.2. Suppose that (3)–(5), (16) and (20) hold. If B2 is given by (25), then
B2 : D→ B is a contraction.
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Proof. Let B2 be defined by (25). Obviously, (B2ϕ) (n+ T ) = (B2ϕ) (n). So, for
any ϕ,ψ ∈ D, we have

|(B2ϕ) (n)− (B2ψ) (n)|

≤

∣∣∣∣∣
−1∑

r=−∞
Q (r) g (n, ϕ (n+ r))−

−1∑
r=−∞

Q (r) g (n, ψ (n+ r))

∣∣∣∣∣
≤

−1∑
r=−∞

Q (r) |g (n, ϕ (n+ r))− g (n, ψ (n+ r))|

≤ k ‖ϕ− ψ‖
−1∑

r=−∞
Q (r)

= k ‖ϕ− ψ‖ .

Then ‖B2ϕ− B2ψ‖ ≤ k ‖ϕ− ψ‖. Thus B2 : D→ B is a contraction by (20). �

Similar to the results in Section 3, we have

Theorem 4.3. Suppose (3)–(5), (16)–(18), (20) and (26) hold and there exists a
n0 ∈ [0, T − 1] ∩ Z such that H (n0, x) > (1− k1)L for any x ∈ D. Then equation
(2) has a positive T -periodic solution x in the subset D1.

Theorem 4.4. Suppose (3)–(5), (16), (20)–(22) and (27) hold and there exists a
n0 ∈ [0, T − 1] ∩ Z such that H (n0, x) > L − k3K for any x ∈ D. Then equation
(2) has a positive T -periodic solution x in the subset D1.
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