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ENTROPY FORMULAS AND THEIR APPLICATIONS ON TIME

DEPENDENT RIEMANNIAN METRICS

A. ABOLARINWA

Abstract. In this paper we discuss entropy formulas under the abstract geo-

metric flow. We adopt Perelman’s approach for the Ricci flow to obtain unified
energy and entropy functionals, which are monotonically nondecreasing along
the flow. We demonstrate their applications to rule out existence of geometric
breathers (steady, shrinking and expanding) other than gradient solitons.

1. Introduction

A classical problem in differential geometry is to find canonical metrics of Rie-
mannian manifolds. By a canonical metric we mean a metric of constant curvature
whose existence often yields useful geometric and topological information. A well
known example is the classification of Gauss curvature metrics of simply connected
Riemannian surfaces, i.e., the uniformization theorem. By now it is well known that
the geometric flows play fundamental roles in achieving this objective. In this paper
we study the generalized abstract geometric flow via entropy formulas. Our major
aim is to prove a unified approach to the treatment of numerous geometric flows
that have been developed by several authors. We say that a one parameter family
of time-dependent Riemannian metrics g(t), t ∈ [0, T ], is a generalized geometric
flow if it is evolving by the following system of initial value problem

∂

∂t
gij(x, t) = −2hij(x, t)

gij(x, 0) = g0(x),

(1)

where x ∈ M and hij is a general time-dependent symmetric (0, 2)-tensor. The
scaling factor 2 in (1) is insignificant while the negative sign may be important
in some specific applications for the purpose of keeping the flow either forward or
backward in time. In this paper, we define unified energy functionals and entropy
formulas which turn out to be monotone under certain conditions as long as the
geometric flow exists. The energy and entropy functionals are generalization of
classical entropy of Shannon arising from Thermodynamics and Fisher information
entropy from information theory for Ricci flat manifold. Perelman’s energy and
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functional for the Ricci flow [13] provide us with a great deal of motivations. The
geometric implication of the monotonicity formulas derived here is that there are
no compact geometric breathers excepts those that are gradient solitons. See [4]
and [9] for other useful applications, for instance, the monotonicity of compact
eigenvalue and monotone volume. For further application of entropies see [11] on
static metrics and [3, 12] on evolving manifolds.

Most of our calculations are done in local coordinates, where {xi} is fixed in a
neighbourhood of every point x ∈ M. The Riemannian metric g(x) at any point
x ∈ M is a bilinear symmetric positive definite matrix denoted in local coordinates
by

gij = ds2 = gijdx
idxj .

The Laplace-Beltrami operator acting on a smooth function f on M is defined as
a dot product of divergence and gradient of f , where

(grad f)i = (∇f)i = gij
∂

∂xj
f and divF =

1√
|g|

∂

∂xi
(
√

|g|F i).

F being a smooth vector field. Also, we have the metric norm |∇f |2g = gij∇if∇jf .
The Riemannian structure allows us to define Riemannian volume measure dµ on
M , dµ =

√
|gij(x)|dxi. By the divergence theorem we have the following integration

by parts formulas for functions f, h ∈ C2(M)∫
M

f∆gh dV = −
∫
M

⟨∇f,∇h⟩gdV =

∫
M

∆gf hdV.

For any smooth function f on M , we have the Bochner’s formula defined as

∆(|∇f |2) = 2|∇∇f |2 + 2⟨∇f,∇∆f⟩+ 2Rc(∇f,∇f), (2)

where Rc is the Ricci curvature of M whose tensor components will be written in
local coordinates as Rij . Interestingly, when a manifold is being evolved under a
geometric flow all the associated quantities also evolve along the flow. For examples,
the Riemannian volume measure dµ of (M, g) evolves by

∂tdµ = −Hdµ

and H by

∂tH = gij∂thij + 2|hij |2

where gij is the inverse of the metric gij , H = gijhij , i.e., the metric trace of (0, 2)-
tensor hij and |hij |2 = gikgjlhijhkl. Denote β := gij∂thij , in particular, under the
Ricci flow, where hij = Rij and H = R, we have β = ∆R. Here in this paper we
will assume that

β −∆H ≥ 0. (3)

This is motivated by an error term appearing in a result of Müller [9, Lemma 1.6].
For our case the error term reads; for any time-dependent vector field X

D(X) := 2(Rij − hij)(X
i, Xj) + 2⟨∇H − 2div h,X⟩+ ∂tH−∆H− 2|hij |2, (4)

where div is the divergence operator, i.e., (div h)k = gij∇ihjk. Clearly the last three
terms in (4) above is the same as the quantity β−∆H. It does make sense to assume
(3) whenever D(X) is nonnegative. The application of this is that we are on a steady
or shrinking soliton (self-similar solution to the geometric flow) if the equality in
(3) holds. Note that we can also express |hij |2 ≥ 1

nH
2 since |gijhij |2 = H2. Using
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the condition that β −∆H ≥ 0, we have a governing differential inequality for the
evolution of H as follows

∂

∂t
H ≥ ∆H+

2

n
H2. (5)

Suppose H ≥ Hmin, we can apply the maximum principle to show that

Hg(t) ≥
Hmin(0)

1− 2
nHmin(0)t

(6)

for all t ≥ 0 as long as the flow exists.
The next section gives a brief review on the concepts of geometric breathers

and solitons. We devote Sections 3 - 5 to the treatment of energy and entropy
monotonicity formulas and their geometric applications. The last section presents
some geometric flows available in literature where our approach is applicable.

2. Solitons and Breathers for the geometric flow

Generally speaking, a soliton is a self-similar solution to an evolution equation
which evolves along the symmetry group of the flow. In the case of the geometric
flow, the symmetries are scalings and diffeomorphisms. Soliton solutions are very
crucial to the study of behaviour of solutions near singularities in special applica-
tions of geometric flows where singularity models are more obvious. The periodic
solutions modulo scaling and diffeomorphisms are called breathers. A priori, we do
not usually expect to have periodic solutions since the geometric flow is a heat-type
equation. These special solutions (solitons and breathers) motivate the analysis of
geometric flow through entropies and monotonicity formulas. We show as geomet-
ric applications of entropy formulas that there are no compact breathers except the
trivial ones which are essentially gradient solitons. Details about Ricci solitons and
Ricci breathers are found in [1] and [2] for instance.

2.1. Geometric Solitons. In this case we modify the flow by a one-parameter
group of diffeomorphisms ϕt and define a time−dependent vector field X from it.

Definition 2.1. Let {ϕt}, t ∈ I be a one-parameter family of diffeomorphisms,
φt : M → M, and {g(t)}t∈I be a one-parameter family of Riemannian metrics
defined on M . Given a smooth scalar function β(t) > 0, such that

g(t) = β(t)ϕ∗
t g0 and hij(g) = hij(ϕ

∗
t g0). (7)

Any geometrici flow (i.e., solution g(t) of (1)) with this property is called a geo-
metric soliton.

This simply means that on a geometric soliton all the Riemannian manifolds
(Mn, g) are isometric up to a scale factor that is allowed to vary with time. There-
fore, the geometric flow equation is equivalent to

hij(g0) +
1

2
LXg0 = σg0 (8)

for any σ(t) = −1
2β

′(t), where X is a vector field on M and LXg0 is the Lie
derivative of the evolving metric. If the vector field X is the gradient of a function,
say f , then the solution is called a gradient soliton and (8) becomes

hij +∇i∇jf = σgij , (9)
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where σ is the homothety constant. The case β′(t) < 0, β′(t) = 0 or β′(t) > 0
corresponds to shrinking, steady or expanding gradient soliton. Clearly, a 2-tensor
hij is a multiple of the metric gij(t) if X vanishes identically.

2.2. Geometric Breathers.

Definition 2.2. (Breathers): A metric gij(t) which evolves by the generalized
geometrici flow is called a breather if for some t1, t2, such that t1 < t2, the metric

gij(t2) = αϕ∗
t gij(t1) and hij(gij(t2)) = ϕ∗

thij(gij(t2) (10)

for some constant α > 0 and diffeomorphism ϕt : M → M. The cases α < 1, α = 1
and α > 1 correspond to shrinking, steady and expanding breathers. Clearly, steady,
shrinking or expanding gradient solitons are trivial breathers for which metric gij(t1)
and gij(t2) differ only by diffeomorphism and scaling for t1 and t2.

Remark 2.3. If we consider the generalized geometric flow as a dynamic system on
the space of Riemannnian metrics modulo diffeomorphism and scaling, the breathers
correspond to the periodic orbits while the solitons are fixed points.

3. Energy and entropy functionals for geometric flow

Let g = g(t) ∈ Γ(S2
+(T

∗M)) be a Riemannian metric solving the geometric flow
(1) on a closed manifold M and f : M → R be a gradient function. Let u = u(t, x)
be a positive solution to the geometric heat-type equation

�∗u(t, x) =
(
− ∂

∂t
−∆+H

)
u(t, x) = 0, (t, x) ∈ [0, T )×M (11)

with the normalization condition
∫
M

u(t, x) dµg(t) = 1. Define the classical Boltz-
mann entropy as

E(u(t)) =
∫
M

u(t, x) log u(t, x) dµg(t). (12)

We have the following proposition;

Proposition 3.1. With the notation above

�∗(u log u) =
|∇u|2g
u

+Hu (13)

and

�∗
( |∇u|2g

u
+Hu

)
=

2

u
(h+Rc)(∇u,∇u) +

2

u

(
∇∇u− ∇u⊗∇u

u

)2

+4⟨∇H,∇u⟩g + 2∆Hu+ 2
(
|hij |2g +

1

2
(B −∆H)

)
u

(14)

Proof.

�∗(u log u) = (−∂t −∆g +H)(u log u)

= (−∂t −∆g +H)u log u− ∂tu−∆u− |∇u|
u

= −
( |∇u|2

u
+Hu

)
.

The first result follows immediately by making use of the fact that

(−∂t −∆g +H)u = 0 = −(∂t +∆g −H)u.
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Similarly, by direct calculations (using Bochner’s formula (2)), we have

�∗(Hu) = −2(|h|2 + 1

2
(B −∆H) + ∆H

)
u (15)

and

�∗
( |∇u|2

u

)
= − 2

u
(Rc+ h)(∇u,∇u)− 2

u

(
∇∇u− ∇u⊗∇u

u

)2

−2⟨∇u,∇H⟩.
(16)

Hence, we arrive at the second result by putting together (15) and (16). �

By the proposition above we have proved the first and second derivative of the
Boltzmann entropy along the geometric flow.

Theorem 3.2. (Evolution of Boltzmann entropy) With the above notations we have

d

dt
E(u(t)) =

∫
M

( |∇u|2

u
+H

)
udµ (17)

d2

dt2
E(u(t)) =

∫
M

(∣∣∣h−∇(
∇u

u
)
∣∣∣2 +Θ(

∇u

u
)
)
u dµ. (18)

The proof of the first part is a consequence of (13) while that of second part
follows from (14) and will be completed under Theorem 3.4. �

3.1. F-energy functional and its monotonicity.

Definition 3.3. We define Perelman-type F-energy functional as the integral of
�∗(u log u) i.e., the first derivative of Boltzmann entropy

F =

∫
M

( |∇u|2

u
+H

)
udµ (19)

and Perelman-type W-entropy as the combination of F-energy, Boltzmann entropy
and certain positive scaling factor τ as

W = τF − E − n

2
log(4πτ)− n. (20)

Details on W-entropy is delayed till Section 4. Let f = − log u, f ∈ C∞(M) (f is
called a potential function), then f satisfies the backward heat equation

∂f

∂t
= −∆f + |∇f |2 −H

with the constraints
∫
M

e−fdµ = 1. Then we have

Theorem 3.4. Let (gij(t), f(t)) solves the following coupled system
∂gij
∂t

= −2hij

∂f

∂t
= −∆f + |∇f |2 −H.

(21)

Then, the energy functional F defined by

F =

∫
M

(|∇f |2 +H)e−fdµ (22)
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evolves by
d

dt
F =

∫
M

2
(
|hij +∇i∇jf |2 +Θ(−∇f)

)
e−fdµ. (23)

Moreover F is monotonically nondecreasing provided Θ(−∇f) ≥ 0. The mono-
tonicity is strict unless hij +∇i∇jf = 0 and Θ(−∇f) = 0.

Proof. By direct computation

d

dt
F =

∫
M

( ∂

∂t
−H

)( |∇u|2

u
+H

)
dµ =

∫
M

�∗
( |∇u|2

u
+H

)
dµ.

Then by Proposition 3.1

d

dt
F =

∫
M

[ 2
u

(
∇∇u− ∇u⊗∇u

u

)2

+
2

u
(h+Rc)(∇u,∇u)

+ 2⟨∇H,∇u⟩+ 2
(
|hij |2g +

1

2
(B −∆H)

)
u
]
dµ,

where we have used ∫
M

(2⟨⟨∇H,∇u⟩+ 2u∆H)dµ = 0

due to integration by parts in (14). Notice also that

2

u

(
∇∇u− ∇u⊗∇u

u

)2

= 2u
∣∣∣∇(∇u

u

)∣∣∣2 = 2u|∇∇ log u|2.

Then

d

dt
F =

∫
M

[
2u|∇∇ log u|2 + 2u(h+Rc)(∇ log u,∇ log u)

+ 2⟨∇H,∇u⟩+ 2
(
|hij |2g +

1

2
(B −∆H)

)
u
]
dµ

=

∫
M

[
2u(|h|2 + |∇∇ log u|2) + 2u(h+Rc)(∇ log u,∇ log u)

+ 2⟨∇H,∇u⟩+ (B −∆H)u
]
dµ

=

∫
M

[
2u(|h−∇∇ log u|2 + 4u⟨h,∇∇ log u⟩+ 2⟨∇H,∇u⟩

2u(h+Rc)(∇ log u,∇ log u) + (B −∆H)u
]
dµ.

Since we are on a closed manifold we have by the divergence theorem that∫
M

div (uh∇ log u)dµ = 0,

where the integrand is evaluated as

div (uh∇ log u) = h(∇ log u,∇u) + u⟨divh,∇ log u⟩+ u⟨h,∇∇ log u⟩. (24)

Using the expression (24) in the above we have

d

dt
F =

∫
M

[
2u(|h−∇∇ log u|2 + 2u(Rc− h)(∇ log u,∇ log u)

+ (B −∆H)u+ 2⟨∇H,∇u⟩ − 4⟨divh,∇u⟩
]
dµ

= 2

∫
M

(
|h−∇∇ log u|2udµ+ 2

∫
M

[
(Rc− h)(∇ log u,∇ log u)
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+ ⟨∇H − 2 divh,∇ log u⟩+ 1

2
(B −∆H)

]
udµ.

Putting in f = − log u, we obtain the desired result with

Θ(−∇f) = (Rc− h)(∇f,∇f) + ⟨∇H − 2 divh,∇f⟩+ 1

2
(B −∆H).

�

Remark 3.5. This also completes the proof of Theorem 3.2 (the second part). This
can be seen by putting f = − log u or u = e−f for a potential function f ∈ C∞(M)
and ∇f = −|∇u|/u in the second equation in the theorem. Thus

d

dt
F(g(t), f) =

d2

dt2
E(f(t)).

Notice also that when d
dtF(g(t), f) = 0 each term on the right hand side (23) will

be identically zero which implies hij + ∇i∇jf = 0, hij = 0 and f ≡ const. Then
Θ(−∇f) = Θ(0) = 0 which also implies (B −∆H) = 0.

3.2. The family of Fk-energy functional.

Definition 3.6. Let (Mn, g) be a closed n-dimensional Riemannian Manifold, de-
fine for any f ∈ C∞(M) with

∫
M

e−fdµ = 1, a family of energy functional Fk

as

Fk =

∫
M

(
|∇f |2 + kH

)
e−fdµ, (25)

where k ≥ 1. When k = 1, we simply get Perelman’s F energy.

In the next, we obtain the monotonicity formula for this family of functional
Fk(g, f).

Theorem 3.7. Let (M, g(t)) evolve by the generalized geometric flow (1) such that
(g, f) solves the coupled system (26).

∂gij
∂t

= −2hij

∂f

∂t
= −∆f + |∇f |2 −H.

(26)

Then,

d

dt
Fk(gij , f) =

∫
M

(
|hij +∇i∇jf |2 + (k − 1)|hij |2

)
e−fdµ

+ 2

∫
M

(
Θ(−∇f) +

(k − 1)

2
(B −∆H)

)
e−fdµ.

(27)

Furthermore Fk is monotonically nondecreasing in time for k ≥ 1, Θ(−∇f) ≥ 0
and (B −∆H) ≥ 0. The monotonicity is strict unless hij = 0, f is constant and
(B −∆H) = 0

Proof. Rewrite Fk as

Fk(g, f) =

∫
M

(|∇f |2 +H)e−fdµ+ (k − 1)

∫
M

He−fdµ.
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A straightforward differentiation yields

d

dt
Fk(g, f) =

∂

∂t

(∫
M

(|∇f |2 +H)e−fdµ
)
+ (k − 1)

∂

∂t

(∫
M

He−fdµ
)

(28)

By Theorem 3.4 we have

∂

∂t

(∫
M

(|∇f |2 +H)e−fdµ
)
=

∫
M

2
(
|hij +∇i∇jf |2 +Θ(−∇f)

)
e−fdµ. (29)

Then we are left to evaluating

∂

∂t

(∫
M

He−fdµ
)
=

∫
M

(∂H
∂t

e−f −H∂f

∂t
e−f −H2e−f

)
dµ

=

∫
M

(
(2|hij |2 +B) +H(∆f − |∇f |2 +H)−H2

)
e−fdµ

=

∫
M

(
(2|hij |2 +B)e−f −H∆(e−f )

)
dµ

=

∫
M

(
(2|hij |2 + (B −∆H)

)
e−fdµ.

The result then follows by using the last equality and (29) in (28) . �

The energy functional Fk has been studied by Li [7] under the Ricci flow, where
it was used to rule out existence of nontrivial Ricci breathers other than steady
gradient soliton. We also remark that the extra terms obtained in the monotonicity
formula for Fk can be used to obtain further useful geometric information about
the underlying manifold.

4. W-entropy functional and its monotonicity

Recall that Perelman’s F-energy functional is the derivative of Boltzmann-Shannon
entropy E . We now present W -entropy which is a modification of F-energy as
discussed in the previous section with inclusion of a positive scaling parameter τ
and combination of entropy E . These combine nicely and the resulting entropy
yields useful applications. We discuss variation of this entropy and its monotonic-
ity, which will be used to prove nonexistence of nontrivial shrinking breathers on
compact manifold.

Definition 4.1. Let (M, g(t)) be a closed manifold evolving by the generalized geo-
metric flow (1). For any function f ∈ C∞, we define Perelman’s W-entropy as

W(g, f, τ) :=

∫
M

[
τ(|∇f |2 +H) + f − n

]
(4πτ)−

n
2 e−fdµ, (30)

where g(t) is a Riemannian metric on n-compact manifold M , f is a smooth func-
tion on M and τ = T − t is a positive scale parameter.

Here we denote u := (4πτ)−
n
2 e−f , the solution of the heat-type equation (11)

with the condition
∫
M
(4πτ)−

n
2 e−f = 1. Then Boltzmann-Shannon entropy E be-

comes

E(f(t)) = −
∫
M

fe−f (4πτ)−
n
2 dµ− n

2
log(4πτ).

Hence, we write

W(g, f, τ) = τF − E(f(t))− n

2
log(4πτ)− n. (31)
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We note that the W-entropy is invariant under simultaneous scaling of τ and g.

Lemma 4.2. Let η > 0 be any constant and ϕ : M → M be any diffeomorphism.
Then

W(η · g, f, η · τ) = W(g, f, τ) and W(ϕ∗
t g, ϕ

∗
t f, τ) = W(g, f, τ).

We now find the monotonicity of W-entropy under the coupled system

∂gij
∂t

= −2hij

∂f

∂t
= −∆f + |∇f |2 −H+

n

2τ

dτ

dt
= −1.

(32)

By a straightforward computation using (31) we have

d

dt
W(g, f, τ) = τ

d

dt
F(g, f)−F(g, f)− d

dt
E(f) + n

2

= 2τ

∫
M

(
|hij +∇i∇jf |2 + θ(−∇f)

)
(4πτ)−

n
2 e−fdµ

− 2

∫
M

(H+ |∇f |2)(4πτ)−n
2 e−fdµ+

n

2τ

= 2τ

∫
M

(
|hij +∇i∇jf |2 + θ(−∇f)− 1

τ
(∆f +H) +

n

4τ2

)
× (4πτ)−

n
2 e−fdµ

= 2τ

∫
M

(
|hij +∇i∇jf − 1

2τ
gij |2 + θ(−∇f)

)
(4πτ)−

n
2 e−fdµ,

where we have used the identity
∫
M
(∆f − |∇f |2)e−f = 0 on a closed manifold. By

this we have proved the following

Theorem 4.3. Let (g(t), f(t), τ(t)) be a solution to the coupled system (32). Then,
we have the monotonicity formula

d

dt
W(g, f, τ) = 2τ

∫
M

(
|hij +∇i∇jf − 1

2τ
gij |2 + θ(−∇f)

) e−f

(4πτ)
n
2
dµ. (33)

If Θ(−∇f) ≥ 0, W(g, f, τ) is monotonically nondecreasing and there is equality if
and only if

hij +∇i∇jf − 1

2τ
gij = 0 and θ(−∇f) = 0

which implies H+∆f − n
2τ = 0 and F − n

2 = 0.

The monotonicity of W can be applied to rule out existence of nontrivial shrink-
ing breathers in the general geometric flow on the condition that θ(−∇f) ≥ 0.

Proposition 4.4. µ(gij(t), τ−t) is nondecreasing along the geometric flow and the
monotonicity is strict unless we are on a shrinking gradient soliton. A shrinking
breather is necessarily a shrinking gradient soliton.
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5. W+-entropy over expander

The W+-entropy is dual to Perelman W-entropy for the shrinkers. The duality is
due to the difference in sign which is caused by the antiderivative of 1/τ depending
on the circumstance either t > T or t < T .

Definition 5.1. Let (M, g(t)) be a closed manifold evolving by the generalized geo-
metric flow (1). For any function f+ ∈ C∞, we define W+-entropy by

W+(g, f+, σ) :=

∫
M

[
σ(|∇f+|2 +H)− f+ + n

]
(4πσ)−

n
2 e−f+dµ, (34)

with the constraint
∫
M
(4πσ)−

n
2 e−f+dµ = 1 and σ = t− T .

An entropy of this form was introduced in [3] by Feldman, Ilmanen and Ni. Let
(4πσ)−

n
2 e−f+ solves the heat-type equation (11), then f+ satisfies the backward

heat equation

∂f+
∂t

= −∆f+ + |∇f+| − H − n

2σ
. (35)

Theorem 5.2. Under the coupled system

∂gij
∂t

= −2hij

∂f+
∂t

= −∆f+ + |∇f+|2 −H+
n

2(t− T )

dτ

dt
= 1,

(36)

we have the following monotonicity formula

d

dt
W(g, f+, σ)

= 2σ

∫
M

(
|hij +∇i∇jf+ +

1

2(t− T )
gij |2 + θ(−∇f+)

) e−f+

(4πσ)
n
2
dµ.

(37)

Furthermore, if θ(−∇f) ≥ 0 then W+ is monotonically nondecreasing and the
monotonicity is strict unless

hij +∇i∇jf+ +
1

2(t− T )
gij = 0 and θ(−∇f+) = 0.

The implication of this monotonicity formula is that we can only have gradient
expanding solitons but not expanding breathers.

6. Examples of geometric flow

Here, we give some examples of geometric-curvature flows where the energy and
entropies are valid. They include the Hamilton’s Ricci flow, Ricci-harmonic
map flow, List extended flow, mean curvature flow, Yamabe flows and
some others. We give highlights of the first two and remark that in these cases the
error term D and the quantity β −∆H are nonnegative. We may also need some
restrictions on curvatures to obtain and apply the monotonicity formulas.
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6.1. Hamilton’s Ricci flow. Let (M, g(t)) be a solution to the Hamilton’s Ricci
flow (Richard Hamilton [5].)

∂tgij(t, x) = −2Rij . (38)

This is the case where hij = Rij is the Ricci tensor and H = R is the scalar
curvature on M . Here, the scalar curvature evolves by

∂tR = ∆R+ 2|Rij |2.

By twice contracted second Bianchi identity gij∇iRjk = 1
2∇kR, which implies

2⟨ div h,∇f⟩ − ⟨∇H,∇f⟩ = 0,

the quantity D(X) vanishes identically and

β −∆R ≡ 0.

Note that the positivity of curvature is preserved along the Ricci flow. A ground-
breaking result in geometric analysis and indeed mathematics in general is the
introduction and analytic and geometric applications of Perelman’s F-energy and
W-entropy [13] to the theory of Ricci flow, which ultimately led to the complete
proof of Poincaré conjecture. For more details see [1, 6, 9, 14]

6.2. Ricci-harmonic map flow. Let (M, g) and (N, ξ) be compact (without
boundary) Riemannian manifolds of dimensionsm and n respectively. Let a smooth
map φ : M → N be a critical point of the Dirichlet energy integral E(φ) =∫
M

|∇φ|2dµg, where N is isometrically embedded in Rd, d ≥ n, by the Nash em-
bedding theorem. The configuration (g(x, t), φ(x, t)), t ∈ [0, T ) of a one parameter
family of Riemannian metrics g(x, t) and a family of smooth maps φ(x, t) is defined
to be Ricci-harmonic map flow (Reto Müller [10],) if it satisfies the coupled system
of nonlinear parabolic equations

∂

∂t
g(x, t) = −2Rc(x, t) + 2α∇φ(x, t)⊗∇φ(x, t)

∂

∂t
φ(x, t) = τgφ(x, t),

(39)

where Rc(x, t) is the Ricci curvature tensor for the metric g, α(t) ≡ α > 0 is a time-
dependent coupling constant, τgφ is the intrinsic Laplacian of φ, which denotes the
tension field of map φ and ∇φ ⊗ ∇φ = φ∗ξ is the pullback of the metric ξ on N
via the map φ. See List [8] when the target manifold is one dimensional. Here
hij = Rij − α∂iφ∂jφ =: Sij , H = Rα|∇φ|2 =: S and

∂tS = ∆S + 2|Sij |2 + 2α|τgφ|2 − 2α̇|∇φ|2. (40)

Using the twice contracted second Bianchi identity, we have

(gij∇iSjk − 1

2
∇kS)Xj = −ατgφ∇jφXj . (41)

Then, D(Sij , X) = 2α|τgφ − ∇Xφ|2 − 2α̇|∇φ|2 and β −∆S = 2α|τgφ|2 − α̇|∇φ|2
for all X on M . Thus both D and β − ∆S are nonnegative as long as α(t) is
non-increasing in time.
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