Electronic Journal of Mathematical Analysis and Applications, Vol. 3(1) Jan. 2015, pp. 89-96. ISSN: 2090-729(online) http://fcag-egypt.com/Journals/EJMAA/

ON ASYMPTOTICALLY GENERALIZED STATISTICAL EQUIVALENT DOUBLE SEQUENCES VIA IDEALS

U. YAMANCI, M. GÜRDAL

ABSTRACT. In the present paper following the line of recent work of Savaş et al. [25], we introduce the concepts of \mathcal{I} -statistically equivalent, \mathcal{I} - $[V, \lambda, \mu]$ -equivalent and \mathcal{I} - (λ, μ) -statistically equivalent for double sequences. Moreover, we give some relations among these new notations.

1. INTRODUCTION

Fast [2] presented a generalization of the usual concept of sequential limit which their called statistical convergence. Schoenberg [23] and Salat [20] gave some basic properties of statistical convergence. There has been an effort to introduce several generalizations and variants of statistical convergence in different spaces [4, 5, 15, 21]. One such very important generalization of this notion was introduced by Kostyrko et al. [7] by using an ideal \mathcal{I} of subsets of the set of natural numbers, which they called \mathcal{I} -convergence. More recent applications of ideals can be seen from [1, 6, 9, 24] where more references can be found. Recently, in [25], Savaş et al. introduced the notions of \mathcal{I} -statistical convergence, \mathcal{I} - λ -statistical convergence and obtained some results. On the other hand, Pobyvanets [19] introduced the concept of asymptotically regular matrix A, which preserve the asymptotic equivalence of two non-negative sequences, that is $x \sim y$ implies $Ax \sim Ay$. Subsequently, Marouf [12] and Li [11] studied the relationships between the asymptotic equivalence of two sequences in summability theory and presented some variations of asymptotic equivalence. Patterson [17] extended these concepts by presenting an asymptotically statistically equivalent analog of these definitions and natural regularity conditions for non-negative summability matrices. Later, these ideas were extended to lacunary sequences by Patterson and Savaş in [18]. More investigations in this direction and more applications can be found in [22]. In present work, we introduce some new notions \mathcal{I} -statistical equivalent, \mathcal{I} - $[V, \lambda, \mu]$ -equivalent, \mathcal{I} - (λ, μ) statistically equivalent for double sequences and obtain some results.

²⁰¹⁰ Mathematics Subject Classification. 40A05; 40G05.

Key words and phrases. Ideal, Asymptotically equivalent sequences, \mathcal{I} -statistically equivalent, \mathcal{I} - (λ, μ) -statistically equivalent, Double sequence.

Submitted November 22, 2013. Accepted July 16, 2014.

2. Definitions and notations

First we recall some of the basic concepts, which will be used in this paper.

The notion of a statistically convergent sequence can be defined using the asymptotic density of subsets of the set of positive integers $\mathbb{N} = \{1, 2, ...\}$. For any $K \subseteq \mathbb{N}$ and $n \in \mathbb{N}$ we denote $K(n) := cardK \cap \{1, 2, ..., n\}$ and we define lower and upper asymptotic density of the set K by the formulas

$$\underline{\delta}(K) := \liminf_{n \to \infty} \frac{K(n)}{n}; \ \overline{\delta}(K) := \limsup_{n \to \infty} \frac{K(n)}{n}.$$

If $\underline{\delta}(K) = \overline{\delta}(K) =: \delta(K)$, then the common value $\delta(K)$ is called the asymptotic density of the set K and

$$\delta\left(K\right) = \lim_{n \to \infty} \frac{K\left(n\right)}{n}.$$

Obviously all three densities $\underline{\delta}(K)$, $\overline{\delta}(K)$ and $\delta(K)$ (if they exist) lie in the unit interval [0, 1].

$$\delta(K) = \lim_{n} \frac{1}{n} |K_n| = \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \chi_K(k),$$

if it exists, where χ_K is the characteristic function of the set K [3]. We say that a number sequence $x = (x_k)_{k \in \mathbb{N}}$ statistically converges to a point L if for each $\varepsilon > 0$ we have $\delta(K(\varepsilon)) = 0$, where $K(\varepsilon) = \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}$ and in such situation we will write L = st-lim x_k .

In [14], Mursaleen introduced the idea of λ -statistical convergence for single sequences as follows:

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers tending to ∞ such that $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$. The collection of such a sequence λ will be denoted by Δ .

The generalized de la Valée-Pousin mean is defined by

$$t_n\left(x\right) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k$$

where $I_n = [n - \lambda_n + 1, n]$.

A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number L if $\lim_{n} t_n (x) = L$ (see [10]).

The number sequence $x = (x_k)$ is said to be λ -statistically convergent to the number L if for each $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \left| \left\{ k \in I_n : |x_k - L| \ge \varepsilon \right\} \right| = 0.$$

In this case we write $st_{\lambda}-\lim_k x_k = L$ and we denote the set of all λ -statistically convergent sequences by S_{λ} .

In [16], the concepts of generalized double de la Valée-Pousin mean and λ -statistical convergence of a single sequence were defined for a double sequence as follows:

Let $\lambda = (\lambda_m) \in \Delta$ and $\mu = (\mu_n) \in \Delta$. The generalized double de la Valée-Pousin mean is defined by

$$t_{m,n}(x) = \frac{1}{\lambda_m \mu_n} \sum_{(j,k) \in J_m \times I_n} x_{jk},$$

where $J_m = [m - \lambda_m + 1, m]$ and $I_n = [n - \mu_n + 1, n]$.

A double sequence $x = (x_{jk})$ is said to be (V, λ, μ) -summable to a number L provided that $P-\lim_{m,n} t_{m,n}(x) = L$. If $\lambda_m = m$ for all m, and $\mu_n = n$ for all n, then the space (V, λ, μ) is reduced to (C, 1, 1) (see [13, 15]).

The notion of statistical convergence was further generalized in the paper [7, 8] using the notion of an ideal of subsets of the set \mathbb{N} . We say that a non-empty family of sets $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is an ideal on \mathbb{N} if \mathcal{I} is hereditary (i.e. $B \subseteq A \in \mathcal{I} \Rightarrow B \in \mathcal{I}$) and additive (i.e. $A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$). An ideal \mathcal{I} on \mathbb{N} for which $\mathcal{I} \neq \mathcal{P}(\mathbb{N})$ is called a proper ideal. A proper ideal \mathcal{I} is called admissible if \mathcal{I} contains all finite subsets of \mathbb{N} . If not otherwise stated in the sequel \mathcal{I} will denote an admissible ideal. Let $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ be a non-trivial ideal. A class $\mathcal{F}(\mathcal{I}) = \{M \subset \mathbb{N} : \exists A \in \mathcal{I} : M = \mathbb{N} \setminus A\}$, called the filter associated with the ideal \mathcal{I} , is a filter on \mathbb{N} .

Recall the generalization of statistical convergence from [7, 8].

Let \mathcal{I} be an admissible ideal on \mathbb{N} and $x = (x_k)_{k \in \mathbb{N}}$ be a sequence of points in a metric space (X, ρ) . We say that the sequence x is \mathcal{I} -convergent (or \mathcal{I} -converges) to a point $\xi \in X$, and we denote it by \mathcal{I} -lim $x = \xi$, if for each $\varepsilon > 0$ we have

$$A(\varepsilon) = \{k \in \mathbb{N} : \rho(x_k, \xi) \ge \varepsilon\} \in \mathcal{I}.$$

This generalizes the notion of usual convergence, which can be obtained when we take for \mathcal{I} the ideal \mathcal{I}_f of all finite subsets of \mathbb{N} . A sequence is statistically convergent if and only if it is \mathcal{I}_{δ} -convergent, where $\mathcal{I}_{\delta} := \{K \subset \mathbb{N} : \delta(K) = 0\}$ is the admissible ideal of the sets of zero asymptotic density.

We also recall that the concepts of \mathcal{I} -statistically convergent and \mathcal{I} - λ -statistically convergent are studied in [25]:

A sequence $x = (x_k)$ is said to be \mathcal{I} -statistically convergent to $L \in X$, if for every $\varepsilon > 0$, and every $\delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{n} \left| \{k \le n : |x_k - L| \ge \varepsilon\} \right| \ge \delta \right\} \in \mathcal{I}.$$

In this case we write \mathcal{I} -st-lim_k $x_k = L$ or $x_k \to L(\mathcal{I}$ -st).

A sequence $x = (x_k)$ is said to be \mathcal{I} - λ -statistically convergent or \mathcal{I} - st_{λ} convergent to L if for every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{\lambda_n} \left| \{k \in I_n : |x_k - L| \ge \varepsilon \} \right| \ge \delta \right\} \in \mathcal{I}.$$

In this case we write $\mathcal{I} - st_{\lambda} - \lim x = L$ or $x_k \to L (\mathcal{I} - st_{\lambda})$.

We can define the asymptotically equivalent of single sequences as follows (see [12]):

Definition 1 Two non-negative sequences $x = (x_k)$ and $y = (y_k)$ are said to be asymptotically equivalent of multiple L if

$$\lim_{k \to \infty} \frac{x_k}{y_k} = L$$

(denoted by $x \sim y$).

Patterson [17] presented a natural combination of the concepts of statistical convergence and asymptotically equivalent to introduce the concept of asymptotically statistically equivalent as follows.

Definition 2 Two non-negative sequences $x = (x_k)$ and $y = (y_k)$ are said to be

asymptotically statistically equivalent of multiple L if for every $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \left| \left(\frac{x_k}{y_k} \right) - L \right| \ge \varepsilon \right\} \right| = 0,$$

(denoted by $x \sim^{S_L} y$) and simply asymptotically statistical equivalent if L = 1.

3. Main results

In this section we study the concepts of \mathcal{I} -statistically equivalent, \mathcal{I} - $[V, \lambda, \mu]$ equivalent and \mathcal{I} - (λ, μ) -statistically equivalent for double sequences. Moreover, we give some relations among these new notations. The results are analogues to those given by Patterson [17]. These notions generalize the notions of asymptotically statistically equivalent.

We define the following:

Definition 3 Two non-negative double sequences $x = (x_{jk})$ and $y = (y_{jk})$ are said to be asymptotically statistically equivalent of multiple L if for every $\varepsilon > 0$

$$\lim_{m,n\to\infty}\frac{1}{mn}\left|\left\{j\le m,k\le n: \left|\left(\frac{x_{jk}}{y_{jk}}\right)-L\right|\ge\varepsilon\right\}\right|=0,$$

(denoted by $x \sim^{S_L} y$) and simply asymptotically statistical equivalent if L = 1.

Following the line of Savaş et al. [25] we now introduce the following definitions for double sequences using ideals.

Definition 4 The two non-negative double sequences $x = (x_{jk})$ and $y = (y_{jk})$ is said to be asymptotically \mathcal{I} -statistically equivalent of multiple L if for every $\varepsilon > 0$, and every $\delta > 0$,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \left| \left\{ j \le m, \ k \le n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| \ge \delta \right\} \in \mathcal{I},$$

(denoted by $x \sim^{S^{L}(\mathcal{I})} y$) and simply asymptotically \mathcal{I} -statistically equivalent if L = 1.

Definition 5 The two non-negative double sequences $x = (x_{jk})$ and $y = (y_{jk})$ is said to be asymptotically \mathcal{I} - $[V, \lambda, \mu]$ -equivalent of multiple L if for every $\delta > 0$,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{\lambda_m \mu_n} \prod_{(j,k) \in J_m \times I_n} \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \delta \right\} \in \mathcal{I},$$

(denoted by $x \sim^{[V,\lambda,\mu]^L(\mathcal{I})} y$) and simply asymptotically \mathcal{I} - $[V,\lambda,\mu]$ -equivalent if L = 1.

Definition 6 The two non-negative double sequences $x = (x_{jk})$ and $y = (y_{jk})$ is said to be asymptotically \mathcal{I} - (λ, μ) -statistically equivalent of multiple L if for every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{\lambda_m \mu_n} \left| \left\{ (j,k) \in J_m \times I_n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| \ge \delta \right\} \in \mathcal{I},$$

(denoted by $x \sim S^{L}_{\lambda,\mu}(\mathcal{I}) y$) and simply asymptotically \mathcal{I} - (λ, μ) -statistically equivalent if L = 1.

Theorem 1 Let $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ be an admissible ideal and $\lambda = (\lambda_m) \in \Delta$, $\mu = (\mu_n) \in \Delta$. Then

- (i) $x \sim^{[V,\lambda,\mu]^L(\mathcal{I})} y \Rightarrow x \sim^{S^L_{\lambda,\mu}(\mathcal{I})} y.$
- (ii) If $x = (x_{jk}), y = (y_{jk}) \in \ell_{\infty}$ such that $x \sim^{S_{\lambda,\mu}^{L}(\mathcal{I})} y$, then $x \sim^{[V,\lambda,\mu]^{L}(\mathcal{I})} y$.

 $(iii) \left(x \sim^{S_{\lambda,\mu}^{L}(\mathcal{I})} y \right) \cap \ell_{\infty} = \left(x \sim^{[V,\lambda,\mu]^{L}(\mathcal{I})} y \right) \cap \ell_{\infty}, \text{ where } \ell_{\infty} \text{ denotes the class of bounded sequences.}$

Proof. (i) Suppose $x = (x_{jk})$ and $y = (y_{jk})$ be two sequences such that $x \sim [V,\lambda,\mu]^{L}(\mathcal{I}) y$. Let $\varepsilon > 0$. Since

$$|(j,k)\in J_m\times I_n\left|\left(\frac{x_{jk}}{y_{jk}}\right)-L\right| \geq |(j,k)\in J_m\times I_n \& \left|\left(\frac{x_{jk}}{y_{jk}}\right)-L\right|\geq \varepsilon \left|\left(\frac{x_{jk}}{y_{jk}}\right)-L\right| \\ \geq |\varepsilon|\left\{(j,k)\in J_m\times I_n: \left|\left(\frac{x_{jk}}{y_{jk}}\right)-L\right|\geq \varepsilon\right\}\right|.$$

So for a given $\delta > 0$,

$$\frac{1}{\lambda_m \mu_n} \left| \left\{ (j,k) \in J_m \times I_n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| \ge \delta$$
$$\Rightarrow \frac{1}{\lambda_m \mu_n} \sum_{(j,k) \in J_m \times I_n} \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon .\delta.$$

Therefore we have the inclusion

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{\lambda_m \mu_n} \left| \left\{ (j,k) \in J_m \times I_n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| \ge \delta \right\}$$
$$\subset \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{\lambda_m \mu_n} |j_{(j,k) \in J_m \times I_n} \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon .\delta \right\}.$$

Since $x \sim [V,\lambda,\mu]^{L}(\mathcal{I}) y$, so the set on the right-hand side belongs to \mathcal{I} and so it follows that $x \sim S_{\lambda,\mu}^{L}(\mathcal{I}) y$.

(*ii*) If $x = (x_{jk}), y = (y_{jk}) \in \ell_{\infty}$ such that $x \sim^{S_{\lambda,\mu}^{L}(\mathcal{I})} y$. Let $\left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \leq M$ $\forall j, k$. Let $\varepsilon > 0$ be given. Now

$$\begin{aligned} \frac{1}{\lambda_m \mu_n}_{(j,k) \in J_m \times I_n} \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| &= \frac{1}{\lambda_m \mu_n}_{(j,k) \in J_m \times I_n \& \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon} \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \\ &+ \frac{1}{\lambda_m \mu_n}_{(j,k) \in J_m \times I_n \& \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| < \varepsilon} \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \\ &\leq \frac{M}{\lambda_m \mu_n} \left| \left\{ (j,k) \in J_m \times I_n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| + \varepsilon. \end{aligned}$$
Note that $\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{\lambda_m \mu_n} \left| \left\{ (j,k) \in J_m \times I_n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| \ge \frac{\varepsilon}{M} \right\} = \end{aligned}$

Note that $\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{\lambda_m \mu_n} \left| \left\{ (j,k) \in J_m \times I_n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| \ge \frac{\varepsilon}{M} \right\} = A(\varepsilon) \in \mathcal{I}.$ If $(m,n) \in (A(\varepsilon))^c$ then

$$\frac{1}{\lambda_m \mu_n} \frac{1}{(j,k) \in J_m \times I_n} \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| < 2\varepsilon.$$

Hence

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{\lambda_m \mu_n} | \left(\frac{x_{jk}}{y_{jk}} \right) - L | \ge 2\varepsilon \right\} \subset A(\varepsilon)$$

and so belongs to \mathcal{I} . This shows that $x \sim^{[V,\lambda,\mu]^L(\mathcal{I})} y$.

(iii) This readily follows from (i) and (ii).

Theorem 2 Let $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ be an admissible ideal and $\lambda = (\lambda_m) \in \Delta$, $\mu = (\mu_n) \in \Delta$. Then

(i) $x \sim^{S^{L}(\mathcal{I})} y \subset x \sim^{S_{\lambda,\mu}^{L}(\mathcal{I})} y$ if $\lim \inf_{m \to \infty} \frac{\lambda_{m}}{m} > 0$ and $\lim \inf_{n \to \infty} \frac{\mu_{n}}{n} > 0$. (ii) If $\lim \inf_{m \to \infty} \frac{\lambda_{m}}{m} = 0$ and $\lim \inf_{n \to \infty} \frac{\mu_{n}}{n} = 0$, then $x \sim^{S^{L}(\mathcal{I})} y \subsetneqq x \sim^{S_{\lambda,\mu}^{L}(\mathcal{I})} y$.

Proof. (i) Suppose $x = (x_{jk})$ and $y = (y_{jk})$ be two sequences such that $x \sim S^{L}_{\lambda,\mu}(\mathcal{I})$ y. For given $\varepsilon > 0$,

$$\begin{aligned} & \frac{1}{mn} \left| \left\{ j \le m, k \le n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| \\ \ge & \frac{1}{mn} \left| \left\{ (j,k) \in J_m \times I_n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| \\ = & \frac{\lambda_m \mu_n}{mn} \frac{1}{\lambda_m \mu_n} \left| \left\{ (j,k) \in J_m \times I_n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right|. \end{aligned}$$

If $\lim_{m \to \infty} \inf_{m} \frac{\lambda_m}{m} = a$ and $\lim_{n \to \infty} \inf_{n} \frac{\mu_n}{n} = b$ then the set $\left\{ (m, n) \in \mathbb{N} \times \mathbb{N} : \frac{\lambda_m \mu_n}{mn} < \frac{ab}{2} \right\}$ is finite. Hence for $\delta > 0$,

$$\begin{cases} (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{\lambda_m \mu_n} \left| \left\{ (j,k) \in J_m \times I_n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| \ge \delta \\ \\ \subset \quad \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \left| \left\{ j \le m, k \le n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| \ge \frac{ab}{2} . \delta \\ \\ \cup \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{\lambda_m \mu_n}{mn} < \frac{ab}{2} \right\}. \end{cases}$$

Since \mathcal{I} is admissible, the set on the right-hand side belongs to \mathcal{I} and this completed the proof of (i).

(*ii*) Conversely, suppose that $x \sim^{S^{L}(\mathcal{I})} y$ and $\lim \inf_{m \to \infty} \frac{\lambda_{m}}{m} = 0$ and $\lim \inf_{n \to \infty} \frac{\mu_{n}}{n} = 0$. Then we can choose subsequences $(m(p))_{p=1}^{\infty}$ and $(n(q))_{q=1}^{\infty}$ such that $\frac{\lambda_{m(p)}}{m(p)} < \frac{1}{p}$ and $\frac{\mu_{n(q)}}{n(q)} < \frac{1}{q}$. Define a sequence $x = (x_{jk})$ by

$$x_{ik} = \begin{cases} 1, & \text{if } j \in J_{m(p)} \text{ and } k \in I_{n(q)}, \\ 0, & \text{otherwise.} \end{cases}$$

and $y_{jk} = 1$ for all $j, k \in \mathbb{N}$. Then $x \sim^{S^L} y$ and so by the admissibility of the ideal $x \sim S^{L(\mathcal{I})} y$. But $x \sim [V,\lambda,\mu]^{L}(\mathcal{I}) y$ is not satisfied and therefore by Theorem 2 (*ii*) $x \sim^{S_{\lambda,\mu}^L(\mathcal{I})} y$ is not satisfied.

Theorem 3 Let $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ be an admissible ideal. If $\lambda, \mu \in \Delta$ be such that

lim_m $\frac{\lambda_m}{m} = 1$ and $\lim_n \frac{\mu_n}{n} = 1$, then $x \sim S_{\lambda,\mu}^{L}(\mathcal{I}) \ y \subset x \sim S^{L}(\mathcal{I}) \ y$. **Proof.** Suppose that $\lim_m \frac{\lambda_m}{m} = 1$ and $\lim_n \frac{\mu_n}{n} = 1$ and there exists sequences $x = (x_{jk})$ and $y = (y_{jk})$ be two sequences such that $x \sim S_{\lambda,\mu}^{L}(\mathcal{I}) \ y$. Let $\delta > 0$ be given. Since $\lim_m \frac{\lambda_m}{m} = 1$ and $\lim_n \frac{\mu_n}{n} = 1$, we can choose $m, n \in \mathbb{N}$, such

$$\begin{aligned} \operatorname{that}\left|\frac{\lambda_{m}\mu_{n}}{mn}-1\right| &< \frac{\delta}{2}, \text{ for all } m, n \geq N_{mn}. \text{ Now observe that, for } \varepsilon > 0 \\ &\quad \frac{1}{mn}\left|\left\{j \leq m, k \leq n: \left|\left(\frac{x_{jk}}{y_{jk}}\right)-L\right| \geq \varepsilon\right\}\right|\right. \\ &= \left.\frac{1}{mn}\left|\left\{j \leq m-\lambda_{m}, k \leq n-\mu_{n}: \left|\left(\frac{x_{jk}}{y_{jk}}\right)-L\right| \geq \varepsilon\right\}\right|\right. \\ &\quad + \frac{1}{mn}\left|\left\{(j,k) \in J_{m} \times I_{n}: \left|\left(\frac{x_{jk}}{y_{jk}}\right)-L\right| \geq \varepsilon\right\}\right|\right. \\ &\leq \left.\frac{mn-\lambda_{m}\mu_{n}}{mn} + \frac{1}{mn}\left|\left\{(j,k) \in J_{m} \times I_{n}: \left|\left(\frac{x_{jk}}{y_{jk}}\right)-L\right| \geq \varepsilon\right\}\right|\right. \\ &\leq \left.1-\left(1-\frac{\delta}{2}\right) + \frac{1}{mn}\left|\left\{(j,k) \in J_{m} \times I_{n}: \left|\left(\frac{x_{jk}}{y_{jk}}\right)-L\right| \geq \varepsilon\right\}\right|\right. \\ &= \left.\frac{\delta}{2} + \frac{1}{mn}\left|\left\{(j,k) \in J_{m} \times I_{n}: \left|\left(\frac{x_{jk}}{y_{jk}}\right)-L\right| \geq \varepsilon\right\}\right|,\end{aligned}$$

for all $m, n \geq N_{mn}$. Hence

$$\begin{cases} (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \left| \left\{ j \le m, k \le n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| \ge \delta \end{cases}$$

$$\subset \quad \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \left| \left\{ (j,k) \in J_m \times I_n : \left| \left(\frac{x_{jk}}{y_{jk}} \right) - L \right| \ge \varepsilon \right\} \right| \ge \frac{\delta}{2} \end{cases}$$

$$\cup \left\{ (\mathbb{N} \times \mathbb{N} \backslash A) \cap \left((\{1,2,...,i-1\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1,2,...,i-1\})) \right\}.$$

If $x \sim^{S_{\lambda,\mu}^{L}(\mathcal{I})} y$ then the set on the right-hand side belongs to \mathcal{I} and so the set on the left-hand side also belongs to \mathcal{I} . This shows that $x \sim^{S^{L}(\mathcal{I})} y$.

Acknowledgement

The authors would like to thank the referees for giving useful comments and suggestions for the improvement of this paper.

References

- C. Belen, M. Yıldırım, One generalized statistical convergence of double sequences via ideals, Ann. Univ. Ferrara, 58 (2012), 11-20.
- [2] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
- [3] A.R. Freedman, J.J. Sember, Densities and summability, Pacitific J. Math. 95 (1981) 10-11.
- [4] J.A. Fridy, On statistical convergence, Analysis 5 (1985) 301-313.
- [5] M. Gürdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math., 2(1)(2004), 107-113.
- [6] M. Gürdal, I. Açık, On *I*-cauchy sequences in 2-normed spaces, Math. Inequal. Appl., 11(2)(2008), 349-354.
- [7] P. Kostyrko, M. Macaj, T. Salat, *I*-convergence, Real Anal. Exchange, 26(2)(2000), 669-686.
- [8] P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, *I*-Convergence and Extremal *I*-Limit Points. Math. Slovaca, 55 (2005) 443-464.
- [9] V. Kumar, A. Sharma, On asymptotically generalized statistical equivalent sequences via ideals, Tamkang Journal of Mathematics, 43 (3) (2012), 469-478.
- [10] L. Leindler, Uber die de la Vallee-Pousinsche summierbarkeit allgemeiner orthogonalreihen, Acta Math. Acad. Sci. Hungar., 16 (1965), 375-387.
- [11] J. Li, Asymptotic equivalence of sequences and summability, Internat. J. Math. and Math. Sci., 20(4)(1997), 749-758.
- [12] M. Marouf, Asymptotic equivalence and summability, Int. J. Math. Sci., 16 (4) (1993), 755-762.

- [13] F. Moricz, Tauberian theorems for Cesaro summable double sequences, Studia Math., 110 (1994), 83-96.
- [14] M. Mursaleen, λ -statistical convergence, Math. Slovaca, 50(2000), 111-115.
- [15] M. Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223-231.
- [16] M. Mursaleen, C. Çakan, S.A. Mohiuddine, E. Savaş, Generalized statistical convergence and statistical core of double sequences, Acta Math. Sinica Eng. Series, 26 (11) (2010), 2131-2144.
- [17] R. F. Patterson, On asymptotically statistically equivalent sequences, Demonstratio Math., 36(1)(2003), 149-153.
- [18] R. F. Patterson, E. Savaş, On asymptotically lacunary statistically equivalent sequences, Thai J. Math., 4 (2) (2006), 267-272.
- [19] I. P. Pobyvanets, Asymptotic equivalence of some linear transformation defined by a nonnegative matrix and reduced to generalized equivalence in the sense of Cesáro and Abel,Mat. Fiz., 28(1980), 83-87.
- [20] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
- [21] E. Savaş, S.A. Mohiuddine, <u>λ</u>-statistically convergent double sequences in probabilistic normed spaces, Math. Slovaca, 62 (1) (2012), 99-108.
- [22] E. Savaş, H. Gümüş, A generalization on *I*-asymptotically lacunary statistical equivalent sequences, J. Inequal. Appl., 2013 (270) (2013), doi:10.1186/1029-242X-2013-271.
- [23] I.J. Schoenberg, The integrability of certain function and related summability methods. Amer. Math. Monthly, 66 (1959), 361-375.
- [24] A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11(4)(2007), 1477-1484.
- [25] E. Savaş, Pratulananda Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24(2011) 826-830.

Ulaş Yamancı, Faculty of Arts and Sciences, Suleyman Demirel University, Isparta, Turkey

E-mail address: ulasyamanci@sdu.edu.tr

Mehmet Gürdal, Faculty of Arts and Sciences, Suleyman Demirel University, Isparta, Turkey

E-mail address: gurdalmehmet@sdu.edu.tr

96