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CONTROLLABILITY OF SOBOLEV TYPE NONLOCAL

IMPULSIVE MIXED

FUNCTIONAL INTEGRODIFFERENTIAL EVOLUTION

SYSTEMS

KAMALENDRA KUMAR, RAKESH KUMAR

Abstract. In the present paper, we have established a set of sufficient con-
ditions for the controllability of Sobolev type nonlocal impulsive mixed func-
tional integrodifferential evolution systems with finite delay. We have obtained

the controllability results without assuming the compactness condition on the
evolution operator and by using the semigroup theory and applying the fixed
point approach.

1. Introduction

Many evolution processes are characterized by the fact that at certain moments
of time they experience a change of state abruptly. These processes are subject
to short-term perturbations whose duration is negligible in comparison with the
duration of process. Consequently, it is natural to assume that these perturba-
tions act instantaneously, that is, in the form of impulse. It is known, for example,
that many biological phenomena involving thresholds, burning rhythm models in
medicine and biological, optimal control models in economics, pharmacokinetics
and frequency modulated systems, do exhibit impulsive effects. Thus, impulsive
differential equations, that is, differential equations involving impulse effect, ap-
pear as a natural description of observed evolution phenomena of several real world
problems. For more details on this theory and applications, see the monograph of
Lakshmikantham et al. [19], Perestyuk et al. [26], Bainov and Simeonov [4] and
the papers [2],[13], and [32].

The notion of controllability is of great importance in mathematical control
theory. Many fundamental problems of control theory such as pole-assignment,
stabilizability and optimal control may be solved under the assumption that the
system is controllable. The problem of controllability is to show the existence of
control function, which steers the solution of the system from its initial state to
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the final state, where the initial and final states may vary over the entire space.
Controllability of nonlinear systems with and without impulse have studied by sev-
eral authors, see, for instance, [3], [10], [20], and [31]. In recent years, significant
progress has been made in the controllability of linear and nonlinear deterministic
system [5], [7], [10], [14], [15], [16], [17], and [25]. The work on nonlocal initial value
problem was first studied by Byszewski. In [9] Byszewski establish the theorems
about the existence and uniqueness of solutions of a semilinear evolution nonlocal
Cauchy problem. The nonlocal condition, in many cases, has a better effect than
the classical condition.

On the other hand, most of the practical systems are integrodifferential equations
in nature and hence the study of integrodifferential equations is very important.
Many authors studied mixed type integrodifferential systems with (or without) de-
lay conditions [11], [23], [24], [28], [29], and [30]. Recently, Machado et al. [22]
establish the controllability for a class of abstract impulsive mixed type functional
integrodifferential equations with finite delay in a Banach space by using the Mö
nch fixed point theorem via measure of noncompactness and semigroup theory. A
Sobolev-type equation constitute an important field of research due to their nu-
merous applications such as flow of fluids through fissured rocks, thermodynamics,
shear in second order fluids and propagation of long waves of small amplitude. Many
researchers [6], [8], and [30] investigated the problem of controllability of Sobolev-
type integrodifferential systems in Banach space. Recently, Ahmed [1] have studied
the sufficient conditions for controllability of Sobolev-type fractional integrodiffer-
ential systems in a Banach space by using the compact semigroup and Schauder
fixed point theorem.

Motivated by the above mentioned works and the work of Kumar et al. [18],
Liu et al. [21], Balachandran et al. [6] and Radhakrishanan et al. [27], we study
the controllability of nonlocal impulsive mixed Volterra-Fredholm functional inte-
grodifferential with evolution system by using the semigroup theory and fixed point
theorem. The rest of the paper is organized as follows. In section 2, we present the
preliminaries and hypotheses. In sections 3, we give our main result.

2. Preliminaries

Consider the following Sobolev type nonlocal impulsive mixed functional inte-
grodifferential evolution system

(Ex(t))
′
= A(t)x(t) +Bu(t) + f

(
t, xt,

∫ t

0

k(t, s, xs)ds,

∫ b

0

h(t, s, xs)ds

)
,

t ̸= ti, t ∈ J = [0, b], (1)

x(s) + [g(xt1 , · · · , xtp)](s) = ϕ(s), s ∈ [−r, 0], (2)

∆x|t=ti = Ii

(
x(t−i )

)
, i = 1, 2, 3, · · · ,m, (3)

where A(t), E are two closed operator such that A(t)E−1 generates the strongly
continuous semigroup of bounded linear operators {U(t, s) : 0 ≤ s ≤ t ≤ b}. The
state variable x(.) takes values in the Banach space X with the norm ∥.∥. The
control function u(.) is given in L2(J, V ), a Banach space of admissible control
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function with V as a Banach space, and thereby Λ = {(t, s) : 0 ≤ s ≤ t ≤ b}. B is
a bounded linear operator from V into X. Further f : J ×X ×X ×X −→ X, k, h :
Λ×X −→ X, Ii : X −→ X,△x|t=ti = x(t+i )−x(t−i ), for all i = 1, 2, · · · ,m; 0 ≤ t0 <
t1 < · · · , tm < tm+1 ≤ b; and the nonlocal function g : [PC([−r, 0], X)]p −→ X
are given functions. The history xt represents the function xt : (−r, 0] −→ X
defined by xt(θ) = x(t + θ) for t ∈ [0, b] and θ ∈ [−r, 0]. For the sake of simplic-
ity, we put J0 = [0, t1] and Ji = (ti, ti+1], i = 1, 2, · · · ,m. Let PC([−r, b], X) =
{x : x is a function from [−r, b] into X such that x(t) is continuous at t ̸=
ti and left continuous at t = ti, and the right limit x(t+i ) exists for i =
1, 2, · · · ,m}. From Machedo [22], PC([−r, b], X) is a Banach space with norm

∥x∥PC = sup

{
∥x(t)∥ : t ∈ [−r, b]

}
.

For the family {A(t) : 0 ≤ t ≤ b} of linear operators, we assume the following
hypothesis:
(A1) A(t) is closed linear operator and the domain D(A) of {A(t) : 0 ≤ t ≤ b} is
dense in the Banach space X and independent of t.
(A2) For each t ∈ [0, b], the resolvent R(λ,A(t)) = (λI − A(t))−1of A(t) exists for
all λ with

Reλ ≤ 0 and ∥R(λ,A(t))∥ ≤ C(|λ|+ 1)−1.

(A3) For any t, s, τ ∈ [0, b], there exists a 0 < δ < 1 and L > 0 such that

∥(A(t)−A(τ))A−1(s)∥ ≤ L|t− τ |δ.

Statements (A1)-(A3) implies that there exists a family of evolution operators
U(t, s) (see [12]). The family {A(t) : 0 ≤ t ≤ b} generates a unique linear evo-
lution system {U(t, s) : 0 ≤ s ≤ t ≤ b} satisfying the following properties:
(a) U(t, s) ∈ L(X), where L(X) is the space of bounded linear transformation on
X, whenever 0 ≤ s ≤ t ≤ b and for each x ∈ X, the mapping (t, s) −→ U(t, s)x is
continuous.
(b) U(t, s)U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t ≤ b.
(c) U(t, t) = I.
Let us recall the following definition.
Definition 1 A solution x(.) ∈ PC([−r, b], X) is said to be a mild solution of

(1-3) if x(s) +

[
g(xt1 , · · · , xtp)

]
(s) = ϕ(s), s ∈ [−r, 0];△x|t=ti = Ii

(
x(t−i )

)
, i =

1, 2, 3, · · · ,m; the restriction of x(.) to the interval Ji(i = 1, 2, · · · ,m) is continuous
and the following conditions are satisfied:
(i)

x(t) = E−1U(t, 0)Eϕ(0)− E−1U(t, 0)E

[
g(xt1 , · · · , xtp)

]
(0)

+

∫ t

0

E−1U(t, s)

[
Bu(s) + f

(
s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ

)]
ds

+
∑

0<τk<t

E−1U(t, ti)Ii

(
x(t−i )

)
, t ∈ [0, b]
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(ii)

x(s) +

[
g(xt1 , · · · , xtp)

]
(s) = ϕ(s), s ∈ [−r, 0]

In order to prove our main theorem we assume the useful conditions on the opera-
tors A(t) and E. Let X and Y be a Banach space with norm |.| and ∥.∥ respectively.
The operators A(t) : D(A(t)) ⊂ X −→ Y and D(E) ⊂ X −→ Y satisfying the fol-
lowing hypotheses:
(H1) A(t) and E are closed linear operators.
(H2) D(E) ⊂ D(A(t)) and E is bijective.
(H3) E−1 : Y −→ D(E) is continuous.
The above fact and closed graph theorem imply the boundedness of the linear op-
erator A(t)E−1 : Y −→ Y and A(t)E−1 generates a uniformly continuous evolution
operator U(t, s), t ≥ 0, of bounded linear operators on a Banach space Y .
To study the controllability problem we assume the following hypotheses:
(H4) A(t) generates a family of evolution operator U(t, s), when t > s > 0, in X
and there exists a constant M1 > 0 such that

∥U(t, s)∥ ≤ M1 for 0 ≤ s ≤ t ≤ b.

(H5) The linear operator W : L2(J, V ) −→ X defined by

Wu =

∫ b

0

E−1U(t, s)Bu(s)ds,

has an invertible operator W−1 which takes values in L2(J, V )\ kerW and there
exists positive constants M2 such that ∥BW−1∥ ≤ M2.
(H6) The nonlinear function f : J × X × X × X −→ X is continuous and there
exist two constants L1, L2 > 0 such that∥∥∥∥∥f

(
t, xt, yt, zt

)
− f

(
t, ut, vt, wt

)∥∥∥∥∥ ≤ L1

(
∥x− u∥+ ∥y − v∥+ ∥z − w∥

)
,

for x, y, z, u, v, w ∈ X, t ∈ J ,

L2 = max
t∈J

∥∥∥∥∥f(t, 0, 0, 0)
∥∥∥∥∥.

(H7) For each (t, s) ∈ Λ, the function k : Λ × X −→ X is continuous and there
exist constants K1,K2 > 0 such that∫ t

0

∥k(t, s, xs)− k(t, s, us)∥ds ≤ K1∥x− u∥, for x, u ∈ X, t, s ∈ J,

K2 = max

{∫ t

0

∥k(t, s, 0)∥ds : t, s ∈ Λ

}
.

(H8) For each (t, s) ∈ Λ, the function h : Λ × X −→ X is continuous and there
exist constants H1, H2 > 0 such that∫ b

0

∥h(t, s, xs)− h(t, s, us)∥ds ≤ H1∥x− u∥, for x, u ∈ X, t, s ∈ J,

H2 = max

{∫ b

0

∥h(t, s, 0)∥ds : t, s ∈ Λ

}
.
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(H9) Ii : X −→ X is continuous and there exists constant Li such that

∥Ii(x)− Ii(u)∥ ≤ Li∥x− u∥, i = 1, 2, · · · ,m,

for each x, u ∈ X.
(H10) g : [PC([−r, 0], X)]p −→ X is continuous and there exists a constant G1 > 0
such that ∥∥∥∥∥

[
g(xt1 , · · · , xtp)

]
(s)−

[
g(ut1 , · · · , utp)

]
(s)

∥∥∥∥∥ ≤ G1∥x− u∥PC ,

for each x, u ∈ PC([−r, b], X), s ∈ [−r, 0], and

G2 = max

{∥∥∥∥∥
[
g(xt1 , · · · , xtp)

]
(s)

∥∥∥∥∥ : x, u ∈ PC

(
[−r, b], X

)
, s ∈ [−r, 0]

}
.

(H11) There exists a positive constant ζ > 0 such that

∥E−1∥M1

(
1 + bM1M2∥E−1∥

)[
∥Eϕ(0)∥ + ∥E∥G2 + b

{(
L1(1 +K1 +H1)r

+K2 +H2

)
+ L2

}
+
∑

0<ti<t

Li

]
+ b∥E−1∥M1M2∥x1∥ ≤ ζ.

Moreover, let us put ρ =
∑m

i=1 Li and

µ = ∥E−1∥M1

(
1 + bM1M2∥E−1∥

)[
∥E∥G1 + bL1(1 +K1 +H1) + ρ

]
.

Definition 2 The system (1-3) is said to be controllable on the interval J if
for every x1 ∈ X and [g(xt1 , · · · , xtp)](s) ∈ PC([−r, b], X), there exists a control

u ∈ L2(J, V ) such that the mild solution x(t) of (1-3) satisfies x(0) = x0 and
x(b) = x1.

3. Controllability Result

Theorem 1: If the hypotheses (H1)-(H11) are satisfied, and if 0 ≤ µ < 1, then
the system (1-3) is controllable on J.
Proof: Define an operator F on the Banach space PC([−r, b], X) by the formula:

(Fx)(t) =



ϕ(t)−

[
g(xt1 , ., xtp)

]
(t), t ∈ [−r, 0],

E−1U(t, 0)Eϕ(0)− E−1U(t, 0)E

[
g(xt1 , · · · , xtp)

]
(0) +

∫ t

0
E−1U(t,

s)Bu(s)ds+
∫ t

0
E−1U(t, s)f

(
s, xs,

∫ s

0
k(s, ξ, xξ)dξ,

∫ b

0
h(s, ξ, xξ)dξ

)

ds+
∑

0<ti<t E
−1U(t, ti)Ii

(
x(t−i )

)
, t ∈ J

(4)
Using hypotheses (H5) for an arbitrary function x(.) define the control
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u(t) = W−1

[
x1 − E−1U(b, 0)E

(
ϕ(0)−

(
g(xt1 , · · · , xtp)

)
(0)

)

−
∫ b

0

E−1U(b, s)f

(
s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ

)
ds

−
∑

0<ti<b

E−1U(b, ti)Ii(x(t
−
i ))

]
(t).

We shall now show that when using this control the operator

F : PC([−r, b], X) −→ PC([−r, b], X)

defined by

(Fx)(t) = E−1U(t, 0)E

[
ϕ(0)−

(
g(xt1 , · · · , xtp)

)
(0)

]
+

∫ t

0

E−1U(t, s)BW−1

[
x1 − E−1U(b, 0)Eϕ(0)− E−1U(b, 0)E

(
g(xt1 , · · · , xtp)

)
(0)−

∫ b

0

E−1U(b, s)

f

(
s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ

)
ds−

∑
0<ti<b

E−1U(b, ti)Ii

(
x(t−i )

)]
(s)ds

+

∫ t

0

E−1U(t, s)f

(
s, xs,

∫ s

0

k

(
s, ξ, xξ

)
dξ,

∫ b

0

h(s, ξ, xξ)dξ

)
ds

+
∑

0<ti<t

E−1U(t, ti)Ii

(
x(t−i )

)
has a fixed point x(.). To prove the controllability, it is enough to show that the

operator F has a fixed point in PC([−r, b], X) and since all the functions involved
in the operator are continuous and therefore F is continuous.
Let S be a nonempty closed subset of PC([−r, b], X) defined by

S =

{
x : x ∈ PC([−r, b], X), ∥x(t)∥PC ≤ r, 0 ≤ t ≤ b

}
.

First we show that F maps S into S. For x ∈ S, we have

∥(Fx)(t)∥ ≤

∥∥∥∥∥E−1U(t, 0)E

[
ϕ(0)−

(
g(xt1 , · · · , xtp)

)
(0)

]∥∥∥∥∥+
∥∥∥∥∥
∫ t

0

E−1U(t, s)BW−1

[
x1−E−1U(b, 0)Eϕ(0)−E−1U(b, 0)E

(
g(xt1 , · · · , xtp)

)
(0)−

∫ b

0

E−1U(b, s)f(s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ)ds−
∑

0<ti<b

E−1U(b, ti)Ii(x(t
−
i ))

]
(s)ds

∥∥∥∥∥
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+

∥∥∥∥∥
∫ t

0

E−1U(t, s)f

(
s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ

)
ds

∥∥∥∥∥
+

∥∥∥∥∥ ∑
0<ti<t

E−1U(t, ti)Ii(x(t
−
i ))

∥∥∥∥∥
≤ ∥E−1∥M1∥Eϕ(0)∥+ ∥E−1∥∥E∥M1G2 +M1M2

∫ t

0

∥E−1∥[
∥x1∥+ ∥E−1∥∥Eϕ(0)∥M1 + ∥E−1∥∥E∥M1G2 +M1

∫ b

0

∥E−1∥∥∥∥∥∥f
(
s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ

)∥∥∥∥∥ds+ ∥E−1∥M1

∑
0<ti<b

Li

]
ds

+M1

∫ t

0

∥E−1∥

∥∥∥∥∥f
(
s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ

)∥∥∥∥∥ds
+∥E−1∥M1

∑
0<ti<t

Li

Since from assumptions (H6)-(H8), we have

∥∥∥∥∥f
(
s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ

)∥∥∥∥∥
≤

∥∥∥∥∥f
(
s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ

)
− f(s, 0, 0, 0) + f(s, 0, 0, 0)

∥∥∥∥∥
≤ L1

[
∥xs∥+

∥∥∥∥∥
∫ s

0

k(s, ξ, xξ)dξ

∥∥∥∥∥+
∥∥∥∥∥
∫ b

0

h(s, ξ, xξ)dξ

∥∥∥∥∥
]
+ L2

≤ L1

[
∥xs∥+

∫ s

0

∥∥∥∥∥k(s, ξ, xξ)− k(s, ξ, 0)

∥∥∥∥∥dξ +
∫ s

0

∥k(s, ξ, 0)∥dξ

+

∫ b

0

∥h(s, ξ, xξ)− h(s, ξ, 0)∥dξ +
∫ b

0

∥h(s, ξ, 0)∥dξ

]
+ L2

≤ L1

[
∥xs∥+K1∥xs∥+K2 +H1∥xs∥+H2

]
+ L2
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there holds

∥(Fx)(t)∥ ≤ ∥E−1∥M1∥Eϕ(0)∥+ ∥E−1∥∥E∥M1G2 + bM1M2∥E−1∥

[
∥x1∥

+∥E−1∥∥Eϕ(0)∥M1 + ∥E−1∥∥E∥M1G2 + bM1∥E−1∥

{
L1

[
∥xs∥+K1∥xs

∥+K2 +H1∥xs∥+H2

]
+ L2

}
+ ∥E−1∥M1

m∑
i=1

Li

]
+ bM1∥E−1∥{

L1

[
∥xs∥+K1∥xs∥+K2 +H1∥xs∥+H2

]
+ L2

}
+ ∥E−1∥M1

∑
0<ti<t

Li

≤ M1∥E−1∥

(
1 + bM1M2∥E−1∥

)[
∥Eϕ(0)∥+ ∥E∥G2 + b

{
L1

[
(1 +K1 +H1)r

+K2 +H2

]
+ L2

}
+
∑

0<ti<t

Li

]
+ bM1M2∥E−1∥∥x1∥.

From (H11), one gets
∥(Fx)(t)∥ ≤ ζ. Therefore F maps S into itself.
Now we shall show that F is a contraction on S. For this purpose consider two
differences as follows

(Fx)(t)− (Fy)(t) =

[
g(xt1 , · · · , xtp)

]
(t)−

[
g(yt1 , · · · , ytp)

]
(t),

for x, y ∈ PC([−r, b], X), t ∈ [−r, 0), (5)

(Fx)(t)− (Fy)(t) = E−1U(t, 0)E

[(
g(xt1 , · · · , xtp)

)
(0)−

(
g(yt1 , · · · , ytp)

)

(0)

]
+

∫ t

0

E−1U(t, σ)BW−1

{
E−1U(b, 0)E

[(
g(xt1 , · · · , xtp)

)
(0)

−

(
g(yt1 , · · · , ytp)

)
(0)

]
+

∫ b

0

E−1U(b, s)

[
f(s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ)− f

(
s, ys,

∫ s

0

k(s, ξ, yξ)dξ,

∫ b

0

h(s, ξ, yξ)dξ

)]
ds

+
∑

0<t1<b

E−1U(b, ti)

[
Ii(x(t

−
i ))− Ii(y(t

−
i ))

]}
(σ)dσ +

∫ t

0

E−1U(t, s)[
f

(
s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ

)
− f

(
s, ys,

∫ s

0

k(s, ξ, yξ)dξ,

∫ b

0

h(s, ξ, yξ)dξ

)]
ds+

∑
0<t1<t

E−1U(t, ti)

[
Ii

(
x(t−i )

)
− Ii

(
y(t−i )

)]
,

for x, y ∈ PC([−r, b], X), t ∈ J. (6)
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From (5) and (H10), we have∥∥∥∥∥(Fx)(t)− (Fy)(t)

∥∥∥∥∥ ≤ G1∥x− y∥PC , for x, y ∈ PC([−r, b], X), t ∈ [−r, 0). (7)

Moreover, by (6), (H6)-(H10), we obtain

∥∥∥∥∥(Fx)(t)− (Fy)(t)

∥∥∥∥∥ ≤

∥∥∥∥∥E−1U(t, 0)E

[(
g(xt1 , · · · , xtp)

)
(0)−

(
g(yt1 , · · · , ytp)

)

(0)

]∥∥∥∥∥+
∥∥∥∥∥
∫ t

0

E−1U(t, σ)BW−1

{
E−1U(b, 0)E

[(
g(xt1 , · · · , xtp)

)
(0)−

(
g(yt1 ,

· · · , ytp)

)
(0)

]
+

∫ b

0

E−1U(b, s)

[
f

(
s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ

)

−f

(
s, ys,

∫ s

0

k(s, ξ, yξ)dξ,

∫ b

0

h(s, ξ, yξ)dξ

)]
ds+

∑
0<t1<b

E−1U(b, ti)[
Ii

(
x(t−i )

)
− Ii

(
y(t−i )

)]}
(σ)dσ

∥∥∥∥∥+
∥∥∥∥∥
∫ t

0

E−1U(t, s)[
f

(
s, xs,

∫ s

0

k(s, ξ, xξ)dξ,

∫ b

0

h(s, ξ, xξ)dξ

)
− f

(
s, ys,

∫ s

0

k(s, ξ, yξ)dξ,

∫ b

0

h(s, ξ, yξ)dξ

)]
ds

∥∥∥∥∥+
∥∥∥∥∥ ∑

0<t1<t

E−1U(t, ti)

[
Ii

(
x(t−i )

)
− Ii

(
y(t−i )

)]∥∥∥∥∥
≤ M1G1∥E−1∥∥E∥∥x− y∥PC +M1M2

∫ t

0

∥E−1∥

[
M1G1∥E−1∥∥E∥∥x− y∥PC

+M1

∫ b

0

∥E−1∥

{
L1

(
∥x− y∥+K1∥x− y∥+H1∥x− y∥

)}
ds+M1

m∑
i=1

Li∥E−1∥

∥x− y∥PC

]
dσ +M1

∫ t

0

∥E−1∥

{
L1

(
∥x− y∥+K1∥x− y∥+H1∥x− y∥

)}
ds

+M1

∑
0<ti<t

Li∥E−1∥∥x− y∥PC

≤ M1G1∥E−1∥∥E∥∥x− y∥PC + bM1M2∥E−1∥

[
M1G1∥E−1∥∥E∥∥x− y∥PC

+bM1∥E−1∥

{
L1

(
∥x− y∥+K1∥x− y∥+H1∥x− y∥

)}
+M1∥E−1∥ρ∥x− y∥PC

]

+bM1∥E−1∥L1

(
∥x− y∥+K1∥x− y∥+H1∥x− y∥

)
+M1∥E−1∥ρ∥x− y∥PC
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≤ M1∥E−1∥

(
1+bM1M2∥E−1∥

)[
G1∥E∥+bL1

(
1+K1+H1

)
+ρ

]
∥x−y∥PC (8)

From (7) and (8), we get

∥(Fx)(t)− (Fy)(t)∥ ≤ µ∥x− y∥PC , for x, y ∈ PC([−r, b], X), (9)

where µ = M1∥E−1∥

(
1 + bM1M2∥E−1∥

)[
G1∥E∥+ bL1

(
1 +K1 +H1

)
+ ρ

]
.

Since µ < 1, then (9) shows that the operator F is a contraction on PC([−r, b], X).
Also, F satisfies the Banach contraction theorem. Hence there exists a unique
fixed point x ∈ PC([−r, b], X) such that (Fx)(t) = x(t) and this point is the mild
solution of the system (1)-(3) and (Fx)(b) = x(b) = x1, which implies that the
given system is controllable.
Acknowledgment: The authors would like to thanks the referee for the valuable
suggestions.
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