FEKETE-SZEGÖ INEQUALITIES FOR CLASSES OF BI-STARLIKE AND BI-CONVEX FUNCTIONS

JAY M. JAHANGIRI*, N. MAGESH AND J. YAMINI

Abstract

We investigate the Fekete-Szegö inequalities for two comprehensive classes of bi-starlike and bi-convex functions. The coefficient bounds obtained in this article, in some cases, improve some of the previously published results.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and let \mathcal{S} denote the class of functions in \mathcal{A} that are univalent in \mathbb{U}.

For two functions f and g, analytic in \mathbb{U}, we say that the function f is subordinate to g in \mathbb{U}, and write $f \prec g$, if there exists a Schwarz function w, analytic in \mathbb{U}, with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z)) ; z, w \in \mathbb{U}$. In particular, if the function g is univalent in \mathbb{U}, the above subordination is equivalent to $f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$.

It is well known (e.g. see Duren [5]) that every function $f \in \mathcal{S}$ has an inverse $\operatorname{map} f^{-1}$, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. We let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). For a history and examples of functions which are (or which are not) in the class Σ,

[^0]together with various other properties of classes of bi-univalent functions refer to $[1,2,3,4,6,7,8,9,10,12,14,15,16,17,18,19,20,21,22])$.

Two of the most famous subclasses of univalent functions are the class $\mathcal{S}^{*}(\alpha)$ of starlike functions of order α and the class $\mathcal{K}(\alpha)$ of convex functions of order α. By definition, we have

$$
\mathcal{S}^{*}(\alpha):=\left\{f \in \mathcal{S}: \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha ; z \in \mathbb{U} ; 0 \leq \alpha<1\right\}
$$

and

$$
\mathcal{K}(\alpha):=\left\{f \in \mathcal{S}: \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha ; z \in \mathbb{U} ; 0 \leq \alpha<1\right\}
$$

For $0 \leq \alpha<1$, a function $f \in \Sigma$ is in the class $S_{\Sigma}^{*}(\alpha)$ of bi-starlike functions of order α, or $\mathcal{K}_{\Sigma, \alpha}$ of bi-convex functions of order α if both f and its inverse map f^{-1} are, respectively, starlike or convex of order α. For $0<\beta \leq 1$, a function $f \in \Sigma$ is strongly bi-starlike function of order β, if both the functions f and its inverse $\operatorname{map} f^{-1}$ are strongly starlike of order β. We denote the class of all such functions is denoted by $S_{\Sigma, \beta}^{*}$.

Let φ be an analytic and univalent function with positive real part in $\mathbb{U}, \varphi(0)=1$, $\varphi^{\prime}(0)>0$ and φ maps the unit disk \mathbb{U} onto a region starlike with respect to 1 and symmetric with respect to the real axis. The Taylor's series expansion of such function is

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots \tag{3}
\end{equation*}
$$

where all coefficients are real and $B_{1}>0$. Throughout this paper we assume that the function φ satisfies the above conditions unless otherwise stated.

By $\mathcal{S}^{*}(\varphi)$ and $\mathcal{K}(\varphi)$ we denote the following classes of functions

$$
\mathcal{S}^{*}(\varphi):=\left\{f \in \mathcal{S}: \frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z) ; z \in \mathbb{U}\right\}
$$

and

$$
\mathcal{K}(\varphi):=\left\{f \in \mathcal{S}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \varphi(z) ; z \in \mathbb{U}\right\}
$$

The classes $\mathcal{S}^{*}(\varphi)$ and $\mathcal{K}(\varphi)$ are the extensions of a classical set of starlike and convex functions (e.g. see Ma and Minda [13]). A function f is said to be bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type if both f and f^{-1} are, respectively, of Ma-Minda starlike or convex type. These classes are denoted, respectively, by $\mathcal{S}_{\Sigma}^{*}(\varphi)$ and $\mathcal{K}_{\Sigma}(\varphi)$ (see [1]).

In order to derive our main results, we shall need the following lemma.
Lemma 1 (see [5] or [11]) Let $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots \in \mathcal{P}$, where \mathcal{P} is the family of all functions p, analytic in \mathbb{U}, for which $\Re\{p(z)\}>0 \quad(z \in \mathbb{U})$. Then

$$
\left|p_{n}\right| \leq 2 ; n=1,2,3, \ldots
$$

and

$$
\left|p_{2}-\frac{1}{2} p_{1}^{2}\right| \leq 2-\frac{1}{2}\left|p_{1}\right|^{2}
$$

Motivated by the recent publications (especially [1, 19, 22]), we consider the following comprehensive class of functions in Σ.

A function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{M}_{\Sigma}^{\lambda}(\varphi)$ if the following conditions are satisfied:

$$
\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)} \prec \varphi(z) \quad(0 \leq \lambda \leq 1, z \in \mathbb{U})
$$

and for $g=f^{-1}$ given by (2)

$$
\frac{w g^{\prime}(w)}{(1-\lambda) w+\lambda g(w)} \prec \varphi(w) \quad(0 \leq \lambda \leq 1, w \in \mathbb{U})
$$

A function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{K}_{\Sigma}(\varphi, \lambda)$ if the following conditions are satisfied:

$$
\frac{f^{\prime}(z)+z f^{\prime \prime}(z)}{f^{\prime}(z)+\lambda z f^{\prime \prime}(z)} \prec \varphi(z) \quad(0 \leq \lambda<1 ; z \in \mathbb{U})
$$

and for $g=f^{-1}$ given by (2)

$$
\frac{g^{\prime}(w)+w g^{\prime \prime}(w)}{g^{\prime}(w)+\lambda w g^{\prime \prime}(w)} \prec \varphi(w) \quad(0 \leq \lambda<1 ; w \in \mathbb{U})
$$

Remark 1 The following 8 special cases demonstrate the significance of comprehensiveness of the defined classes $\mathcal{M}_{\Sigma}^{\lambda}(\varphi)$ and $\mathcal{K}_{\Sigma}(\varphi, \lambda)$:
(1) $\mathcal{M}_{\Sigma}^{0}(\varphi)=\mathcal{H}_{\Sigma}^{\varphi} \quad[1]$.
(2) $\mathcal{M}_{\Sigma}^{0}\left(\left(\frac{1+z}{1-z}\right)^{\beta}\right)=\mathcal{H}_{\Sigma}^{\beta}(0<\beta \leq 1) \quad$ and $\mathcal{M}_{\Sigma}^{0}\left(\frac{1+(1-2 \alpha) z}{1-z}\right)=\mathcal{H}_{\Sigma}^{\alpha} \quad(0 \leq \alpha<1)$ [19].
(3) $\mathcal{M}_{\Sigma}^{1}(\varphi)=\mathcal{S}_{\Sigma}^{*}(\varphi) \quad[1]$.
(4) $\mathcal{M}_{\Sigma}^{1}\left(\left(\frac{1+z}{1-z}\right)^{\beta}\right)=\mathcal{S}_{\Sigma, \beta}^{*} \quad(0<\beta \leq 1)$ and $\mathcal{M}_{\Sigma}^{1}\left(\frac{1+(1-2 \alpha) z}{1-z}\right)=\mathcal{S}_{\Sigma}^{*}(\alpha) \quad(0 \leq$ $\alpha<1)$.
(5) $\mathcal{M}_{\Sigma}^{\lambda}\left(\left(\frac{1+z}{1-z}\right)^{\beta}\right)=\mathcal{M}_{\Sigma}^{\lambda}(\beta) \quad(0 \leq \lambda \leq 1 ; 0<\beta \leq 1)$
and
$\mathcal{M}_{\Sigma}^{\lambda}\left(\frac{1+(1-2 \alpha) z}{1-z}\right)=\mathcal{M}_{\Sigma}^{\lambda}(\alpha) \quad(0 \leq \lambda \leq 1 ; 0 \leq \alpha<1)$
(6) $\mathcal{K}_{\Sigma}(\varphi, 0)=\mathcal{K}_{\Sigma}(\varphi) \quad[1]$.
(7) $\mathcal{K}_{\Sigma}\left(\left(\frac{1+z}{1-z}\right)^{\beta}, \lambda\right)=\mathcal{K}_{\Sigma}(\beta, \lambda) \quad(0 \leq \lambda<1 ; 0<\beta \leq 1)$
(8) $\mathcal{K}_{\Sigma}\left(\frac{1+(1-2 \alpha) z}{1-z}, \lambda\right)=\mathcal{K}_{\Sigma}(\alpha, \lambda) \quad(0 \leq \lambda<1 ; 0 \leq \alpha<1)$.

In this paper we shall obtain the Fekete-Szegö inequalities for $\mathcal{M}_{\Sigma}^{\lambda}(\varphi)$ and $\mathcal{K}_{\Sigma}(\varphi, \lambda)$ as well as its special classes. Some of the coefficient estimates obtained in this paper prove to be better than these obtained in $[1,14,19]$.

2. Fekete-Szegö inequalities

Theorem 1 Let f of the form (1) be in $\mathcal{M}_{\Sigma}^{\lambda}(\varphi)$. Then

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{\frac{B_{1}}{\lambda^{2}-3 \lambda+3}}, & \text { if }\left|B_{2}\right| \leq B_{1} \tag{4}\\ \sqrt{\frac{\left|B_{2}\right|}{\lambda^{2}-3 \lambda+3}}, & \text { if }\left|B_{2}\right| \geq B_{1}\end{cases}
$$

and

$$
\left|a_{3}-\frac{\lambda(2-\lambda)}{3-\lambda} a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
\frac{B_{1}}{3-\lambda}, & \text { if } \tag{5}\\
\frac{\left|B_{2}\right| \leq B_{1}}{3-\lambda}, & \text { if }
\end{array}\left|B_{2}\right| \geq B_{1}\right.
$$

Proof. Since $f \in \mathcal{M}_{\Sigma}^{\lambda}(\varphi)$, there exist two analytic functions $r, s: \mathbb{U} \rightarrow \mathbb{U}$, with $r(0)=0=s(0)$, such that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}=\varphi(r(z)) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)}{(1-\lambda) w+\lambda g(w)}=\varphi(s(w)) \tag{7}
\end{equation*}
$$

Define the functions p and q by

$$
p(z)=\frac{1+r(z)}{1-r(z)}=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots
$$

and

$$
q(w)=\frac{1+s(w)}{1-s(w)}=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\ldots
$$

or equivalently,
$r(z)=\frac{p(z)-1}{p(z)+1}=\frac{1}{2}\left(p_{1} z+\left(p_{2}-\frac{p_{1}^{2}}{2}\right) z^{2}+\left(p_{3}+\frac{p_{1}}{2}\left(\frac{p_{1}^{2}}{2}-p_{2}\right)-\frac{p_{1} p_{2}}{2}\right) z^{3}+\ldots\right)$
and
$s(w)=\frac{q(w)-1}{q(w)+1}=\frac{1}{2}\left(q_{1} w+\left(q_{2}-\frac{q_{1}^{2}}{2}\right) w^{2}+\left(q_{3}+\frac{q_{1}}{2}\left(\frac{q_{1}^{2}}{2}-q_{2}\right)-\frac{q_{1} q_{2}}{2}\right) w^{3}+\ldots\right)$.
Using (8) and (9) in (6) and (7), we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}=\varphi\left(\frac{p(z)-1}{p(z)+1}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)}{(1-\lambda) w+\lambda g(w)}=\varphi\left(\frac{q(w)-1}{q(w)+1}\right) . \tag{11}
\end{equation*}
$$

Again using (8) and (9) along with (3), it is evident that

$$
\begin{equation*}
\varphi\left(\frac{p(z)-1}{p(z)+1}\right)=1+\frac{1}{2} B_{1} p_{1} z+\left(\frac{1}{2} B_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)+\frac{1}{4} B_{2} p_{1}^{2}\right) z^{2}+\ldots \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi\left(\frac{q(w)-1}{q(w)+1}\right)=1+\frac{1}{2} B_{1} q_{1} w+\left(\frac{1}{2} B_{1}\left(q_{2}-\frac{1}{2} q_{1}^{2}\right)+\frac{1}{4} B_{2} q_{1}^{2}\right) w^{2}+\ldots \tag{13}
\end{equation*}
$$

It follows from (10), (11), (12) and (13) that

$$
\begin{gather*}
(2-\lambda) a_{2}=\frac{1}{2} B_{1} p_{1} \\
(3-\lambda) a_{3}+\left(\lambda^{2}-2 \lambda\right) a_{2}^{2}=\frac{1}{2} B_{1}\left(p_{2}-\frac{1}{2} p_{1}^{2}\right)+\frac{1}{4} B_{2} p_{1}^{2} \tag{14}
\end{gather*}
$$

$$
-(2-\lambda) a_{2}=\frac{1}{2} B_{1} q_{1}
$$

and

$$
\begin{equation*}
\left(\lambda^{2}-4 \lambda+6\right) a_{2}^{2}-(3-\lambda) a_{3}=\frac{1}{2} B_{1}\left(q_{2}-\frac{1}{2} q_{1}^{2}\right)+\frac{1}{4} B_{2} q_{1}^{2} \tag{15}
\end{equation*}
$$

Dividing (14) by $(3-\lambda)$ and taking the absolute values we obtain

$$
\left|a_{3}-\frac{\lambda(2-\lambda)}{3-\lambda} a_{2}^{2}\right| \leq \frac{B_{1}}{2(3-\lambda)}\left|p_{2}-\frac{1}{2} p_{1}^{2}\right|+\frac{\left|B_{2}\right|}{4(3-\lambda)}\left|p_{1}\right|^{2} .
$$

Now applying Lemma 1 yields

$$
\left|a_{3}-\frac{\lambda(2-\lambda)}{3-\lambda} a_{2}^{2}\right| \leq \frac{B_{1}}{3-\lambda}+\frac{\left|B_{2}\right|-B_{1}}{4(3-\lambda)}\left|p_{1}\right|^{2}
$$

Therefore

$$
\left|a_{3}-\frac{\lambda(2-\lambda)}{3-\lambda} a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1}}{3-\lambda}, & \text { if } \\ \left|B_{2}\right| \leq B_{1} \\ \frac{\left|B_{2}\right|}{3-\lambda}, & \text { if } \quad\left|B_{2}\right| \geq B_{1}\end{cases}
$$

Adding (14) and (15), we have

$$
\begin{equation*}
2\left(\lambda^{2}-3 \lambda+3\right) a_{2}^{2}=\frac{B_{1}}{2}\left(p_{2}+q_{2}\right)-\frac{\left(B_{1}-B_{2}\right)}{4}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{16}
\end{equation*}
$$

Dividing (16) by $2\left(\lambda^{2}-3 \lambda+3\right)$ and taking the absolute values we obtain

$$
\left|a_{2}\right|^{2} \leq \frac{1}{2\left(\lambda^{2}-3 \lambda+3\right)}\left[\frac{B_{1}}{2}\left|p_{2}-\frac{1}{2} p_{1}^{2}\right|+\frac{\left|B_{2}\right|}{4}\left|p_{1}\right|^{2}+\frac{B_{1}}{2}\left|q_{2}-\frac{1}{2} q_{1}^{2}\right|+\frac{\left|B_{2}\right|}{4}\left|q_{1}\right|^{2}\right]
$$

Once again, apply Lemma 1 to obtain
$\left|a_{2}\right|^{2} \leq \frac{1}{2\left(\lambda^{2}-3 \lambda+3\right)}\left[\frac{B_{1}}{2}\left(2-\frac{1}{2}\left|p_{1}\right|^{2}\right)+\frac{\left|B_{2}\right|}{4}\left|p_{1}\right|^{2}+\frac{B_{1}}{2}\left(2-\frac{1}{2}\left|q_{1}\right|^{2}\right)+\frac{\left|B_{2}\right|}{4}\left|q_{1}\right|^{2}\right]$.
Upon simplification we obtain

$$
\left|a_{2}\right|^{2} \leq \frac{1}{2\left(\lambda^{2}-3 \lambda+3\right)}\left[2 B_{1}+\frac{\left|B_{2}\right|-B_{1}}{2}\left(\left|p_{1}\right|^{2}+\left|q_{1}\right|^{2}\right)\right] .
$$

Therefore

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{\frac{B_{1}}{\lambda^{2}-3 \lambda+3}}, & \text { if } \quad\left|B_{2}\right| \leq B_{1} \\ \sqrt{\frac{\left|B_{2}\right|}{\lambda^{2}-3 \lambda+3}}, & \text { if } \quad\left|B_{2}\right| \geq B_{1}\end{cases}
$$

which completes the proof.
Remark 2 Taking

$$
\begin{equation*}
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\beta}=1+2 \beta z+2 \beta^{2} z^{2}+\ldots \quad(0<\beta \leq 1) \tag{17}
\end{equation*}
$$

the inequalities (4) and (5) become

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2 \beta}{\lambda^{2}-3 \lambda+3}} \quad \text { and } \quad\left|a_{3}-\frac{\lambda(2-\lambda)}{3-\lambda} a_{2}^{2}\right| \leq \frac{2 \beta}{3-\lambda} \tag{18}
\end{equation*}
$$

The bound on $\left|a_{2}\right|$ given in (18) is better than that given in [14, Corollary 2.2].

$$
\begin{align*}
& \text { For } \\
& \varphi(z)=\frac{1+(1-2 \alpha) z}{1-z}=1+2(1-\alpha) z+2(1-\alpha) z^{2}+\ldots \quad(0 \leq \alpha<1) \tag{19}
\end{align*}
$$

the inequalities (4) and (5) become

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\alpha)}{\lambda^{2}-3 \lambda+3}} \quad \text { and } \quad\left|a_{3}-\frac{\lambda(2-\lambda)}{3-\lambda} a_{2}^{2}\right| \leq \frac{2(1-\alpha)}{3-\lambda} \tag{20}
\end{equation*}
$$

The bound on $\left|a_{2}\right|$ given in (20) is coincides with that in [14, Corollary 2.3].
Theorem 2 Let f of the form (1) be in $\mathcal{K}_{\Sigma}(\varphi, \lambda)$. Then

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{\frac{B_{1}}{2(1-\lambda)(1-2 \lambda)}}, & \text { if } \quad\left|B_{2}\right| \leq B_{1} \tag{21}\\ \sqrt{\frac{\left|B_{2}\right|}{2(1-\lambda)(1-2 \lambda)}}, & \text { if }\left|B_{2}\right| \geq B_{1}\end{cases}
$$

and

$$
\left|a_{3}-\frac{2(1+\lambda)}{3} a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1}}{6(1-\lambda)}, & \text { if } \quad\left|B_{2}\right| \leq B_{1} \tag{22}\\ \frac{\left|B_{2}\right|}{6(1-\lambda)}, & \text { if } \quad\left|B_{2}\right| \geq B_{1}\end{cases}
$$

The proof is omitted as it is similar to the proof of Theorem 1.
Remark 3 For $\varphi(z)$ as given in (17) the inequalities (21) and (22) become

$$
\left|a_{2}\right| \leq \sqrt{\frac{\beta}{(1-\lambda)(1-2 \lambda)}} \quad \text { and } \quad\left|a_{3}-\frac{2(1+\lambda)}{3} a_{2}^{2}\right| \leq \frac{\beta}{3(1-\lambda)}
$$

Taking $\varphi(z)$ as given in (19) the inequalities (21) and (22) become

$$
\left|a_{2}\right| \leq \sqrt{\frac{1-\alpha}{(1-\lambda)(1-2 \lambda)}} \quad \text { and } \quad\left|a_{3}-\frac{2(1+\lambda)}{3} a_{2}^{2}\right| \leq \frac{1-\alpha}{3(1-\lambda)}
$$

Corollary 1 If $f \in \mathcal{H}_{\Sigma}^{\varphi}$ then

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{\frac{B_{1}}{3}}, & \text { if } \quad\left|B_{2}\right| \leq B_{1} \tag{23}\\ \sqrt{\frac{\left|B_{2}\right|}{3}}, & \text { if }\left|B_{2}\right| \geq B_{1}\end{cases}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}\frac{B_{1}}{3}, & \text { if } \quad\left|B_{2}\right| \leq B_{1} \tag{24}\\ \frac{\left|B_{2}\right|}{3}, & \text { if } \quad\left|B_{2}\right| \geq B_{1}\end{cases}
$$

Remark 4 The bounds on $\left|a_{2}\right|$ and $\left|a_{3}\right|$ given by (23) and (24) are better than those given in [1, Theorem 2.1] and [17, Theorem 2.1].
Corollary 2 If $f \in \mathcal{S}_{\Sigma}^{*}(\varphi)$ then

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{B_{1}}, & \text { if } \quad\left|B_{2}\right| \leq B_{1} \tag{25}\\ \sqrt{\left|B_{2}\right|}, & \text { if } \quad\left|B_{2}\right| \geq B_{1}\end{cases}
$$

and

$$
\left|a_{3}-\frac{1}{2} a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1}}{2}, & \text { if } \quad\left|B_{2}\right| \leq B_{1} \tag{26}\\ \frac{\left|B_{2}\right|}{2}, & \text { if } \quad\left|B_{2}\right| \geq B_{1}\end{cases}
$$

Remark 5 For $\varphi(z)$ as given in (17) the inequalities (25) and (26) become

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{2 \beta} \quad \text { and } \quad\left|a_{3}-\frac{1}{2} a_{2}^{2}\right| \leq \beta \tag{27}
\end{equation*}
$$

The bound on $\left|a_{2}\right|$ given in (27) is better than that given in [17, Remark 2.2].
Taking $\varphi(z)$ as given in (19), the inequalities (25) and (26) become

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{2(1-\alpha)} \quad \text { and } \quad\left|a_{3}-\frac{1}{2} a_{2}^{2}\right| \leq 1-\alpha \tag{28}
\end{equation*}
$$

The bound on $\left|a_{2}\right|$ given in (28) is better than that given in [17, Remark 2.2].
Corollary 3 If $f \in \mathcal{K}_{\Sigma}(\varphi)$ then

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{\frac{B_{1}}{2}}, & \text { if } \quad\left|B_{2}\right| \leq B_{1} \\ \sqrt{\frac{\left|B_{2}\right|}{2}}, & \text { if } \quad\left|B_{2}\right| \geq B_{1}\end{cases}
$$

and

$$
\left|a_{3}-\frac{2}{3} a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1}}{6}, & \text { if } \\ \frac{\left|B_{2}\right| \leq B_{1}}{6}, & \text { if } \\ \left.\frac{\left|B_{2}\right|}{6} \right\rvert\, \geq B_{1}\end{cases}
$$

Remark 6 The bound on $\left|a_{2}\right|$ given in Corollary 3 is better than that given in [1, Corollary 2.2].

Acknowledgement : This work is partially supported by UGC, under the grant F.MRP-3977/11 (MRP/UGC-SERO).

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramanian, Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25, no. 3, 344-351, 2012.
[2] D. Bansal and J. Sokót, Coefficient bound for a new class of analytic and bi-univalent functions, J. Frac. Cal. Appl.5, no. 1, 122-128, 2014.
[3] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43, no. 2, 59-65, 2013.
[4] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27, no. 7, 1165-1171, 2013.
[5] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
[6] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24, no. 9, 1569-1573, 2011.
[7] S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser I, 352, 17-20, 2014.
[8] S. G. Hamidi, S. A. Halim and J. M. Jahangiri, Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I 351, 349-352, 2013.
[9] S. G. Hamidi, S. A. Halim and J. M. Jahangiri, Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. Vol. 2013, Article ID: 498159, $1-4$.
[10] S. G. Hamidi, S. A. Halim and J. M. Jahangiri, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malaysian Math. Sci. Soc. 71, no.8, 1-12, 2014.
[11] M. Jahangiri, On the coefficients of powers of a class of Bazilevic functions, Indian J. Pure Appl. Math. 17, no. 9, 1140-1144, 1986.
[12] J. M. Jahangiri and S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. Vol. 2013, Article ID: 190560, 1-6.
[13] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 157-169, 1992, Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994.
[14] N. Magesh and V. Prameela, Coefficient estimate problems for certain subclasses of analytic and bi-univalent functions, Afrika Matematika, (On-line version) December, 1-6, 2013.
[15] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abs. Appl. Anal., Volume 2013, Article ID 573017, 1-3.
[16] H. Orhan, N. Magesh and V. K. Balaji, Initial coefficient bounds for certain classes of meromorphic bi-univalent functions, Asian European J. Math., $\mathbf{7 (1)}, 1-9,2014$.
[17] Z. Peng and Q. Han, On the coefficients of several classes of bi-univalent functions, Acta Math. Sci., 34B, no. 1, 228-240, 2014.
[18] H. M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27, no. 5, 831-842, 2013.
[19] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23, no. 10, 1188-1192, 2010.
[20] H. M. Srivastava, N. Magesh and J. Yamini, Initial coefficient estimates for bi- λ-convex and bi- μ-starlike functions connected with arithmetic and geometric means, Elect. J. Math. Anal. Appl. 2, no. 2, 152-162, 2014.
[21] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25, no. 6, 990-994, 2012.
[22] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21, 169 - 178, 2014.

Jay M. Jahangiri
Mathematical Sciences, Kent State University, Burton, Ohio 44021-9500, U.S.A.
E-mail address: jjahangi@kent.edu
N. Magesh

Post-Graduate and Research Department of Mathematics,
Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India.
E-mail address: nmagi_2000@yahoo.co.in
J. Yamini

Department of Mathematics, Govt First Grade College, Vijayanagar,
Bangalore-560104, Karnataka, India.
E-mail address: yaminibalaji@gmail.com

[^0]: 2010 Mathematics Subject Classification. 30C45;30C50.
 Key words and phrases. Fekete-Szegö Inequalities, Bi-univalent, bi-starlike and bi-convex functions.

 Submitted July 12, 2015.

 * Corresponding author : Jay M. Jahangiri (jjahangi@kent.edu).

