A COUPLED COINCIDENCE POINT THEOREM ON ORDERED PARTIAL B-METRIC-LIKE SPACES

K.P.R.RAO,K.V.SIVA PARVATHI,M.IMDAD

Abstract

In this paper, we prove a coupled coincidence point theorem in ordered partial b-metric-like spaces besides furnishing an illustrative example to demonstrate our main result.

1. Introduction

The concept of b-metric space was introduced by Czerwik [3] which runs as follows:
Definition 1.1([3]): A b-metric on a non empty set X is a function $d: X \times X \rightarrow$ $[0, \infty)$ such that for all $x, y, z \in X$ and $k \geq 1$, the following three conditions are satisfied:
(i) $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$,
(iii) $d(x, y) \leq k[d(x, z)+d(z, y)]$.

As usual, the pair (X, d) is called a b-metric space.
Example 1.2: Let $X=\mathcal{R}$ and $d(x, y)=(x-y)^{2}$ for all $x, y \in X$. Then d is a b-metric with $k=2$ but not a metric as $d(1,-1)>d(1,0)+d(0,-1)$.
Ali Alghamdi et al.[1] introduced the concept of b-metric-like spaces and proved some fixed point theorems involving a single map.
Definition 1.3([1]): A b-metric-like on a non empty set X is a function
$d: X \times X \rightarrow[0, \infty)$ such that for all $x, y, z \in X$ and a constant $k \geq 1$, the following three conditions are satisfied:
(i) $d(x, y)=0$ implies $x=y$,
(ii) $d(x, y)=d(y, x)$,
(iii) $d(x, y) \leq k[d(x, z)+d(z, y)]$.

The pair (X, d) is called a b-metric-like space.
Example 1.4: Let $X=[0, \infty)$ and $d(x, y)=(x+y)^{2}$ for all $x, y \in X$. Then d is a b-metric-like space with $k=2$ but not a b - metric .
Matthews [6] introduced the concept of a partial metric space which runs as follows:
Definition 1.5 $([6])$: A mapping $p: X \times X \rightarrow[0, \infty)$ (where X is a nonempty set)

[^0]is said to be a partial metric on X if (for any $x, y, z \in X$) the following conditions are satisfied:
(i) $x=y \Leftrightarrow p(x, x)=p(x, y)=p(y, y)$,
(ii) $p(x, x) \leq p(x, y), p(y, y) \leq p(x, y)$,
(iii) $p(x, y)=p(y, x)$,
(iv) $p(x, y) \leq p(x, z)+p(z, y)-p(z, z)$.

The pair (X, p) is called a partial metric space.
In [2],Bhaskar and Lakshmikantham introduced the concept of coupled fixed points and obtained some coupled fixed point theorems. Later Lakshmikantham and Ciric [5] introduced the following definitions.
Definition 1.6([5]): An element $(x, y) \in X \times X$ is called
(i) a coupled coincidence point of the mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $g x=F(x, y)$ and $g y=F(y, x)$.
(ii) a common coupled fixed point of the mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $x=g x=F(x, y)$ and $y=g y=F(y, x)$.
Definition $1.7([5])$: Let (X, \preceq) be a partially ordered set with $F: X \times X \rightarrow X$ and $g: X \rightarrow X$. Then F is said to have mixed g-monotone property if for any $x, y \in X$, we have

$$
\begin{aligned}
& (i) x_{1}, x_{2} \in X, g x_{1} \preceq g x_{2} \Rightarrow F\left(x_{1}, y\right) \preceq F\left(x_{2}, y\right) \\
& (i i) y_{1}, y_{2} \in X, g y_{1} \preceq g y_{2} \Rightarrow F\left(x, y_{1}\right) \succeq F\left(x, y_{2}\right) .
\end{aligned}
$$

In the sequel, we need the following lemma.
Lemma 1.8([4]): Let X be a non-empty set and $g: X \rightarrow X$ be a mapping. Then there exists a subset E of X such that $g(E)=g(X)$ and the mapping $g: E \rightarrow X$ is one-one.
Note that for $x, y \in[0, \infty)$ with $x \leq y$, we have $\frac{x}{1+x} \leq \frac{y}{1+y}$.

2. Main Result

Now, we give the following definition (by combining Definitons 1.3 and 1.5)
Definition 2.1: A partial b-metric-like on a non empty set X is a function $p: X \times X \rightarrow[0, \infty)$, wherein for all $x, y, z \in X$ and a constant $k \geq 1$, the following conditions are satisfied:
$\left(p_{1}\right) p(x, y)=0$ implies $x=y$,
$\left(p_{2}\right) p(x, x) \leq p(x, y), p(y, y) \leq p(x, y)$,
$\left(p_{3}\right) p(x, y)=p(y, x)$,
$\left(p_{4}\right) p(x, y) \leq k[p(x, z)+p(z, y)-p(z, z)]$.
The pair (X, p, k) is called a partial b-metric-like space.
Definition 2.2: Let (X, p, k) be a partial b-metric-like space and $\left\{x_{n}\right\}$ a sequence in X with $x \in X$. Then the sequence $\left\{x_{n}\right\}$ is said to be convergent to x if $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=p(x, x)$.
Definition 2.3: Let (X, p, k) be a partial b-metric-like space.
(i) A sequence $\left\{x_{n}\right\}$ in (X, p, k) is said to be Cauchy sequence if $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ exists and is finite.
(ii) A partial b-metric-like space (X, p, k) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges, to a point $x \in X$ so that
$\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=p(x, x)=\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)$.
One can easily verify the following remark.

Remark 2.4: Let (X, p, k) be a partial b-metric-like space and $\left\{x_{n}\right\}$ a sequence in X such that $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=0$. Then
(i) x is unique,
(ii) $\frac{1}{k} p(x, y) \leq \lim _{n \rightarrow \infty} p\left(x_{n}, y\right) \leq k p(x, y)$ for all $y \in X$
(iii) $p\left(x_{n}, x_{0}\right) \leq k p\left(x_{0}, x_{1}\right)+k^{2} p\left(x_{1}, x_{2}\right)+\cdots+k^{n-1} p\left(x_{n-2}, x_{n-1}\right)+k^{n-1} p\left(x_{n-1}, x_{n}\right)$
whenever $\left\{x_{k}\right\}_{k=0}^{n} \in X$.
Ali Alghamdi et al.[1] introduced the following class of functions.
Let $\Psi_{\mathcal{L}}^{k}$ be the class of those functions $\mathcal{L}:(0, \infty) \rightarrow\left(0, \frac{1}{k^{2}}\right)$ which satisfy the condition $\mathcal{L}\left(t_{n}\right) \rightarrow\left(\frac{1}{k^{2}}\right)^{+} \Rightarrow t_{n} \rightarrow 0$, where $k>0$.
Using these functions, we now prove a coupled coincidence point theorem in ordered partial b-metric-like spaces.
Let (X, p, k) be a partial b-metric-like space and $F: X \times X \rightarrow X$ and $g: X \rightarrow X$. For $x, y, u, v \in X$, we denote

$$
M(x, y, u, v)=\max \left\{\begin{array}{c}
p(g x, g u), p(g y, g v), p(g x, F(x, y)), p(g y, F(y, x)), \\
p(g u, F(u, v)), p(g v, F(v, u)), \\
\frac{1}{2 k}[p(g x, F(u, v))+p(g u, F(x, y))], \\
\frac{1}{2 k}[p(g y, F(v, u))+p(g v, F(y, x))]
\end{array}\right\} .
$$

Notice that $M(x, y, u, v)=M(y, x, v, u)$ for all $x, y, u, v \in X$.
Now, we are equipped to prove our main result as follows.
Theorem 2.5: Let (X, p, k, \preceq) be an ordered partial b-metric -like space and $F: X \times X \rightarrow X, g: X \rightarrow X$ be the mappings which satisfy the following conditions: (2.5.1) $F(X \times X) \subseteq g(X), g(X)$ is complete,
(2.5.2) F has the mixed g-monotone property,
(2.5.3) $p(F(x, y), F(u, v)) \leq \mathcal{L}(M(x, y, u, v)) M(x, y, u, v)$
for all $x, y, u, v \in X$ with $g x \preceq g u, g y \succeq g v$, where $\mathcal{L} \in \Psi_{\mathcal{L}}^{k}$
(2.5.4) there exist two elements $x_{0}, y_{0} \in X$ such that $g x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and
$g y_{0} \succeq F\left(y_{0}, x_{0}\right)$,
(2.5.5) (a) Suppose F and g are continuous
or
(b) $g(X)$ has the following properties:
(i) If a non-decreasing sequence $\left\{a_{n}\right\} \rightarrow a$, then $a_{n} \preceq a, \forall n$,
(ii) If a non-increasing sequence $\left\{a_{n}\right\} \rightarrow a$, then $a \preceq a_{n}, \forall n$.

Then F and g have a coupled coincidence point in $X \times X$.
Proof . By (2.5.4), there exist two elements $x_{0}, y_{0} \in X$ such that $g x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and $g y_{0} \succeq F\left(y_{0}, x_{0}\right)$. Since $F(X \times X) \subseteq g(X)$, we can choose $x_{1}, y_{1} \in X$ such that $g x_{1}=F\left(x_{0}, y_{0}\right)$ and $g y_{1}=F\left(y_{0}, x_{0}\right)$. Again we can choose $x_{2}, y_{2} \in X$ such that $g x_{2}=F\left(x_{1}, y_{1}\right)$ and $g y_{2}=F\left(y_{1}, x_{1}\right)$. Continuing this process indefinitely, we construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that $g x_{n+1}=F\left(x_{n}, y_{n}\right)$ and $g y_{n+1}=F\left(y_{n}, x_{n}\right)$ for all $n \geq 0$.
Now for $n \geq 0$, we shall prove that

$$
\begin{equation*}
g x_{n} \preceq g x_{n+1} \text { and } g y_{n} \succeq g y_{n+1} . \tag{1}
\end{equation*}
$$

From (2.5.4), (1) holds for $n=0$. Suppose (1) holds for $n=m>0$. Now, by (2.5.2), we have

$$
\begin{gathered}
g x_{m+1}=F\left(x_{m}, y_{m}\right) \preceq F\left(x_{m+1}, y_{m}\right) \preceq F\left(x_{m+1}, y_{m+1}\right)=g x_{m+2} \text { and } \\
g y_{m+1}=F\left(y_{m}, x_{m}\right) \succeq F\left(y_{m+1}, x_{m}\right) \succeq F\left(y_{m+1}, x_{m+1}\right)=g y_{m+2} .
\end{gathered}
$$

Thus (1) holds for $n=m+1$. Hence by mathematical induction, (1) holds for all
$n \geq 0$.
In case, $g x_{n+1}=g x_{n}$ and $g y_{n+1}=g y_{n}$ for some n, then $\left(x_{n}, y_{n}\right)$ is a coupled coincidence point of F and g. Otherwise, assume that $g x_{n} \neq g x_{n+1}$ or $g y_{n} \neq g y_{n+1}$ for all n. Consider

$$
\begin{aligned}
p\left(g x_{n}, g x_{n+1}\right) & =p\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right) \\
& \leq \mathcal{L}\left(M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)\right) M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)=\max \left\{\begin{array}{c}
p\left(g x_{n-1}, g x_{n}\right), p\left(g y_{n-1}, g y_{n}\right), p\left(g x_{n-1}, g x_{n}\right), \\
p\left(g y_{n-1}, g y_{n}\right), p\left(g x_{n}, g x_{n+1}\right), p\left(g y_{n}, g y_{n+1}\right), \\
\frac{1}{2 k}\left[p\left(g x_{n-1}, g x_{n+1}\right)+p\left(g x_{n}, g x_{n}\right)\right] \\
\frac{1}{2 k}\left[p\left(g y_{n-1}, g y_{n+1}\right)+p\left(g y_{n}, g y_{n}\right)\right]
\end{array}\right\}, \\
& \begin{aligned}
\frac{1}{2 k}\left[p\left(g x_{n-1}, g x_{n+1}\right)+p\left(g x_{n}, g x_{n}\right)\right] \quad & \leq \frac{1}{2 k}\left\{\begin{array}{c}
k\left[p\left(g x_{n-1}, g x_{n}\right)+p\left(g x_{n}, g x_{n+1}\right)-p\left(g x_{n}, g x_{n}\right)\right] \\
+k p\left(g x_{n}, g x_{n}\right)
\end{array}\right\} \\
& \leq \max \left\{p\left(g x_{n-1}, g x_{n}\right), p\left(g x_{n}, g x_{n+1}\right)\right\},
\end{aligned}
\end{aligned}
$$

and

$$
\begin{aligned}
M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right) & \leq \max \left\{\begin{array}{c}
p\left(g x_{n-1}, g x_{n}\right), p\left(g y_{n-1}, g y_{n}\right) \\
p\left(g x_{n}, g x_{n+1}\right), p\left(g y_{n}, g y_{n+1}\right)
\end{array}\right\} \\
& \leq M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)
\end{aligned}
$$

Thus

$$
M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)=\max \left\{\begin{array}{c}
p\left(g x_{n-1}, g x_{n}\right), p\left(g y_{n-1}, g y_{n}\right) \tag{2}\\
p\left(g x_{n}, g x_{n+1}\right), p\left(g y_{n}, g y_{n+1}\right)
\end{array}\right\}
$$

So,
$p\left(g x_{n}, g x_{n+1}\right) \leq \mathcal{L}\left(M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)\right) \max \left\{\begin{array}{c}p\left(g x_{n-1}, g x_{n}\right), p\left(g y_{n-1}, g y_{n}\right), \\ p\left(g x_{n}, g x_{n+1}\right), p\left(g y_{n}, g y_{n+1}\right)\end{array}\right\}$.
Similarly by using $M\left(y_{n-1}, x_{n-1}, y_{n}, x_{n}\right)=M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)$, we can show that
$p\left(g y_{n}, g y_{n+1}\right) \leq \mathcal{L}\left(M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)\right) \max \left\{\begin{array}{c}p\left(g x_{n-1}, g x_{n}\right), p\left(g y_{n-1}, g y_{n}\right), \\ p\left(g x_{n}, g x_{n+1}\right), p\left(g y_{n}, g y_{n+1}\right)\end{array}\right\}$.
Thus
$\max \left\{\begin{array}{c}p\left(g x_{n}, g x_{n+1}\right), \\ p\left(g y_{n}, g y_{n+1}\right)\end{array}\right\} \leq \mathcal{L}\left(M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)\right) \max \left\{\begin{array}{c}p\left(g x_{n-1}, g x_{n}\right), p\left(g y_{n-1}, g y_{n}\right), \\ p\left(g x_{n}, g x_{n+1}\right), p\left(g y_{n}, g y_{n+1}\right)\end{array}\right\}$.
If $\max \left\{\begin{array}{c}p\left(g x_{n-1}, g x_{n}\right), p\left(g y_{n-1}, g y_{n}\right), \\ p\left(g x_{n}, g x_{n+1}\right), p\left(g y_{n}, g y_{n+1}\right)\end{array}\right\}=\max \left\{p\left(g x_{n}, g x_{n+1}\right), p\left(g y_{n}, g y_{n+1}\right)\right\}$
then using $\mathcal{L}\left(M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)\right)<\frac{1}{k^{2}}$, we get a contradiction from (3).
Hence

$$
\max \left\{\begin{array}{c}
p\left(g x_{n}, g x_{n+1}\right), \\
p\left(g y_{n}, g y_{n+1}\right)
\end{array}\right\} \leq \mathcal{L}\left(M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)\right) \max \left\{\begin{array}{c}
p\left(g x_{n-1}, g x_{n}\right) \\
p\left(g y_{n-1}, g y_{n}\right),
\end{array}\right\}
$$

Put $p_{n}=\max \left\{p\left(g x_{n}, g x_{n+1}\right), p\left(g y_{n}, g y_{n+1}\right)\right\}$. Then

$$
\begin{equation*}
p_{n} \leq \mathcal{L}\left(M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)\right) p_{n-1}<p_{n-1} \tag{4}
\end{equation*}
$$

Thus $\left\{p_{n}\right\}$ is a non-increasing sequence of non-negative real numbers and hence also converges to some real number $s \geq 0$. Suppose $s>0$.
From (4), we have $s \leq \lim _{n \rightarrow \infty} \mathcal{L}\left(M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)\right) s \quad$ so that
$1 \leq \lim _{n \rightarrow \infty} \mathcal{L}\left(M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)\right)$.
Now we have
$\frac{1}{k^{2}} \leq \lim _{n \rightarrow \infty} \mathcal{L}\left(M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)\right) \leq \frac{1}{k^{2}}$ which in turn yields that
$\lim _{n \rightarrow \infty} \mathcal{L}\left(M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)\right)=\frac{1}{k^{2}}$. Hence $\lim _{n \rightarrow \infty} M\left(x_{n-1}, y_{n-1}, x_{n}, y_{n}\right)=0$.
Thus from (2), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{p\left(g x_{n}, g x_{n+1}\right), p\left(g y_{n}, g y_{n+1}\right)\right\}=0 \tag{5}
\end{equation*}
$$

Also, from $\left(p_{2}\right)$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max \left\{p\left(g x_{n}, g x_{n}\right), p\left(g y_{n}, g y_{n}\right)\right\}=0 \tag{6}
\end{equation*}
$$

Now, we prove that

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \max \left\{p\left(g x_{n}, g x_{m}\right), p\left(g y_{n}, g y_{m}\right)\right\}=0 \tag{7}
\end{equation*}
$$

Suppose (7) is not true. Then

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \max \left\{p\left(g x_{n}, g x_{m}\right), p\left(g y_{n}, g y_{m}\right)\right\}>0 \tag{8}
\end{equation*}
$$

Let $m>n$. Then from (1), we have $g x_{n} \preceq g x_{m}$ and $g y_{n} \succeq g y_{m}$.
From (2.5.3), we have

$$
\begin{align*}
p\left(g x_{n+1}, g x_{m+1}\right) & =p\left(F\left(x_{n}, y_{n}, F\left(x_{m}, y_{m}\right)\right)\right. \\
& \leq \mathcal{L}\left(M\left(x_{n}, y_{n}, x_{m}, y_{m}\right)\right) M\left(x_{n}, y_{n}, x_{m}, y_{m}\right) \tag{9}
\end{align*}
$$

where
$\lim _{n, m \rightarrow \infty} M\left(x_{n}, y_{n}, x_{m}, y_{m}\right)=\lim _{n, m \rightarrow \infty} \max \left\{\begin{array}{c}p\left(g x_{n}, g x_{m}\right), p\left(g y_{n}, g y_{m}\right), p\left(g x_{n}, g x_{n+1}\right), \\ p\left(g y_{n}, g y_{n+1}\right), p\left(g x_{m}, g x_{m+1}\right), p\left(g y_{m}, g y_{m+1}\right), \\ \frac{1}{2 k}\left[p\left(g x_{n}, g x_{m+1}\right)+p\left(g x_{m}, g x_{n+1}\right)\right], \\ \frac{1}{2 k}\left[p\left(g y_{n}, g y_{m+1}\right)+p\left(g y_{m}, g y_{n+1}\right)\right]\end{array}\right\}$.
But
$\frac{1}{2 k}\left[p\left(g x_{n}, g x_{m+1}\right)+p\left(g x_{m}, g x_{n+1}\right)\right]$
$\leq \frac{1}{2 k} k\left[\begin{array}{c}p\left(g x_{n}, g x_{m}\right)+p\left(g x_{m}, g x_{m+1}\right)-p\left(g x_{m}, g x_{m}\right)+ \\ p\left(g x_{m}, g x_{n}\right)+p\left(g x_{n}, g x_{n+1}\right)-p\left(g x_{n}, g x_{n}\right)\end{array}\right]$.
Hence

$$
\begin{aligned}
\lim _{n, m \rightarrow \infty} M\left(x_{n}, y_{n}, x_{m}, y_{m}\right) & \leq \lim _{n, m \rightarrow \infty} \max \left\{p\left(g x_{n}, g x_{m}\right), p\left(g y_{n}, g y_{m}\right)\right\} \text { from (5), (6) } \\
& \leq \lim _{n, m \rightarrow \infty} M\left(x_{n}, y_{n}, x_{m}, y_{m}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} M\left(x_{n}, y_{n}, x_{m}, y_{m}\right)=\lim _{n, m \rightarrow \infty} \max \left\{p\left(g x_{n}, g x_{m}\right), p\left(g y_{n}, g y_{m}\right)\right\} \tag{10}
\end{equation*}
$$

From (9), we have

$$
\lim _{n, m \rightarrow \infty} p\left(g x_{n+1}, g x_{m+1}\right) \leq \lim _{n, m \rightarrow \infty} \mathcal{L}\left(M\left(x_{n}, y_{n}, x_{m}, y_{m}\right)\right) \lim _{n, m \rightarrow \infty} \max \left\{\begin{array}{c}
p\left(g x_{n}, g x_{m}\right) \\
p\left(g y_{n}, g y_{m}\right)
\end{array}\right\}
$$

Similarly, we can show that
$\lim _{n, m \rightarrow \infty} p\left(g y_{n+1}, g y_{m+1}\right) \leq \lim _{n, m \rightarrow \infty} \mathcal{L}\left(M\left(x_{n}, y_{n}, x_{m}, y_{m}\right)\right) \lim _{n, m \rightarrow \infty} \max \left\{\begin{array}{c}p\left(g x_{n}, g x_{m}\right), \\ p\left(g y_{n}, g y_{m}\right)\end{array}\right\}$.

Thus

$$
\lim _{n, m \rightarrow \infty} \max \left\{\begin{array}{c}
p\left(g x_{n+1}, g x_{m+1}\right), \tag{11}\\
p\left(g y_{n+1}, g y_{m+1}\right)
\end{array}\right\} \leq \lim _{n, m \rightarrow \infty} \mathcal{L}\left(M\left(x_{n}, y_{n}, x_{m}, y_{m}\right)\right) \lim _{n, m \rightarrow \infty} \max \left\{\begin{array}{c}
p\left(g x_{n}, g x_{m}\right), \\
p\left(g y_{n}, g y_{m}\right)
\end{array}\right\}
$$

We have
$p\left(g x_{n}, g x_{m}\right) \leq k p\left(g x_{n}, g x_{n+1}\right)+k^{2} p\left(g x_{n+1}, g x_{m+1}\right)+k^{2} p\left(g x_{m+1}, g x_{m}\right)$
which implies that $\frac{1}{k^{2}} \lim _{n, m \rightarrow \infty} p\left(g x_{n}, g x_{m}\right) \leq \lim _{n, m \rightarrow \infty} p\left(g x_{n+1}, g x_{m+1}\right)$ from(5).
Similarly, $\frac{1}{k^{2}} \lim _{n, m \rightarrow \infty} p\left(g y_{n}, g y_{m}\right) \leq \lim _{n, m \rightarrow \infty} p\left(g y_{n+1}, g y_{m+1}\right)$.
Thus by using (11), we have

$$
\begin{aligned}
\frac{1}{k^{2}} \lim _{n, m \rightarrow \infty} \max \left\{\begin{array}{c}
p\left(g x_{n}, g x_{m}\right), \\
p\left(g y_{n}, g y_{m}\right)
\end{array}\right\} & \leq \lim _{n, m \rightarrow \infty} \max \left\{\begin{array}{c}
p\left(g x_{n+1}, g x_{m+1}\right) \\
p\left(g y_{n+1}, g y_{m+1}\right)
\end{array}\right\} \\
& \leq \lim _{n, m \rightarrow \infty} \mathcal{L}\left(M\left(x_{n}, y_{n}, x_{m}, y_{m}\right)\right) \lim _{n, m \rightarrow \infty} \max \left\{\begin{array}{c}
p\left(g x_{n}, g x_{m}\right) \\
p\left(g y_{n}, g y_{m}\right)
\end{array}\right\}
\end{aligned}
$$

which in turn implies from (8) that
$\frac{1}{k^{2}} \leq \lim _{n, m \rightarrow \infty} \mathcal{L}\left(M\left(x_{n}, y_{n}, x_{m}, y_{m}\right)\right) \leq \frac{1}{k^{2}}$ so that $\lim _{n \rightarrow \infty} M\left(x_{n}, y_{n}, x_{m}, y_{m}\right)=0$.
It is a contradiction to (8) in view of (10).
Hence (7) holds. Thus $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are Cauchy sequences in $g(X)$. Since $g(X)$ is complete, there exist $r_{1}, r_{2}, z_{1}, z_{2} \in X$ such that $g x_{n} \rightarrow r_{1}=g z_{1}$ and $g y_{n} \rightarrow r_{2}=g z_{2}$.
Suppose (2.5.5) (a) holds.
From Lemma 1.8, there exists a subset $E \subseteq X$ such that $g(E)=g(X)$ and the mapping $g: E \rightarrow X$ is one-one. Without loss of generality, we are able to choose $E \subseteq X$ such that $z_{1}, z_{2} \in E$. Now define $G: g(E) \times g(E) \rightarrow X$ by

$$
G(g a, g b)=F(a, b) \text { for all } g a, g b \in g(E) \text { where } a, b \in E \text {. }
$$

Since F and g are continuous, it follows that G is continuous. As $g: E \rightarrow X$ is oneone and $F(X \times X) \subseteq g(X), G$ is well defined. Again since F and g are continuous, it follows that G is continuous. Since $\left\{x_{n}\right\},\left\{y_{n}\right\} \subset X$ and $g(E)=g(X)$, there exists $\left\{a_{n}\right\},\left\{b_{n}\right\} \subset E$ such that $g\left(x_{n}\right)=g\left(a_{n}\right)$ and $g\left(y_{n}\right)=g\left(b_{n}\right)$ for all n. So we have

$$
\begin{aligned}
& F\left(z_{1}, z_{2}\right)=G\left(g z_{1}, g z_{2}\right)=\lim _{n \rightarrow \infty} G\left(g a_{n}, g b_{n}\right)=\lim _{n \rightarrow \infty} F\left(a_{n}, b_{n}\right)=\lim _{n \rightarrow \infty} g a_{n+1}=g z_{1}, \\
& F\left(z_{2}, z_{1}\right)=G\left(g z_{2}, g z_{1}\right)=\lim _{n \rightarrow \infty} G\left(g b_{n}, g a_{n}\right)=\lim _{n \rightarrow \infty} F\left(b_{n}, a_{n}\right)=\lim _{n \rightarrow \infty} g b_{n+1}=g z_{2} .
\end{aligned}
$$

Thus $\left(z_{1}, z_{2}\right)$ is a coupled coincidence point of F and g.
Suppose (2.5.5) (b) holds.
From (1)and (i) and (ii) of (2.5.5)(b), we have $g x_{n} \preceq g z_{1}$ and $g y_{n} \succeq g z_{2}$ for all n. From definition of completeness of $g(X)$ and from (7), we have

$$
\begin{align*}
& \lim _{n \rightarrow \infty} p\left(g x_{n}, g z_{1}\right)=p\left(g z_{1}, g z_{1}\right)=\lim _{n, m \rightarrow \infty} p\left(g x_{n}, g x_{m}\right)=0 \tag{12}\\
& \lim _{n \rightarrow \infty} p\left(g y_{n}, g z_{2}\right)=p\left(g z_{2}, g z_{2}\right)=\lim _{n, m \rightarrow \infty} p\left(g y_{n}, g y_{m}\right)=0 \tag{13}
\end{align*}
$$

Now

$$
\begin{align*}
p\left(g x_{n+1}, F\left(z_{1}, z_{2}\right)\right) & =p\left(F\left(x_{n}, y_{n}\right), F\left(z_{1}, z_{2}\right)\right) \\
& \leq \mathcal{L}\left(M\left(x_{n}, y_{n}, z_{1}, z_{2}\right)\right) M\left(x_{n}, y_{n}, z_{1}, z_{2}\right) \tag{14}
\end{align*}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} M\left(x_{n}, y_{n}, z_{1}, z_{2}\right) \\
& \quad=\lim _{n \rightarrow \infty} \max \left\{\begin{array}{c}
p\left(g x_{n}, g z_{1}\right), p\left(g y_{n}, g z_{2}\right), p\left(g x_{n}, g x_{n+1}\right) \\
p\left(g y_{n}, g y_{n+1}\right), p\left(g z_{1}, F\left(z_{1}, z_{2}\right)\right), p\left(g z_{2}, F\left(z_{2}, z_{1}\right)\right), \\
\frac{1}{2 k}\left[p\left(g x_{n}, F\left(z_{1}, z_{2}\right)\right)+p\left(g z_{1}, g x_{n+1}\right)\right] \\
\frac{1}{2 k}\left[p\left(g y_{n}, F\left(z_{2}, z_{1}\right)\right)+p\left(g z_{2}, g y_{n+1}\right)\right]
\end{array}\right\} \\
& \quad \leq \max \left\{\begin{array}{c}
0,0,0,0, p\left(g z_{1}, F\left(z_{1}, z_{2}\right)\right), p\left(g z_{2}, F\left(z_{2}, z_{1}\right)\right), \\
\frac{1}{2 k}\left[k p\left(g z_{1}, F\left(z_{1}, z_{2}\right)\right)+0\right], \\
\frac{1}{2 k}\left[k p\left(g z_{2}, F\left(z_{2}, z_{1}\right)\right)+0\right]
\end{array}\right\}
\end{aligned}
$$

from (12), (13), (5) and Remark 2.4

$$
\begin{aligned}
& =\max \left\{p\left(g z_{1}, F\left(z_{1}, z_{2}\right)\right), p\left(g z_{2}, F\left(z_{2}, z_{1}\right)\right)\right\} \\
& \leq \lim _{n \rightarrow \infty} M\left(x_{n}, y_{n}, z_{1}, z_{2}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M\left(x_{n}, y_{n}, z_{1}, z_{2}\right)=\max \left\{p\left(g z_{1}, F\left(z_{1}, z_{2}\right)\right), p\left(g z_{2}, F\left(z_{2}, z_{1}\right)\right)\right\} \tag{15}
\end{equation*}
$$

Now

$$
\begin{align*}
\frac{1}{k^{2}} p\left(g z_{1}, F\left(z_{1}, z_{2}\right)\right) & \leq \frac{1}{k} p\left(g z_{1}, F\left(z_{1}, z_{2}\right)\right) \\
& \leq \lim _{n \rightarrow \infty} p\left(g x_{n+1}, F\left(z_{1}, z_{2}\right)\right) \text { from Remark } 2.4 \\
& \leq \lim _{n \rightarrow \infty} \mathcal{L}\left(M\left(x_{n}, y_{n}, z_{1}, z_{2}\right)\right) \max \left\{\begin{array}{c}
p\left(g z_{1}, F\left(z_{1}, z_{2}\right)\right), \\
p\left(g z_{2}, F\left(z_{2}, z_{1}\right)\right)
\end{array}\right\} \text { from }(14),(15) \tag{15}
\end{align*}
$$

Similarly we can show that

$$
\frac{1}{k^{2}} p\left(g z_{2}, F\left(z_{2}, z_{1}\right)\right) \leq \lim _{n \rightarrow \infty} \mathcal{L}\left(M\left(x_{n}, y_{n}, z_{1}, z_{2}\right)\right) \max \left\{\begin{array}{c}
p\left(g z_{1}, F\left(z_{1}, z_{2}\right)\right) \\
p\left(g z_{2}, F\left(z_{2}, z_{1}\right)\right)
\end{array}\right\}
$$

Thus
$\frac{1}{k^{2}} \max \left\{\begin{array}{c}p\left(g z_{1}, F\left(z_{1}, z_{2}\right)\right), \\ p\left(g z_{2}, F\left(z_{2}, z_{1}\right)\right)\end{array}\right\} \leq \lim _{n \rightarrow \infty} \mathcal{L}\left(M\left(x_{n}, y_{n}, z_{1}, z_{2}\right)\right) \max \left\{\begin{array}{c}p\left(g z_{1}, F\left(z_{1}, z_{2}\right)\right), \\ p\left(g z_{2}, F\left(z_{2}, z_{1}\right)\right)\end{array}\right\}$.
If $\max \left\{\begin{array}{c}p\left(g z_{1}, F\left(z_{1}, z_{2}\right)\right), \\ p\left(g z_{2}, F\left(z_{2}, z_{1}\right)\right)\end{array}\right\}>0$, then from property of \mathcal{L}, we have
$\lim _{n \rightarrow \infty} M\left(x_{n}, y_{n}, z_{1}, z_{2}\right)=0$ which is a contradiction in view of (15).
Hence $g z_{1}=F\left(z_{1}, z_{2}\right)$ and $g z_{2}=F\left(z_{2}, z_{1}\right)$.
Thus $\left(z_{1}, z_{2}\right)$ is a coupled coincidence point of F and g. This completes the proof.
Now, we furnish an example to illustrate Theorem 2.5.
Example 2.6: Let $X=[0,1]$ and $p(x, y)=\max \left\{x^{2}, y^{2}\right\}$. Then p is a partial b -metric-like with $k=2$. Define $x \preceq y$ as $x \leq y$. Consider the functions $F: X \times X \rightarrow$ X and $g: X \rightarrow X$ which are defined as $g x=x$ and

$$
F(x, y)=\left\{\begin{array}{c}
\frac{x}{2 \sqrt{1+y^{2}}}, \text { if } x \leq y \\
0, \text { if } x>y
\end{array}\right.
$$

Let $\mathcal{L}:(0, \infty) \rightarrow\left(0, \frac{1}{4}\right)$ be defined by $\mathcal{L}(t)=\frac{1}{4(1+t)}$.
Let $g x \preceq g u$ and $g y \succeq g v$. That is let $x \leq u$ and $y \geq v$.
Case(i): Assume $x \leq y$ and $u \leq v$.
Then $p(x, u)=\max \left\{x^{2}, u^{2}\right\}=u^{2} \leq M(x, y, u, v)$.
$p(F(x, y), F(u, v))=\max \left\{\frac{x^{2}}{4\left(1+y^{2}\right)}, \frac{u^{2}}{4\left(1+v^{2}\right)}\right\}$
$=\frac{u^{2}}{4\left(1+v^{2}\right)} \leq \frac{u^{2}}{4\left(1+u^{2}\right)} \leq \frac{M(x, y, u, v)}{4(1+M(x, y, u, v))}=L(M(x, y, u, v)) M(x, y, u, v)$
Case(ii): Assume $x \leq y$ and $u>v$.
Then $p(g x, F(x, y))=\max \left\{x^{2}, \frac{x^{2}}{4\left(1+y^{2}\right)}\right\}=x^{2} \leq M(x, y, u, v)$.
$p(F(x, y), F(u, v))=\frac{x^{2}}{4\left(1+y^{2}\right)}$
$\leq \frac{x^{2}}{4\left(1+x^{2}\right)} \leq \frac{M(x, y, u, v)}{4(1+M(x, y, u, v))}=L(M(x, y, u, v)) M(x, y, u, v)$
Case(iii): Assume $x>y$ and $u>v$.
Then $p(F(x, y), F(u, v))=0 \leq L(M(x, y, u, v)) M(x, y, u, v)$.
The case $x>y$ and $u \leq v$ does n't arise as $x \leq u$ and $y \geq v$. Thus the condition (2.5.3) is satisfied.One can easily verify the remaining conditions.Clearly $(0,0)$ is a coupled coincidence point of F and g.
Corollary 2.7: Let (X, p, k, \preceq) be an ordered complete partial b-metric-like space and $F: X \times X \rightarrow X$ be a mapping satisfying
(2.7.1) F has the mixed monotone property,
(2.7.2) $p(F(x, y), F(u, v)) \leq \mathcal{L}(M(x, y, u, v)) M(x, y, u, v)$
for all $x, y, u, v \in X$ with $x \preceq u, y \succeq v$, where $\mathcal{L} \in \Psi_{\mathcal{L}}^{k}$ and
$M(x, y, u, v)=\max \left\{\begin{array}{c}p(x, u), p(y, v), p(x, F(x, y)), p(y, F(y, x)), \\ p(u, F(u, v)), p(v, F(v, u)), \\ \frac{1}{2 k}[p(x, F(u, v))+p(u, F(x, y))], \\ \frac{1}{2 k}[p(y, F(v, u))+p(v, F(y, x))]\end{array}\right\}$
(2.7.3) there exist two elements $x_{0}, y_{0} \in X$ such that $x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and
$y_{0} \succeq F\left(y_{0}, x_{0}\right)$,
(2.7.4) (a) Suppose F is continuous
or
(b) X has the following properties:
(i) If a non-decreasing sequence $\left\{x_{n}\right\} \rightarrow x$, then $x_{n} \preceq x, \forall n$,
(ii) If a non-increasing sequence $\left\{y_{n}\right\} \rightarrow y$, then $y \preceq y_{n}, \forall n$.

Then F has a coupled fixed point in $X \times X$.
Acknowledgment All the authors are grateful to an anonymous learned referee for his fruitful suggestions.

References

[1] M.Ali Alghamdi,N.Hussain and P.Salimi,Fixed point and coupled fixed point theorems on b-metric-like spaces,Journal of inequalities and Applications,(2013),2013:402,25 pages.
[2] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis, 65, (7) (2006), 1379-1393.
[3] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostraviensis, 1(1993), 5-11.
[4] R. H. Haghi, Sh. Rezapour and N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Anal., 74 (2011), 1799-1803.
[5] V. Lakshmikantham and Lj . Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods and Applications, vol. 70, no. 12(2009), 4341-4349.
[6] S.G. Matthews, Partial metric topology, Proc. 8th Summer conference on General Topology and Applications, Ann. New York Acad. Sci., vol. 728, 1994, 183-197.
K.P.R.Rao

Department of Mathematics,Acharya Nagarjuna University, Nagarjuna Nagar -522 510, A.P., India

E-mail address: kprrao2004@yahoo.com
K.V.Siva Parvathi

Department of Applied Mathematics,Krishna University-M.R.Appa Row P.G.Center, Nuzvid-521 201, A.P, India.

E-mail address: kvsp1979@yahoo.com
M.Imdad

Department of Mathematics,Aligarh Muslim University ,Aligarh-202 002, U.P,India.
E-mail address: mhimdad@yahoo.co.in

[^0]: 1991 Mathematics Subject Classification. 54H25, 47H10.
 Key words and phrases. Partial b-metric-like space, coupled fixed point, mixed monotone property.

 Submitted Jun 29, 2014. Revised July 29, 2014.

