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A COUPLED COINCIDENCE POINT THEOREM ON ORDERED

PARTIAL B-METRIC-LIKE SPACES

K.P.R.RAO,K.V.SIVA PARVATHI,M.IMDAD

Abstract. In this paper, we prove a coupled coincidence point theorem in
ordered partial b-metric-like spaces besides furnishing an illustrative example
to demonstrate our main result.

1. Introduction

The concept of b-metric space was introduced by Czerwik [3] which runs as
follows:
Definition 1.1([3]): A b-metric on a non empty set X is a function d : X ×X →
[0,∞) such that for all x, y, z ∈ X and k ≥ 1, the following three conditions are
satisfied:
(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ k[d(x, z) + d(z, y)] .
As usual, the pair (X, d) is called a b-metric space.
Example 1.2: Let X = R and d(x, y) = (x − y)2 for all x, y ∈ X. Then d is a
b-metric with k = 2 but not a metric as d(1,−1) > d(1, 0) + d(0,−1).
Ali Alghamdi et al.[1] introduced the concept of b-metric-like spaces and proved
some fixed point theorems involving a single map.
Definition 1.3([1]): A b-metric-like on a non empty set X is a function
d : X×X → [0,∞) such that for all x, y, z ∈ X and a constant k ≥ 1, the following
three conditions are satisfied:
(i) d(x, y) = 0 implies x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ k[d(x, z) + d(z, y)] .
The pair (X, d) is called a b-metric-like space.
Example 1.4: Let X = [0,∞) and d(x, y) = (x+ y)2 for all x, y ∈ X. Then d is a
b-metric-like space with k = 2 but not a b- metric .
Matthews [6] introduced the concept of a partial metric space which runs as follows:
Definition 1.5([6]): A mapping p : X ×X → [0,∞) (where X is a nonempty set)
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is said to be a partial metric on X if (for any x, y, z ∈ X) the following conditions
are satisfied:
(i) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(ii) p(x, x) ≤ p(x, y), p(y, y) ≤ p(x, y),
(iii) p(x, y) = p(y, x),
(iv) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
The pair (X, p) is called a partial metric space.
In [2],Bhaskar and Lakshmikantham introduced the concept of coupled fixed points
and obtained some coupled fixed point theorems. Later Lakshmikantham and Ciric
[5] introduced the following definitions.
Definition 1.6([5]): An element (x, y) ∈ X ×X is called
(i) a coupled coincidence point of the mappings F : X ×X → X and g : X → X if
gx = F (x, y) and gy = F (y, x).
(ii) a common coupled fixed point of the mappings F : X×X → X and g : X → X
if x = gx = F (x, y) and y = gy = F (y, x).
Definition 1.7([5]): Let (X,≼) be a partially ordered set with F : X × X → X
and g : X → X. Then F is said to have mixed g-monotone property if for any
x, y ∈ X, we have

(i)x1, x2 ∈ X, gx1 ≼ gx2 ⇒ F (x1, y) ≼ F (x2, y)
(ii)y1, y2 ∈ X, gy1 ≼ gy2 ⇒ F (x, y1) ≽ F (x, y2).

In the sequel, we need the following lemma.
Lemma 1.8([4]): Let X be a non-empty set and g : X → X be a mapping. Then
there exists a subset E of X such that g(E) = g(X) and the mapping g : E → X
is one-one.
Note that for x, y ∈ [0,∞) with x ≤ y, we have x

1+x ≤ y
1+y .

2. Main Result

Now, we give the following definition (by combining Definitons 1.3 and 1.5 )
Definition 2.1: A partial b-metric-like on a non empty set X is a function
p : X × X → [0,∞), wherein for all x, y, z ∈ X and a constant k ≥ 1, the fol-
lowing conditions are satisfied:
(p1) p(x, y) = 0 implies x = y,
(p2) p(x, x) ≤ p(x, y),p(y, y) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ k[p(x, z) + p(z, y)− p(z, z)].
The pair (X, p, k) is called a partial b-metric-like space.
Definition 2.2: Let (X, p, k) be a partial b-metric-like space and {xn} a se-
quence in X with x ∈ X. Then the sequence {xn} is said to be convergent to
x if lim

n→∞
p(xn, x) = p(x, x).

Definition 2.3: Let (X, p, k) be a partial b-metric-like space.
(i) A sequence {xn} in (X, p, k) is said to be Cauchy sequence if
lim

n,m→∞
p(xn, xm) exists and is finite .

(ii) A partial b-metric-like space (X, p, k) is said to be complete if every Cauchy
sequence {xn} in X converges, to a point x ∈ X so that
lim

n,m→∞
p(xn, xm) = p(x, x) = lim

n→∞
p(xn, x).

One can easily verify the following remark.
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Remark 2.4: Let (X, p, k) be a partial b-metric-like space and {xn} a sequence in
X such that lim

n→∞
p(xn, x) = 0. Then

(i) x is unique,
(ii) 1kp(x, y) ≤ lim

n→∞
p(xn, y) ≤ kp(x, y) for all y ∈ X

(iii) p(xn, x0) ≤ kp(x0, x1)+k2p(x1, x2)+· · ·+kn−1p(xn−2, xn−1)+kn−1p(xn−1, xn)
whenever {xk}nk=0 ∈ X.
Ali Alghamdi et al.[1] introduced the following class of functions.
Let Ψk

L be the class of those functions L : (0,∞) → (0, 1
k2 ) which satisfy the con-

dition L(tn) → ( 1
k2 )

+ ⇒ tn → 0, where k > 0.
Using these functions, we now prove a coupled coincidence point theorem in ordered
partial b-metric-like spaces.
Let (X, p, k) be a partial b-metric-like space and F : X ×X → X and
g : X → X. For x, y, u, v ∈ X, we denote

M(x, y, u, v) = max


p(gx, gu), p(gy, gv), p(gx, F (x, y)), p(gy, F (y, x)),

p(gu, F (u, v)), p(gv, F (v, u)),
1
2k [p(gx, F (u, v)) + p(gu, F (x, y))],
1
2k [p(gy, F (v, u)) + p(gv, F (y, x))]

 .

Notice that M(x, y, u, v) = M(y, x, v, u) for all x, y, u, v ∈ X.
Now, we are equipped to prove our main result as follows.
Theorem 2.5: Let (X, p, k,≼) be an ordered partial b-metric -like space and
F : X×X → X, g : X → X be the mappings which satisfy the following conditions:
(2.5.1)F (X ×X) ⊆ g(X), g(X) is complete,
(2.5.2) F has the mixed g-monotone property,
(2.5.3) p(F (x, y), F (u, v)) ≤ L(M(x, y, u, v))M(x, y, u, v)
for all x, y, u, v ∈ X with gx ≼ gu, gy ≽ gv, where L ∈ Ψk

L
(2.5.4) there exist two elements x0, y0 ∈ X such that gx0 ≼ F (x0, y0) and
gy0 ≽ F (y0, x0),
(2.5.5) (a) Suppose F and g are continuous

or
(b) g(X) has the following properties:
(i) If a non-decreasing sequence {an} → a, then an ≼ a, ∀ n,
(ii) If a non-increasing sequence {an} → a, then a ≼ an, ∀ n.
Then F and g have a coupled coincidence point in X ×X.
Proof . By (2.5.4), there exist two elements x0, y0 ∈ X such that gx0 ≼ F (x0, y0)
and gy0 ≽ F (y0, x0). Since F (X × X) ⊆ g(X), we can choose x1, y1 ∈ X such
that gx1 = F (x0, y0) and gy1 = F (y0, x0). Again we can choose x2, y2 ∈ X such
that gx2 = F (x1, y1) and gy2 = F (y1, x1). Continuing this process indefinitely,
we construct sequences {xn} and {yn} in X such that gxn+1 = F (xn, yn) and
gyn+1 = F (yn, xn) for all n ≥ 0.
Now for n ≥ 0, we shall prove that

gxn ≼ gxn+1 and gyn ≽ gyn+1. (1)

From (2.5.4), (1) holds for n = 0. Suppose (1) holds for n = m > 0. Now, by
(2.5.2), we have
gxm+1 = F (xm, ym) ≼ F (xm+1, ym) ≼ F (xm+1, ym+1) = gxm+2 and

gym+1 = F (ym, xm) ≽ F (ym+1, xm) ≽ F (ym+1, xm+1) = gym+2.
Thus (1) holds for n = m+ 1. Hence by mathematical induction, (1) holds for all
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n ≥ 0.
In case, gxn+1 = gxn and gyn+1 = gyn for some n, then (xn, yn) is a coupled
coincidence point of F and g. Otherwise, assume that gxn ̸= gxn+1 or gyn ̸= gyn+1

for all n. Consider

p(gxn, gxn+1) = p(F (xn−1, yn−1), F (xn, yn))
≤ L(M(xn−1, yn−1, xn, yn))M(xn−1, yn−1, xn, yn)

where

M(xn−1, yn−1, xn, yn) = max


p(gxn−1, gxn), p(gyn−1, gyn), p(gxn−1, gxn),
p(gyn−1, gyn), p(gxn, gxn+1), p(gyn, gyn+1),

1
2k [p(gxn−1, gxn+1) + p(gxn, gxn)],
1
2k [p(gyn−1, gyn+1) + p(gyn, gyn)]

 ,

1
2k [p(gxn−1, gxn+1) + p(gxn, gxn)] ≤ 1

2k

{
k[p(gxn−1, gxn) + p(gxn, gxn+1)− p(gxn, gxn)]

+kp(gxn, gxn)

}
≤ max {p(gxn−1, gxn), p(gxn, gxn+1)} ,

and

M(xn−1, yn−1, xn, yn) ≤ max

{
p(gxn−1, gxn), p(gyn−1, gyn),
p(gxn, gxn+1), p(gyn, gyn+1)

}
≤ M(xn−1, yn−1, xn, yn).

Thus

M(xn−1, yn−1, xn, yn) = max

{
p(gxn−1, gxn), p(gyn−1, gyn),
p(gxn, gxn+1), p(gyn, gyn+1)

}
. (2)

So,

p(gxn, gxn+1) ≤ L(M(xn−1, yn−1, xn, yn))max

{
p(gxn−1, gxn), p(gyn−1, gyn),
p(gxn, gxn+1), p(gyn, gyn+1)

}
.

Similarly by using M(yn−1, xn−1, yn, xn) = M(xn−1, yn−1, xn, yn), we can show
that

p(gyn, gyn+1) ≤ L(M(xn−1, yn−1, xn, yn))max

{
p(gxn−1, gxn), p(gyn−1, gyn),
p(gxn, gxn+1), p(gyn, gyn+1)

}
.

Thus

max

{
p(gxn, gxn+1),
p(gyn, gyn+1)

}
≤ L(M(xn−1, yn−1, xn, yn))max

{
p(gxn−1, gxn), p(gyn−1, gyn),
p(gxn, gxn+1), p(gyn, gyn+1)

}
.

(3)

If max

{
p(gxn−1, gxn), p(gyn−1, gyn),
p(gxn, gxn+1), p(gyn, gyn+1)

}
= max

{
p(gxn, gxn+1), p(gyn, gyn+1)

}
then using L(M(xn−1, yn−1, xn, yn)) <

1
k2 , we get a contradiction from (3).

Hence

max

{
p(gxn, gxn+1),
p(gyn, gyn+1)

}
≤ L(M(xn−1, yn−1, xn, yn))max

{
p(gxn−1, gxn),
p(gyn−1, gyn),

}
.

Put pn = max
{

p(gxn, gxn+1), p(gyn, gyn+1)
}
. Then

pn ≤ L(M(xn−1, yn−1, xn, yn))pn−1 < pn−1 (4)

Thus {pn} is a non-increasing sequence of non-negative real numbers and hence
also converges to some real number s ≥ 0. Suppose s > 0.
From (4), we have s ≤ lim

n→∞
L(M(xn−1, yn−1, xn, yn))s so that



EJMAA-2015/3(1) A COUPLED COINCIDENCE POINT THEOREM 145

1 ≤ lim
n→∞

L(M(xn−1, yn−1, xn, yn)).

Now we have
1
k2 ≤ lim

n→∞
L(M(xn−1, yn−1, xn, yn)) ≤ 1

k2 which in turn yields that

lim
n→∞

L(M(xn−1, yn−1, xn, yn)) =
1
k2 . Hence lim

n→∞
M(xn−1, yn−1, xn, yn) = 0.

Thus from(2), we have

lim
n→∞

max {p(gxn, gxn+1), p(gyn, gyn+1)} = 0. (5)

Also, from (p2) we have

lim
n→∞

max {p(gxn, gxn), p(gyn, gyn)} = 0. (6)

Now, we prove that

lim
n,m→∞

max {p(gxn, gxm), p(gyn, gym)} = 0. (7)

Suppose (7) is not true. Then

lim
n,m→∞

max {p(gxn, gxm), p(gyn, gym)} > 0. (8)

Let m > n. Then from (1), we have gxn ≼ gxm and gyn ≽ gym.
From (2.5.3), we have

p(gxn+1, gxm+1) = p(F (xn, yn, F (xm, ym))
≤ L(M(xn, yn, xm, ym))M(xn, yn, xm, ym)

(9)

where

lim
n,m→∞

M(xn, yn, xm, ym) = lim
n,m→∞

max


p(gxn, gxm), p(gyn, gym), p(gxn, gxn+1),

p(gyn, gyn+1), p(gxm, gxm+1), p(gym, gym+1),
1
2k [p(gxn, gxm+1) + p(gxm, gxn+1)],
1
2k [p(gyn, gym+1) + p(gym, gyn+1)]

 .

But
1
2k [p(gxn, gxm+1) + p(gxm, gxn+1)]

≤ 1
2kk

[
p(gxn, gxm) + p(gxm, gxm+1)− p(gxm, gxm)+
p(gxm, gxn) + p(gxn, gxn+1)− p(gxn, gxn)

]
.

Hence

lim
n,m→∞

M(xn, yn, xm, ym) ≤ lim
n,m→∞

max {p(gxn, gxm), p(gyn, gym)} from (5), (6)

≤ lim
n,m→∞

M(xn, yn, xm, ym).

Hence

lim
n,m→∞

M(xn, yn, xm, ym) = lim
n,m→∞

max {p(gxn, gxm), p(gyn, gym)} (10)

From (9), we have

lim
n,m→∞

p(gxn+1, gxm+1) ≤ lim
n,m→∞

L(M(xn, yn, xm, ym)) lim
n,m→∞

max

{
p(gxn, gxm),
p(gyn, gym)

}
.

Similarly, we can show that

lim
n,m→∞

p(gyn+1, gym+1) ≤ lim
n,m→∞

L(M(xn, yn, xm, ym)) lim
n,m→∞

max

{
p(gxn, gxm),
p(gyn, gym)

}
.
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Thus

lim
n,m→∞

max

{
p(gxn+1, gxm+1),
p(gyn+1, gym+1)

}
≤ lim

n,m→∞
L(M(xn, yn, xm, ym)) lim

n,m→∞
max

{
p(gxn, gxm),
p(gyn, gym)

}
(11)

We have
p(gxn, gxm) ≤ kp(gxn, gxn+1) + k2p(gxn+1, gxm+1) + k2p(gxm+1, gxm)
which implies that 1

k2 lim
n,m→∞

p(gxn, gxm) ≤ lim
n,m→∞

p(gxn+1, gxm+1) from(5).

Similarly, 1
k2 lim

n,m→∞
p(gyn, gym) ≤ lim

n,m→∞
p(gyn+1, gym+1).

Thus by using (11), we have

1
k2 lim

n,m→∞
max

{
p(gxn, gxm),
p(gyn, gym)

}
≤ lim

n,m→∞
max

{
p(gxn+1, gxm+1),
p(gyn+1, gym+1)

}
≤ lim

n,m→∞
L(M(xn, yn, xm, ym)) lim

n,m→∞
max

{
p(gxn, gxm),
p(gyn, gym)

}
,

which in turn implies from (8) that
1
k2 ≤ lim

n,m→∞
L(M(xn, yn, xm, ym)) ≤ 1

k2 so that lim
n→∞

M(xn, yn, xm, ym) = 0.

It is a contradiction to (8) in view of (10).
Hence (7) holds. Thus {gxn} and {gyn} are Cauchy sequences in g(X). Since
g(X) is complete, there exist r1, r2, z1, z2 ∈ X such that gxn → r1 = gz1 and
gyn → r2 = gz2.
Suppose (2.5.5)(a) holds.
From Lemma 1.8, there exists a subset E ⊆ X such that g(E) = g(X) and the
mapping g : E → X is one-one. Without loss of generality, we are able to choose
E ⊆ X such that z1, z2 ∈ E. Now define G : g(E)× g(E) → X by

G(ga, gb) = F (a, b) for all ga, gb ∈ g(E) where a, b ∈ E.

Since F and g are continuous, it follows that G is continuous. As g : E → X is one-
one and F (X ×X) ⊆ g(X), G is well defined. Again since F and g are continuous,
it follows that G is continuous. Since {xn}, {yn} ⊂ X and g(E) = g(X), there
exists {an}, {bn} ⊂ E such that g(xn) = g(an) and g(yn) = g(bn) for all n. So we
have

F (z1, z2) = G(gz1, gz2) = lim
n→∞

G(gan, gbn) = lim
n→∞

F (an, bn) = lim
n→∞

gan+1 = gz1,

F (z2, z1) = G(gz2, gz1) = lim
n→∞

G(gbn, gan) = lim
n→∞

F (bn, an) = lim
n→∞

gbn+1 = gz2.

Thus (z1, z2) is a coupled coincidence point of F and g.
Suppose (2.5.5) (b) holds.
From (1)and (i) and (ii) of (2.5.5)(b), we have gxn ≼ gz1 and gyn ≽ gz2 for all n.
From definition of completeness of g(X) and from (7), we have

lim
n→∞

p(gxn, gz1) = p(gz1, gz1) = lim
n,m→∞

p(gxn, gxm) = 0 (12)

lim
n→∞

p(gyn, gz2) = p(gz2, gz2) = lim
n,m→∞

p(gyn, gym) = 0 (13)

Now
p(gxn+1, F (z1, z2)) = p(F (xn, yn), F (z1, z2))

≤ L(M(xn, yn, z1, z2))M(xn, yn, z1, z2)
(14)
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lim
n→∞

M(xn, yn, z1, z2)

= lim
n→∞

max


p(gxn, gz1), p(gyn, gz2), p(gxn, gxn+1),

p(gyn, gyn+1), p(gz1, F (z1, z2)), p(gz2, F (z2, z1)),
1
2k [p(gxn, F (z1, z2)) + p(gz1, gxn+1)],
1
2k [p(gyn, F (z2, z1)) + p(gz2, gyn+1)]

 .

≤ max

 0, 0, 0, 0, p(gz1, F (z1, z2)), p(gz2, F (z2, z1)),
1
2k [kp(gz1, F (z1, z2)) + 0],
1
2k [kp(gz2, F (z2, z1)) + 0]


from (12), (13), (5) and Remark 2.4

= max {p(gz1, F (z1, z2)), p(gz2, F (z2, z1))}
≤ lim

n→∞
M(xn, yn, z1, z2).

Hence

lim
n→∞

M(xn, yn, z1, z2) = max {p(gz1, F (z1, z2)), p(gz2, F (z2, z1))} (15)

Now
1
k2 p(gz1, F (z1, z2)) ≤ 1

kp(gz1, F (z1, z2))
≤ lim

n→∞
p(gxn+1, F (z1, z2)) from Remark 2.4

≤ lim
n→∞

L(M(xn, yn, z1, z2))max

{
p(gz1, F (z1, z2)),
p(gz2, F (z2, z1))

}
from (14), (15)

Similarly we can show that

1

k2
p(gz2, F (z2, z1)) ≤ lim

n→∞
L(M(xn, yn, z1, z2))max

{
p(gz1, F (z1, z2)),
p(gz2, F (z2, z1))

}
.

Thus

1

k2
max

{
p(gz1, F (z1, z2)),
p(gz2, F (z2, z1))

}
≤ lim

n→∞
L(M(xn, yn, z1, z2))max

{
p(gz1, F (z1, z2)),
p(gz2, F (z2, z1))

}
.

If max

{
p(gz1, F (z1, z2)),
p(gz2, F (z2, z1))

}
> 0 , then from property of L, we have

lim
n→∞

M(xn, yn, z1, z2) = 0 which is a contradiction in view of (15).

Hence gz1 = F (z1, z2) and gz2 = F (z2, z1).
Thus (z1, z2) is a coupled coincidence point of F and g. This completes the proof.
Now, we furnish an example to illustrate Theorem 2.5.
Example 2.6: Let X = [0, 1] and p(x, y) = max{x2, y2}. Then p is a partial b-
metric-like with k = 2. Define x ≼ y as x ≤ y. Consider the functions F : X×X →
X and g : X → X which are defined as gx = x and

F (x, y) =

{
x

2
√

1+y2
, if x ≤ y

0 , if x > y

Let L : (0,∞) → (0, 1
4 ) be defined by L(t) = 1

4(1+t) .

Let gx ≼ gu and gy ≽ gv.That is let x ≤ u and y ≥ v.
Case(i): Assume x ≤ y and u ≤ v.
Then p(x, u) = max{x2, u2} = u2 ≤ M(x, y, u, v).
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p(F (x, y), F (u, v)) = max
{

x2

4(1+y2) ,
u2

4(1+v2)

}
= u2

4(1+v2) ≤
u2

4(1+u2) ≤
M(x,y,u,v)

4(1+M(x,y,u,v)) = L(M(x, y, u, v))M(x, y, u, v)

Case(ii): Assume x ≤ y and u > v .

Then p(gx, F (x, y)) = max{x2, x2

4(1+y2)} = x2 ≤ M(x, y, u, v).

p(F (x, y), F (u, v)) = x2

4(1+y2)

≤ x2

4(1+x2) ≤
M(x,y,u,v)

4(1+M(x,y,u,v)) = L(M(x, y, u, v))M(x, y, u, v)

Case(iii): Assume x > y and u > v.
Then p(F (x, y), F (u, v)) = 0 ≤ L(M(x, y, u, v))M(x, y, u, v) .
The case x > y and u ≤ v does n’t arise as x ≤ u and y ≥ v. Thus the condition
(2.5.3) is satisfied.One can easily verify the remaining conditions.Clearly (0, 0) is a
coupled coincidence point of F and g.
Corollary 2.7: Let (X, p, k,≼) be an ordered complete partial b-metric-like space
and F : X ×X → X be a mapping satisfying

(2.7.1) F has the mixed monotone property,
(2.7.2) p(F (x, y), F (u, v)) ≤ L(M(x, y, u, v))M(x, y, u, v)

for all x, y, u, v ∈ X with x ≼ u, y ≽ v, where L ∈ Ψk
L and

M(x, y, u, v) = max


p(x, u), p(y, v), p(x, F (x, y)), p(y, F (y, x)),

p(u, F (u, v)), p(v, F (v, u)),
1
2k [p(x, F (u, v)) + p(u, F (x, y))],
1
2k [p(y, F (v, u)) + p(v, F (y, x))]


(2.7.3) there exist two elements x0, y0 ∈ X such that x0 ≼ F (x0, y0) and

y0 ≽ F (y0, x0),
(2.7.4) (a) Suppose F is continuous

or
(b) X has the following properties:
(i) If a non-decreasing sequence {xn} → x, then xn ≼ x, ∀ n,
(ii) If a non-increasing sequence {yn} → y, then y ≼ yn, ∀ n.

Then F has a coupled fixed point in X ×X.
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