CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS DEFINED BY SĂLĂGEAN OPERATOR

J. JOTHIBASU

Abstract

Making use of Sălăgean differential operator, in this paper, we introduce two new subclasses of the function class Σ of bi-univalent functions defined in the open unit disc. Furthermore, we find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses. Also consequences of the results are pointed out.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathbb{U}.

Some of the important and well-investigated subclasses of the univalent function class \mathcal{S} include (for example) the class $\mathcal{S}^{*}(\beta)$ of starlike functions of order β in \mathbb{U} and the class $\mathcal{K}(\beta)$ of convex functions of order β in \mathbb{U}. By definition, we have

$$
\begin{equation*}
\mathcal{S}^{*}(\beta):=\left\{f: f \in \mathcal{S} \text { and } \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta ; z \in \mathbb{U} ; 0 \leq \beta<1\right\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{K}(\beta):=\left\{f: f \in \mathcal{S} \text { and } \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\beta ; z \in \mathbb{U} ; \quad 0 \leq \beta<1\right\} \tag{3}
\end{equation*}
$$

It readily follows from the definitions (2) and (3) that

$$
f \in \mathcal{K}(\beta) \Longleftrightarrow z f^{\prime} \in \mathcal{S}^{*}(\beta)
$$

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z, z \in \mathbb{U}
$$

[^0]and
$$
f\left(f^{-1}(w)\right)=w,|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}
$$
where
\[

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{4}
\end{equation*}
$$

\]

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). Examples of functions in the class Σ are

$$
\frac{z}{1-z}, \quad-\log (1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)
$$

and so on. However, the familiar Koebe function is not a member of Σ. Other common examples of functions in \mathcal{S} such as

$$
z-\frac{z^{2}}{2} \text { and } \frac{z}{1-z^{2}}
$$

are also not members of Σ (see $[7,21])$.
In 1967, Lewin [8] investigated the bi-univalent function class Σ and showed that $\left|a_{2}\right|<1.51$. Subsequently, Brannan and Clunie [2] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Netanyahu [12], on the other hand, showed that $\max _{f \in \Sigma}\left|a_{2}\right|=\frac{4}{3}$. Brannan and Taha [4] (see also [23]) introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ of starlike and convex functions of order $\alpha(0 \leq \alpha<1)$, respectively (see [3]). Thus, following Brannan and Taha [4] (see also [23]), a function $f \in \mathcal{A}$ is in the class $\mathcal{S}_{\Sigma}^{*}(\alpha)$ of strongly bi-starlike of order $\alpha(0<\alpha \leq 1)$, if

$$
f \in \Sigma,\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2}, \quad z \in \mathbb{U} ; 0<\alpha \leq 1
$$

and

$$
\left|\arg \left(\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2}, \quad w \in \mathbb{U} ; 0<\alpha \leq 1
$$

where the function g is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{5}
\end{equation*}
$$

the extension of f^{-1} to \mathbb{U}.
Similarly, a function $f \in \mathcal{A}$ is in the class $\mathcal{K}_{\Sigma}(\alpha)$ of strongly bi-convex functions of order $\alpha(0<\alpha \leq 1)$ if

$$
f \in \Sigma,\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right|<\frac{\alpha \pi}{2}, \quad z \in \mathbb{U} ; 0<\alpha \leq 1
$$

and

$$
\left|\arg \left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right|<\frac{\alpha \pi}{2}, w \in \mathbb{U} ; \quad 0<\alpha \leq 1
$$

where the function g is extension of f^{-1} to \mathbb{U}.
The classes $\mathcal{S}_{\Sigma}^{*}(\beta)$ and $\mathcal{K}_{\Sigma}(\beta)$ of bi-starlike functions of order β and bi-convex functions of order β, corresponding (respectively) to the function classes $\mathcal{S}^{*}(\beta)$ and $\mathcal{K}(\beta)$ defined by (2) and (3), were also introduced analogously. For each of the function classes $\mathcal{S}_{\Sigma}^{*}(\alpha)$ and $\mathcal{K}_{\Sigma}(\alpha)$, Brannan and Taha [4] found non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ (for details see [4, 23]).

Recently, many authors investigated bounds for various subclasses of biunivalent functions ([1], [5] - [7], [9] - [11], [13], [14], [16] and [18]- [22]). But The coefficient estimate problem for each of the following Taylor-Maclaurin coefficients $\left|a_{n}\right|$ for $n \in \mathbb{N} \backslash\{1,2\} ; \mathbb{N}:=\{1,2,3, \ldots\}$ is presumably still an open problem.

In 1983, Sălăgean [17] introduced differential operator $\mathcal{D}^{k}: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\begin{aligned}
\mathcal{D}^{0} f(z) & =f(z) \\
\mathcal{D}^{1} f(z) & =\mathcal{D} f(z)=z f^{\prime}(z), \\
\mathcal{D}^{k} f(z) & =\mathcal{D}\left(\mathcal{D}^{k-1} f(z)\right) \\
& =z\left(\mathcal{D}^{k-1} f(z)\right)^{\prime}, k \in \mathbb{N}=\{1,2,3, \ldots\}
\end{aligned}
$$

We note that

$$
\begin{equation*}
\mathcal{D}^{k} f(z)=z+\sum_{n=2}^{\infty} n^{k} a_{n} z^{n}, k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} \tag{6}
\end{equation*}
$$

The object of the present paper is to introduce two new subclasses of the function class Σ associated with Sălăgean differential operator and find estimate on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses of the function class Σ. In order to derive our main results, we have to recall here the following lemma:
Lemma 1[15] If $h \in \wp$ then

$$
\left|c_{k}\right| \leq 2 \quad \text { for each } k
$$

where \wp is the family of all functions h analytic in \mathbb{U} for which

$$
\Re\{h(z)\}>0,
$$

where $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ for $z \in \mathbb{U}$.

2. Coefficient bounds for the function class $\mathcal{S}_{\Sigma}^{k, \lambda}(\alpha)$

Definition 1 A function $f(z)$ given by (1) is said to be in the class $\mathcal{S}_{\Sigma}^{k, \lambda}(\alpha)$ if the following conditions are satisfied:
$f \in \Sigma,\left|\arg \left(\frac{\mathcal{D}^{k+1} f(z)}{(1-\lambda) \mathcal{D}^{k} f(z)+\lambda \mathcal{D}^{k+1} f(z)}\right)\right|<\frac{\alpha \pi}{2}, 0<\alpha \leq 1 ; \quad 0 \leq \lambda<1, z \in \mathbb{U}$
and

$$
\begin{equation*}
\left|\arg \left(\frac{\mathcal{D}^{k+1} g(w)}{(1-\lambda) \mathcal{D}^{k} g(w)+\lambda \mathcal{D}^{k+1} g(w)}\right)\right|<\frac{\alpha \pi}{2}, \quad 0<\alpha \leq 1 ; \quad 0 \leq \lambda<1, w \in \mathbb{U} \tag{7}
\end{equation*}
$$

where the function g is given by (5).
Remark 1 Taking $\lambda=0$ in the class $\mathcal{S}_{\Sigma}^{k, \lambda}(\alpha)$, we have $\mathcal{S}_{\Sigma}^{k, 0}(\alpha)=\mathcal{S}_{\Sigma}^{k}(\alpha)$ and $f \in \mathcal{S}_{\Sigma}^{k}(\alpha)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma,\left|\arg \left(\frac{\mathcal{D}^{k+1} f(z)}{\mathcal{D}^{k} f(z)}\right)\right|<\frac{\alpha \pi}{2}, 0<\alpha \leq 1 ; z \in \mathbb{U} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{\mathcal{D}^{k+1} g(w)}{\mathcal{D}^{k} g(w)}\right)\right|<\frac{\alpha \pi}{2}, 0<\alpha \leq 1 ; w \in \mathbb{U} \tag{10}
\end{equation*}
$$

where the function g is given by (5).

We note that for $k=0$ and $\lambda=0$ the class $\mathcal{S}_{\Sigma}^{0,0}(\alpha)=\mathcal{S}_{\Sigma}^{*}(\alpha)$ is class of strongly bi-starlike functions of order $\alpha(0<\alpha \leq 1)$. When $k=1$ and $\lambda=0$ the class $\mathcal{S}_{\Sigma}^{1,0}(\alpha)=\mathcal{K}_{\Sigma}(\alpha)$ is class of strongly bi-convex functions of order $\alpha(0<\alpha \leq 1)$. For $k=0$ the class was introduced and studied in [11].

We begin by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $\mathcal{S}_{\Sigma}^{k, \lambda}(\alpha)$.
Theorem 1 Let $f(z)$ given by (1) be in the class $\mathcal{S}_{\Sigma}^{k, \lambda}(\alpha), 0<\alpha \leq 1$ and $0 \leq \lambda<1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{4 \alpha(1-\lambda) 3^{k}+\left[2 \alpha\left(\lambda^{2}-1\right)-(\alpha-1)(1-\lambda)^{2}\right] 2^{2 k}}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\alpha}{3^{k}(1-\lambda)}+\frac{4 \alpha^{2}}{2^{2 k}(1-\lambda)^{2}} \tag{12}
\end{equation*}
$$

Proof. It follows from (7) and (8) that

$$
\begin{equation*}
\frac{\mathcal{D}^{k+1} f(z)}{(1-\lambda) \mathcal{D}^{k} f(z)+\lambda \mathcal{D}^{k+1} f(z)}=[p(z)]^{\alpha} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathcal{D}^{k+1} g(w)}{(1-\lambda) \mathcal{D}^{k} g(w)+\lambda \mathcal{D}^{k+1} g(w)}=[q(w)]^{\alpha} \tag{14}
\end{equation*}
$$

where $p(z)$ and $q(w)$ in \wp and have the forms

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+\ldots \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
q(z)=1+q_{1} w+q_{2} w^{2}+\ldots . \tag{16}
\end{equation*}
$$

Now, equating the coefficients in (13) and (14), we get

$$
\begin{align*}
2^{k}(1-\lambda) a_{2} & =\alpha p_{1} \tag{17}\\
2^{2 k}\left(\lambda^{2}-1\right) a_{2}^{2}+3^{k}(2-2 \lambda) a_{3} & =\frac{1}{2}\left[\alpha(\alpha-1) p_{1}^{2}+2 \alpha p_{2}\right] \tag{18}\\
-2^{k}(1-\lambda) a_{2} & =\alpha q_{1} \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
2(1-\lambda)\left(2 a_{2}^{2}-a_{3}\right) 3^{k}+\left(\lambda^{2}-1\right) 2^{2 k} a_{2}^{2}=\frac{1}{2}\left[\alpha(\alpha-1) q_{1}^{2}+2 \alpha q_{2}\right] \tag{20}
\end{equation*}
$$

From (17) and (19), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
2^{2 k+1}(1-\lambda)^{2} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{22}
\end{equation*}
$$

From (18), (20) and (22), we obtain

$$
a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{4 \alpha(1-\lambda) 3^{k}+\left[2 \alpha\left(\lambda^{2}-1\right)-(\alpha-1)(1-\lambda)^{2}\right] 2^{2 k}} .
$$

Applying Lemma 1 for the coefficients p_{2} and q_{2}, we immediately have

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{4 \alpha(1-\lambda) 3^{k}+\left[2 \alpha\left(\lambda^{2}-1\right)-(\alpha-1)(1-\lambda)^{2}\right] 2^{2 k}}}
$$

This gives the bound on $\left|a_{2}\right|$ as asserted in (11).

Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (20) from (18), we get

$$
\begin{equation*}
3^{k}(4-4 \lambda) a_{3}-3^{k}(4-4 \lambda) a_{2}^{2}=\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right) \tag{23}
\end{equation*}
$$

It follows from (21), (22) and (23) that

$$
\begin{equation*}
a_{3}=\frac{\alpha\left(p_{2}-q_{2}\right)}{3^{k}(4-4 \lambda)}+\frac{\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2^{2 k+1}(1-\lambda)^{2}} \tag{24}
\end{equation*}
$$

Applying Lemma 1 once again for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, we readily get

$$
\left|a_{3}\right| \leq \frac{\alpha}{3^{k}(1-\lambda)}+\frac{4 \alpha^{2}}{2^{2 k}(1-\lambda)^{2}}
$$

This completes the proof of Theorem 1.
Taking $\lambda=0$ in Theorem 1, we obtain the following corollary.
Corollary 1 Let $f(z)$ given by (1) be in the class $\mathcal{S}_{\Sigma}^{k}(\alpha)$ and $0<\alpha \leq 1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{4 \alpha 3^{k}+(1-3 \alpha) 2^{2 k}}} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{2^{2 k}}+\frac{\alpha}{3^{k}} \tag{26}
\end{equation*}
$$

Putting $k=0$ in Corollary 1, we obtain the coefficient estimates for well-known class $\mathcal{S}_{\Sigma}^{0,0}(\alpha)=\mathcal{S}_{\Sigma}^{*}(\alpha)$ of strongly bi-starlike functions of order α as in [4]. Considering $k=1$ in Corollary 1, we obtain well-known class $\mathcal{S}_{\Sigma}^{1,0}(\alpha)=\mathcal{K}_{\Sigma}(\alpha)$ of strongly bi-convex functions of order α and coincide with results in [4].

3. Coefficient bounds for the function class $\mathcal{M}_{\Sigma}^{k, \lambda}(\beta)$

Definition 2 A function $f(z)$ given by (1) is said to be in the class $\mathcal{M}_{\Sigma}^{k, \lambda}(\beta)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma, \Re\left(\frac{\mathcal{D}^{k+1} f(z)}{(1-\lambda) \mathcal{D}^{k} f(z)+\lambda \mathcal{D}^{k+1} f(z)}\right)>\beta, 0 \leq \beta<1 ; 0 \leq \lambda<1, z \in \mathbb{U} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{\mathcal{D}^{k+1} g(w)}{(1-\lambda) \mathcal{D}^{k} g(w)+\lambda \mathcal{D}^{k+1} g(w)}\right)>\beta, 0 \leq \beta<1 ; 0 \leq \lambda<1, w \in \mathbb{U} \tag{28}
\end{equation*}
$$

where the function g is given by (5).
Remark 2 Taking $\lambda=0$ in the class $\mathcal{M}_{\Sigma}^{k, \lambda}(\beta)$, we have $\mathcal{M}_{\Sigma}^{k, 0}(\beta)=\mathcal{M}_{\Sigma}^{k}(\beta)$ and $f \in \mathcal{M}_{\Sigma}^{k}(\beta)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma, \Re\left(\frac{\mathcal{D}^{k+1} f(z)}{\mathcal{D}^{k} f(z)}\right)>\beta, 0 \leq \beta<1 ; z \in \mathbb{U} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{\mathcal{D}^{k+1} g(w)}{\mathcal{D}^{k} g(w)}\right)>\beta, 0 \leq \beta<1 ; w \in \mathbb{U} \tag{30}
\end{equation*}
$$

where the function g is given by (5).
We note that for $k=0, \lambda=0$ the class $\mathcal{M}_{\Sigma}^{0,0}(\beta)=\mathcal{S}_{\Sigma}^{*}(\beta)$ is class of bi-starlike functions of order $\beta(0 \leq \beta<1)$. When $k-1=\lambda=0$ the class $\mathcal{M}_{\Sigma}^{1,0}(\beta)=\mathcal{K}_{\Sigma}(\beta)$
is class of bi-convex functions of order $\beta(0 \leq \beta<1)$. For $k=0$ the class was introduced in [11].

Next, we find the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $\mathcal{M}_{\Sigma}^{k, \lambda}(\beta)$.
Theorem 2 Let $f(z)$ given by (1) be in the $\operatorname{class} \mathcal{M}_{\Sigma}^{k, \lambda}(\beta), 0 \leq \beta<1$ and $0 \leq \lambda<1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{2^{2 k}\left(\lambda^{2}-1\right)+2(1-\lambda) 3^{k}}} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{2^{2 k}(1-\lambda)^{2}}+\frac{(1-\beta)}{3^{k}(1-\lambda)} \tag{32}
\end{equation*}
$$

Proof. It follows from (27) and (28) that there exists $p, q \in \wp$ such that

$$
\begin{equation*}
\frac{\mathcal{D}^{k+1} f(z)}{(1-\lambda) \mathcal{D}^{k} f(z)+\lambda \mathcal{D}^{k+1} f(z)}=\beta+(1-\beta) p(z) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathcal{D}^{k+1} g(w)}{(1-\lambda) \mathcal{D}^{k} g(w)+\lambda \mathcal{D}^{k+1} g(w)}=\beta+(1-\beta) q(w) \tag{34}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms (15) and (16), respectively. Equating coefficients in (33) and (34), we get

$$
\begin{gather*}
2^{k}(1-\lambda) a_{2}=(1-\beta) p_{1} \tag{35}\\
2^{2 k}\left(\lambda^{2}-1\right) a_{2}^{2}+3^{k}(2-2 \lambda) a_{3}=(1-\beta) p_{2} \tag{36}\\
-2^{k}(1-\lambda) a_{2}=(1-\beta) q_{1} \tag{37}
\end{gather*}
$$

and

$$
\begin{equation*}
2(1-\lambda)\left(2 a_{2}^{2}-a_{3}\right) 3^{k}+\left(\lambda^{2}-1\right) 2^{2 k} a_{2}^{2}=(1-\beta) q_{2} \tag{38}
\end{equation*}
$$

From (35) and (37), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
2^{2 k+1}(1-\lambda)^{2} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{40}
\end{equation*}
$$

Also, from (36), (38) and (40), we obtain

$$
a_{2}^{2}=\frac{(1-\beta)\left(p_{2}+q_{2}\right)}{2^{2 k+1}\left(\lambda^{2}-1\right)+4(1-\lambda) 3^{k}} .
$$

Applying Lemma 1 for the coefficients p_{2} and q_{2}, we immediately have

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{2^{2 k}\left(\lambda^{2}-1\right)+2(1-\lambda) 3^{k}}}
$$

This gives the bound on $\left|a_{2}\right|$ as asserted in (31).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (38) from (36), we get

$$
\begin{equation*}
3^{k}(4-4 \lambda) a_{3}-3^{k}(4-4 \lambda) a_{2}^{2}=(1-\beta)\left(p_{2}-q_{2}\right) \tag{41}
\end{equation*}
$$

It follows from (39), (40) and (41) that

$$
\begin{equation*}
a_{3}=\frac{(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2^{2 k+1}(1-\lambda)^{2}}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{3^{k}(4-4 \lambda)} \tag{42}
\end{equation*}
$$

Applying Lemma 1 once again for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, we readily get

$$
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{2^{2 k}(1-\lambda)^{2}}+\frac{(1-\beta)}{3^{k}(1-\lambda)}
$$

This completes the proof of Theorem 2.
When $\lambda=0$ in the Theorem 2, we get the following corollary.
Corollary 2 Let $f(z)$ given by (1) be in the class $\mathcal{M}_{\Sigma}^{k}(\beta)$ and $0 \leq \beta<1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{1-\beta}{3^{k}-2^{2 k-1}}} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{2^{2 k}}+\frac{1-\beta}{3^{k}} \tag{44}
\end{equation*}
$$

Putting $k=0$ in Corollary 2, we have the coefficients estimates for the well-known class $\mathcal{M}_{\Sigma}^{0,0}(\beta)=\mathcal{S}_{\Sigma}^{*}(\beta)$ of bi-starlike functions of order β as in [4]. Further, taking $k=1$ in Corollary 2, we obtain the estimates for the well-known class $\mathcal{M}_{\Sigma}^{1,0}(\beta)=$ $\mathcal{K}_{\Sigma}(\beta)$ of bi-convex functions of order β and our results reduces to [4].

Remark 3 For $k=0$ the results obtained in this paper are coincide with the results discussed in [11]. Further, for the different choice of k the results discussed in this paper would lead to many known and new results.

Acknowledgement : The author would like thank the referee for his insightful suggestions and comments.

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25, no. 3, 344-351, 2012.
[2] D.A. Brannan, J.G. Clunie (Eds.), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, 1980.
[3] D.A. Brannan, J. Clunie, W.E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22, 476-485, 1970.
[4] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53-60; see also Studia Univ. Babe-Bolyai Math. 31, no. 2, 70-77, 1986.
[5] S. Bulut, Coefficient estimates for initial Taylor-Maclaurin coefficients for a subclass of analytic and bi-univalent functions defined by Al-Oboudi differential operator, The Sci. World J., Vol. 2013, Article ID 171039, 1-6.
[6] S. Bulut, Coefficient estimates for new subclasses of analytic and bi-univalent functions defined by Al-Oboudi differential operator, J. Fun. Spaces Appl., Vol. 2013, Article ID 181932, $1-7$.
[7] B.A.Frasin and M.K.Aouf, New subclasses of bi-univalent functions, Appl. Math. Lr., 24, 1569-1573, 2011.
[8] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, 63-68, 1967.
[9] N. Magesh, T. Rosy, and S. Varma, Coefficient estimate problem for a new subclass of biunivalent functions, J. Complex Anal., Volume 2013, Article ID 474231, 1-3.
[10] N. Magesh and J. Yamini, Coefficient bounds for certain subclasses of bi-univalent functions, Internat. Math. Forum 8, no. 27, 1337-1344, 2013.
[11] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abs. Appl. Anal., Volume 2013, Article ID 573017, 1-3.
[12] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32, 100-112, 1969.
[13] S. O. Olatunji and P. T. Ajai, On subclasses of bi-univalent functions of Bazilevic type involving linear and Sălăgean operator, Internat. J. Pure Appl. Math. 92 no.5, 645-656, 2014.
[14] H. Orhan, N. Magesh and V. K. Balaji, Initial coefficient bounds for certain classes of meromorphic bi-univalent functions, Asian European J. Math., 7(1), 1-9, 2014.
[15] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975.
[16] S. Porwal and M. Darus, On a new subclass of bi-univalent functions, J. Egyptian Math. Soc. 21, 190-193, 2013.
[17] G. Ş. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., Springer, Berlin, 1013, 362-372, 1983.
[18] H. M. Srivastava, Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions, in Nonlinear Analysis: Stability, Approximation, and Inequalities (Panos M. Pardalos, Pando G. Georgiev, and Hari M. Srivastava, Editors), Springer Series on Optimization and Its Applications, Vol. 68, Springer-Verlag, Berlin, Heidelberg and New York, 607-630, 2012.
[19] H. M. Srivastava, S. Bulut, M. Çağlar, N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27, no. 5, 831-842, 2013.
[20] H. M.Srivastava, N. Magesh and J. Yamini, Initial coefficient estimates for bi- $\lambda-$ convex and bi- μ - starlike functions connected with arithmetic and geometric means, Elect. J. Math. Anal. Appl. 2, no. 2, 152-162, 2014.
[21] H.M.Srivastava, A.K.Mishra and P.Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lr., 23, 1188-1192, 2010.
[22] H. M. Srivastava, G. Murugusundaramoorthy and N. Magesh, On certain subclasses of biunivalent functions associated with hohlov operator, Global J. Math. Anal. 1 no. 2, 67-73, 2013.
[23] T.S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
J. Jothibasu

Post-Graduate and Research Department of Mathematics,
Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India.
E-mail address: jbvnb22@gmail.com

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. Univalent, bi-univalent, starlike and convex functions, coefficient bounds, Sălăgean differential operator.

 Submitted August 20, 2015. Revised August 30, 2015.

