ON A MIXED MAX-TYPE RATIONAL SYSTEM OF DIFFERENCE EQUATIONS

NOURESSADAT TOUAFEK, NABILA HADDAD

Abstract

This note deals with the form and the periodicity of positive solutions of the mixed max-type rational system of difference equations $$
x_{n+1}=\frac{x_{n} y_{n}}{y_{n-1}}, \quad y_{n+1}=\max \left\{\frac{A_{n}}{x_{n}}, y_{n-1}\right\}, \quad n \in \mathbb{N}_{0}
$$ where $\mathbb{N}_{0}=\mathbb{N} \cup\{0\},\left(A_{n}\right)_{n \in \mathbb{N}_{0}}$ a positive two-periodic sequence, and initial values $x_{0}, y_{0}, y_{-1} \in(0,+\infty)$.

1. Introduction

Recently, there has been a great interest in solving and studding properties of rational difference equations (see, e.g., [1], [2], [3], [7], [9], [10], [11], [12], [16], [17]). Also numerous papers are devoted to the investigation of some max-type difference equations, see, for instance, [4], [5], [6], [8], [13], [14], [15] and references cited therein.

In this work, we study the behavior of positive solutions of the mixed max-type rational system of difference equations

$$
\begin{equation*}
x_{n+1}=\frac{x_{n} y_{n}}{y_{n-1}}, \quad y_{n+1}=\max \left\{\frac{A_{n}}{x_{n}}, y_{n-1}\right\}, \quad n \in \mathbb{N}_{0} \tag{1}
\end{equation*}
$$

where $\mathbb{N}_{0}=\mathbb{N} \cup\{0\},\left(A_{n}\right)_{n \in \mathbb{N}_{0}}$ a positive two-periodic sequence, and initial values $x_{0}, y_{0}, y_{-1} \in(0,+\infty)$.

Definition 1 A sequence $\left(x_{n}\right)_{n=-k}^{\infty}$ is said to be eventually periodic with period $p \in \mathbb{N}$ if there is an $n_{0} \geq-k$, such that $x_{n+p}=x_{n}$ for $n \geq n_{0}$. If $n_{0}=-k$, then we say that the sequence $\left(x_{n}\right)_{n=-k}^{\infty}$ is periodic with period p.

2. Closed Form and Periodicity of the Solutions

Now we give the solutions of system (1) in a closed form. For the sake of easier presentation, we formulate and prove our results depending of the relation between the quantities $\frac{A_{0}}{x_{0}}$ and y_{-1}.

2010 Mathematics Subject Classification. 39A10.
Key words and phrases. Closed form solutions, rational difference equations, max-type difference equations, periodicity.

Submitted August 26, 2014. Revised Sep. 25, 2014.

Theorem 1 Suppose that $\left(x_{n}\right)_{n=0}^{\infty},\left(y_{n}\right)_{n=-1}^{\infty}$ is a solution of system (1) such that $\frac{A_{0}}{x_{0}} \leq y_{-1}$. Then the following statements hold:
(1) If $\frac{A_{1} y_{-1}}{x_{0} y_{0}} \leq y_{0}$, then

$$
\begin{equation*}
x_{2 n}=x_{0}, x_{2 n+1}=\frac{x_{0} y_{0}}{y_{-1}}, y_{2 n}=y_{0}, y_{2 n+1}=y_{-1}, n \in \mathbb{N}_{0} \tag{2}
\end{equation*}
$$

(2) If $\frac{A_{1} y_{-1}}{x_{0} y_{0}} \geq y_{0}$, then
$x_{2 n}=x_{0}, x_{1}=\frac{x_{0} y_{0}}{y_{-1}}, x_{2 n+3}=\frac{A_{1}}{y_{0}}, y_{2 n+2}=\frac{A_{1} y_{-1}}{x_{0} y_{0}}, y_{2 n+1}=y_{-1}, n \in \mathbb{N}_{0}$.
Proof. From the condition $\frac{A_{0}}{x_{0}} \leq y_{-1}$, we have that

$$
\begin{align*}
x_{1} & =\frac{x_{0} y_{0}}{y_{-1}} \tag{4}\\
y_{1} & =\max \left\{\frac{A_{0}}{x_{0}}, y_{-1}\right\}=y_{-1} \tag{5}
\end{align*}
$$

From (4) and (5) we get

$$
\begin{equation*}
x_{2}=\frac{x_{1} y_{1}}{y_{0}}=\frac{\left(\frac{x_{0} y_{0}}{y_{-1}}\right) y_{-1}}{y_{0}}=x_{0} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{2}=\max \left\{\frac{A_{1}}{x_{1}}, y_{0}\right\}=\max \left\{\frac{A_{1} y_{-1}}{x_{0} y_{0}}, y_{0}\right\} \tag{7}
\end{equation*}
$$

(1) If $\frac{A_{1} y_{-1}}{x_{0} y_{0}} \leq y_{0}$, we have

$$
\begin{equation*}
y_{2}=y_{0} . \tag{8}
\end{equation*}
$$

From (5), (6) and (8) we obtain

$$
\begin{align*}
& x_{3}=\frac{x_{2} y_{2}}{y_{1}}=\frac{x_{0} y_{0}}{y_{-1}} \tag{9}\\
& y_{3}=\max \left\{\frac{A_{0}}{x_{2}}, y_{1}\right\}=\max \left\{\frac{A_{0}}{x_{0}}, y_{-1}\right\}=y_{-1} . \tag{10}
\end{align*}
$$

Now, from (8), (9) and (10) we get

$$
\begin{align*}
& x_{4}=\frac{x_{3} y_{3}}{y_{2}}=\frac{\left(\frac{x_{0} y_{0}}{y_{-1}}\right) y_{-1}}{y_{0}}=x_{0} \tag{11}\\
& y_{4}=\max \left\{\frac{A_{1}}{x_{3}}, y_{2}\right\}=\max \left\{\frac{A_{1} y_{-1}}{x_{0} y_{0}}, y_{0}\right\}=y_{0} \tag{12}
\end{align*}
$$

Also, from (10), (11) and (12) we have

$$
\begin{aligned}
& x_{5}=\frac{x_{4} y_{4}}{y_{3}}=\frac{x_{0} y_{0}}{y_{-1}} \\
& y_{5}=\max \left\{\frac{A_{0}}{x_{4}}, y_{3}\right\}=\max \left\{\frac{A_{0}}{x_{0}}, y_{-1}\right\}=y_{-1}
\end{aligned}
$$

By induction we get

$$
x_{2 n}=x_{0}, x_{2 n+1}=\frac{x_{0} y_{0}}{y_{-1}}, y_{2 n}=y_{0}, y_{2 n+1}=y_{-1}, n \in \mathbb{N}_{0}
$$

This completes the proof of formulas in (2).
(2) Now, we prove formulas in (3). Since $\frac{A_{1} y_{-1}}{x_{0} y_{0}} \geq y_{0}$, from (7), we get

$$
\begin{equation*}
y_{2}=\frac{A_{1} y_{-1}}{x_{0} y_{0}} \tag{13}
\end{equation*}
$$

From (5), (6) and (13) we have

$$
\begin{align*}
& x_{3}=\frac{x_{2} y_{2}}{y_{1}}=\frac{x_{0}\left(\frac{A_{1} y_{-1}}{x_{0} y_{0}}\right)}{y_{-1}}=\frac{A_{1}}{y_{0}} \tag{14}\\
& y_{3}=\max \left\{\frac{A_{0}}{x_{2}}, y_{1}\right\}=\max \left\{\frac{A_{0}}{x_{0}}, y_{-1}\right\}=y_{-1} . \tag{15}
\end{align*}
$$

Now, from (13), (14) and (15) we obtain

$$
\begin{align*}
& x_{4}=\frac{x_{3} y_{3}}{y_{2}}=\frac{\left(\frac{A_{1}}{y_{0}}\right) y_{-1}}{\frac{A_{1} y_{-1}}{x_{0} y_{0}}}=x_{0}, \tag{16}\\
& y_{4}=\max \left\{\frac{A_{1}}{x_{3}}, y_{2}\right\}=\max \left\{y_{0}, \frac{A_{1} y_{-1}}{x_{0} y_{0}}\right\}=\frac{A_{1} y_{-1}}{x_{0} y_{0}} . \tag{17}
\end{align*}
$$

Also from (15), (16) and (17)

$$
\begin{aligned}
& x_{5}=\frac{x_{4} y_{4}}{y_{3}}=\frac{x_{0}\left(\frac{A_{1} y_{-1}}{x_{0} y_{0}}\right)}{y_{-1}}=\frac{A_{1}}{y_{0}} \\
& y_{5}=\max \left\{\frac{A_{0}}{x_{4}}, y_{3}\right\}=\max \left\{\frac{A_{0}}{x_{0}}, y_{-1}\right\}=y_{-1}
\end{aligned}
$$

By induction we get formulas in (3), that is

$$
x_{2 n}=x_{0}, x_{1}=\frac{x_{0} y_{0}}{y_{-1}}, x_{2 n+3}=\frac{A_{1}}{y_{0}}, y_{2 n+2}=\frac{A_{1} y_{-1}}{x_{0} y_{0}}, y_{2 n+1}=y_{-1}, n \in \mathbb{N}_{0}
$$

The proof is complete.
Theorem 2 Suppose that $\left(x_{n}\right)_{n=0}^{\infty},\left(y_{n}\right)_{n=-1}^{\infty}$ is a solution of system (1) such that $\frac{A_{0}}{x_{0}} \geq y_{-1}$. Then the following statements hold:
(1) If $\frac{A_{1} y_{-1}}{x_{0} y_{0}} \leq y_{0}$, then

$$
\begin{equation*}
x_{2 n+2}=\frac{A_{0}}{y_{-1}}, x_{2 n+1}=\frac{x_{0} y_{0}}{y_{-1}}, y_{2 n}=y_{0}, y_{2 n+1}=\frac{A_{0}}{x_{0}}, n \in \mathbb{N}_{0} \tag{18}
\end{equation*}
$$

(2) If $\frac{A_{1} y_{-1}}{x_{0} y_{0}} \geq y_{0}$, then

$$
\begin{equation*}
x_{2 n+2}=\frac{A_{0}}{y_{-1}}, x_{1}=\frac{x_{0} y_{0}}{y_{-1}}, x_{2 n+3}=\frac{A_{1}}{y_{0}}, y_{2 n+2}=\frac{A_{1} y_{-1}}{x_{0} y_{0}}, y_{2 n+1}=\frac{A_{0}}{x_{0}}, n \in \mathbb{N}_{0} . \tag{19}
\end{equation*}
$$

Proof. From the condition $\frac{A_{0}}{x_{0}} \geq y_{-1}$, we have that

$$
\begin{align*}
x_{1} & =\frac{x_{0} y_{0}}{y_{-1}} \tag{20}\\
y_{1} & =\max \left\{\frac{A_{0}}{x_{0}}, y_{-1}\right\}=\frac{A_{0}}{x_{0}} . \tag{21}
\end{align*}
$$

From (20) and (21) we get

$$
\begin{equation*}
x_{2}=\frac{x_{1} y_{1}}{y_{0}}=\frac{\left(\frac{x_{0} y_{0}}{y_{-1}}\right) \frac{A_{0}}{x_{0}}}{y_{0}}=\frac{A_{0}}{y_{-1}} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{2}=\max \left\{\frac{A_{1}}{x_{1}}, y_{0}\right\}=\max \left\{\frac{A_{1} y_{-1}}{x_{0} y_{0}}, y_{0}\right\} \tag{23}
\end{equation*}
$$

(1) If $\frac{A_{1} y_{-1}}{x_{0} y_{0}} \leq y_{0}$, we get

$$
\begin{equation*}
y_{2}=y_{0} \tag{24}
\end{equation*}
$$

From (21), (22) and (24) we have

$$
\begin{align*}
& x_{3}=\frac{x_{2} y_{2}}{y_{1}}=\frac{\left(\frac{A_{0}}{y_{-1}}\right) y_{0}}{\frac{A_{0}}{x_{0}}}=\frac{x_{0} y_{0}}{y_{-1}} \tag{25}\\
& y_{3}=\max \left\{\frac{A_{0}}{x_{2}}, y_{1}\right\}=\max \left\{\frac{A_{0}}{\frac{A_{0}}{y_{-1}}}, \frac{A_{0}}{x_{0}}\right\}=\frac{A_{0}}{x_{0}} . \tag{26}
\end{align*}
$$

Now, from (24), (25) and (26) we obtain

$$
\begin{align*}
& x_{4}=\frac{x_{3} y_{3}}{y_{2}}=\frac{\left(\frac{x_{0} y_{0}}{y_{-1}}\right)\left(\frac{A_{0}}{x_{0}}\right)}{y_{0}}=\frac{A_{0}}{y_{-1}} \tag{27}\\
& y_{4}=\max \left\{\frac{A_{1}}{x_{3}}, y_{2}\right\}=\max \left\{\frac{A_{1} y_{-1}}{x_{0} y_{0}}, y_{0}\right\}=y_{0} \tag{28}
\end{align*}
$$

Also from (26), (27) and (28) we get

$$
\begin{aligned}
& x_{5}=\frac{x_{4} y_{4}}{y_{3}}=\frac{\left(\frac{A_{0}}{y_{-1}}\right) y_{0}}{\frac{A_{0}}{x_{0}}}=\frac{x_{0} y_{0}}{y_{-1}}, \\
& y_{5}=\max \left\{\frac{A_{0}}{x_{4}}, y_{3}\right\}=\max \left\{\frac{A_{0}}{\frac{A_{0}}{y_{-1}}}, \frac{A_{0}}{x_{0}}\right\}=\frac{A_{0}}{x_{0}} .
\end{aligned}
$$

By induction we have

$$
x_{2 n+2}=\frac{A_{0}}{y_{-1}}, x_{2 n+1}=\frac{x_{0} y_{0}}{y_{-1}}, y_{2 n}=y_{0}, y_{2 n+1}=\frac{A_{0}}{x_{0}}, n \in \mathbb{N}_{0}
$$

This completes the proof of formulas in (18).
(2) Now, we prove formulas in (19). Since $\frac{A_{1} y_{-1}}{x_{0} y_{0}} \geq y_{0}$, from (23) we have

$$
\begin{equation*}
y_{2}=\frac{A_{1} y_{-1}}{x_{0} y_{0}} \tag{29}
\end{equation*}
$$

From (21), (22) and (29) we get

$$
\begin{align*}
& x_{3}=\frac{x_{2} y_{2}}{y_{1}}=\frac{\left(\frac{A_{0}}{y_{-1}}\right)\left(\frac{A_{1} y_{-1}}{x_{0} y_{0}}\right)}{\frac{A_{0}}{x_{0}}}=\frac{A_{1}}{y_{0}} \tag{30}\\
& y_{3}=\max \left\{\frac{A_{0}}{x_{2}}, y_{1}\right\}=\max \left\{\frac{A_{0}}{\frac{A_{0}}{y_{-1}}}, \frac{A_{0}}{x_{0}}\right\}=\frac{A_{0}}{x_{0}} . \tag{31}
\end{align*}
$$

Now, from (29), (30) and (31) we obtain

$$
\begin{align*}
& x_{4}=\frac{x_{3} y_{3}}{y_{2}}=\frac{\left(\frac{A_{1}}{y_{0}}\right)\left(\frac{A_{0}}{x_{0}}\right)}{\frac{A_{1} y_{-1}}{x_{0} y_{0}}}=\frac{A_{0}}{y_{-1}} \tag{32}\\
& y_{4}=\max \left\{\frac{A_{1}}{x_{3}}, y_{2}\right\}=\max \left\{\frac{A_{1}}{\frac{A_{1}}{y_{0}}}, \frac{A_{1} y_{-1}}{x_{0} y_{0}}\right\}=\frac{A_{1} y_{-1}}{x_{0} y_{0}} \tag{33}
\end{align*}
$$

Also from (31), (32) and (33) we get

$$
\begin{aligned}
& x_{5}=\frac{x_{4} y_{4}}{y_{3}}=\frac{\left(\frac{A_{0}}{y_{-1}}\right)\left(\frac{A_{1} y_{-1}}{x_{0} y_{0}}\right)}{\frac{A_{0}}{x_{0}}}=\frac{A_{1}}{y_{0}} \\
& y_{5}=\max \left\{\frac{A_{0}}{x_{4}}, y_{3}\right\}=\max \left\{\frac{A_{0}}{\frac{A_{0}}{y_{-1}}}, \frac{A_{0}}{x_{0}}\right\}=\frac{A_{0}}{x_{0}} .
\end{aligned}
$$

By induction we get the formulas in (19), that is

$$
x_{2 n+2}=\frac{A_{0}}{y_{-1}}, x_{1}=\frac{x_{0} y_{0}}{y_{-1}}, x_{2 n+3}=\frac{A_{1}}{y_{0}}, y_{2 n+2}=\frac{A_{1} y_{-1}}{x_{0} y_{0}}, y_{2 n+1}=\frac{A_{0}}{x_{0}}, n \in \mathbb{N}_{0}
$$

The proof is complete.
Corollary 1 Let $\left(x_{n}\right)_{n \geq 0}$ and $\left(y_{n}\right)_{n \geq-1}$ be a solution of system (1). Then $\left(x_{n}\right)_{n \geq 0}$ and $\left(y_{n}\right)_{n \geq-1}$ are either periodic (or eventually periodic) of period two.

Proof. It follows from Theorem 1 and Theorem 2.

Acknowledgement

The authors would like to thank the referees for their helpful suggestions.

References

[1] C. Çinar, On the positive solutions of the difference equation $x_{n+1}=x_{n-1} /\left(1+x_{n} x_{n-1}\right)$, Appl. Math. Comput., 150, 21-24, 2004.
[2] Q. Din, On a system of rational difference equation, Demonstr. Math., 47, 324-335, 2014.
[3] E. M. Elsayed, On the solutions of higher order rational system of recursive sequences, Math. Balk., New Ser., 21, 287-296, 2008.
[4] E. M. Elsayed and B. D. Iričanin, On a max-type and a min-type difference equation, Appl. Math. Comput., 215, 608-614, 2009.
[5] E. M. Elsayed and S. Stević, On the max-type equation $x_{n+1}=\max \left\{A / x_{n}, x_{n-2}\right\}$, Nonlinear Anal. TMA., 71, 910-922, 2009.
[6] E. M. Elsayed, B. D. Iričanin and S. Stević, On the max-type equation $x_{n+1}=\max \left\{A_{n} / x_{n}\right.$, $\left.x_{n-1}\right\}$, Ars. Combin., 95, 187-192, 2010.
[7] T. F. Ibrahim and N. Touafek, On a third order rational difference equation with variable coefficients, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms, 20, 251-264, 2013.
[8] B. D. Iricǎnin and N. Touafek, On a second order max-type system of difference equations, Indian J. Math., 54, 119-142, 2012.
[9] A.S. Kurbanli, On the behavior of solutions of the system of rational difference equations: $x_{n+1}=\frac{x_{n-1}}{y_{n} x_{n-1}-1}, y_{n+1}=\frac{y_{n-1}}{x_{n} y_{n-1}-1}$, and $z_{n+1}=z_{n-1} /\left(y_{n} z_{n-1}-1\right)$, Discrete Dyn. Nat. Soc., Vol. 2011, Article ID 932362, 12 pages, 2011.
[10] A.S. Kurbanli, C. Çinar and I. Yalçinkaya, On the behavior of positive solutions of the system of rational difference equations $x_{n+1}=\frac{x_{n-1}}{y_{n} x_{n-1}+1}, y_{n+1}=\frac{y_{n-1}}{x_{n} y_{n-1}+1}$, Math. Comput. Modelling, 53, 1261-1267, 2011.
[11] N. Touafek and E. M. Elsayed, On the solutions of systems of rational difference equations, Math. Comput. Modelling, 55, 1987-1997, 2012.
[12] N. Touafek and E. M. Elsayed, On the periodicity of some systems of nonlinear difference equations, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sr., 55(103), 217-224, 2012.
[13] N. Touafek and Y. Halim, On max type difference equations: expressions of solutions, Int. J. Nonlinear Sci., 4, 396-402, 2011.
[14] I. Yalçinkaya, On the max-type equation $x_{n+1}=\max \left\{1 / x_{n}, A_{n} x_{n-1}\right\}$ with a period-two parameter, Discrete Dyn. Nat. Soc., Vol. 2012, Article ID 327437, 9 pages, 2012.
[15] I. Yalçinkaya, C. Çinar and A. Gelisken, On the recursive sequence $x_{n+1}=$ $\max \left\{x_{n}, A\right\} / x_{n}^{2} x_{n-1}$, Discrete Dyn. Nat. Soc., Vol. 2010, Article ID 583230, 13 pages, 2010.
[16] Y. Yazlik, On the solutions and behavior of rational difference equations, J. Comput. Anal. Appl., 17, 584-594, 2014.
[17] Q. Zhang, L. Yang and J. Liu, Dynamics of a system of rational third-order difference equation, Adv. Difference Equ., Vol. 2012, Article ID 136, 6 pages, 2012.
N. Touafek

LMAM Laboratory, Department of Mathematics, University of Jijel, Jijel, Algeria
E-mail address: touafek@univ-jijel.dz, ntouafek@gmail.com
N. HADDAD

LMAM Laboratory, University of Jijel, Jijel, Algeria
E-mail address: nabilahaddadt@yahoo.com

