Electronic Journal of Mathematical Analysis and Applications, Vol. 3(1) Jan. 2015, pp. 195-203. ISSN: 2090-729(online) http://fcag-egypt.com/Journals/EJMAA/

NATURAL METRICS AND BOUNDEDNESS OF SUPERPOSITION OPERATOR ACTING BETWEEN \mathcal{B}^*_{α} AND $F^*(n, q, s)$

 $F^*(p,q,s)$

A. EL-SAYED AHMED, A. KAMAL, T.I. YASSEN

ABSTRACT. In this paper, we study Lipschitz continuous and boundedness of the superposition operator S_{ϕ} acting between the hyperbolic \mathcal{B}^*_{α} and the hyperbolic $F^*(p,q,s)$ spaces. We characterize all entire functions that transform hyperbolic Bloch-type spaces into another by superposition operator. We prove that all superposition operators induced by such entire functions are bounded.

1. INTRODUCTION

Let X and Y be two metric spaces of analytic functions on the unit disk and ϕ denotes a complex-valued function in the plane \mathbb{C} such that $\phi \circ f \in Y$ whenever $f \in X$ we say that ϕ acts by superposition from X into Y. If X and Y contain the linear function, then ϕ must be entire function. We denote the unit disc of the complex plane by \mathbb{D} . The superposition operator S_{ϕ} on X is defined by

$$S_{\phi}(f) = (\phi \circ f), \quad f \in X$$

If $S_{\phi}f \in Y$ for $f \in X$, note that if X and Y are also linear spaces, the operator S_{ϕ} is linear if and only if ϕ is a linear function that fixes the origin. Let $H(\mathbb{D})$ denote the classes of functions holomorphic in the unit disc \mathbb{D} . A function $f \in H(\mathbb{D})$ belongs to α -Bloch space $\mathcal{B}^{\alpha}, 0 < \alpha < \infty$ if

$$\|f\|_{\mathcal{B}_{\alpha}} = \sup_{z \in \mathbb{D}} (1 - |z|)^{\alpha} |f'(z)| < \infty.$$

The little α -Bloch space $\mathcal{B}_{\alpha,0}$ consisting of all $f \in \mathcal{B}_{\alpha}$ such that

$$\lim_{|z| \to 1^{-}} (1 - |z|^2) |f'(z)| = 0.$$

If (X, d) is a metric space, we denote the open and closed balls with center x and radius r > 0 by $B(x, r) := \{y \in X : d(y, x) < r\}$ and $\overline{B}(x, r) := \{y \in X : d(x, y) \le r\}$, respectively.

²⁰¹⁰ Mathematics Subject Classification. 47B38, 46E15.

Key words and phrases. Superposition operators, \mathcal{B}^*_{α} , Lipschitz continuous, boundedness and the compactness.

Submitted Jun 11, 2014.

Superposition operators in Bergman space A^p studied in [5, 6]. Later, Buckley and Vukotic considered superposition operators from Besov spaces into Bergman spaces in [3], univalent interpolation in Besov spaces and superposition into Bergman spaces in [4], superposition operators between the Bloch space and Bergman spaces were characterised in [1], and those between the conformally invariant Q_p spaces and Bloch-type spaces in [15].

2. Basic concepts and propositions

The class of hyperbolic functions is a subset of the class $B(\mathbb{D})$ of all analytic functions f in the unit disc \mathbb{D} such that |f(z)| < 1 for all $z \in \mathbb{D}$.

They are usually defined by using either the hyperbolic derivative $f^*(z) = \frac{|f'(z)|}{1-|f(z)|^2}$ of $f \in B(\mathbb{D})$, and $\phi^*(z) = \frac{1-|z|}{1-|\phi(z)|^2}\phi'(z)$ (cf. [9]).

The hyperbolic Bloch space is defined as follows:

Definition 2.1. (see [11]) For $0 < \alpha \leq 1$, a function $f \in B(\mathbb{D})$ is said to belong to the hyperbolic α -Bloch class \mathcal{B}^*_{α} if

$$||f||_{\mathcal{B}^*_{\alpha}} = \sup_{z \in \mathbb{D}} f^*(z)(1-|z|^2)^{\alpha} < \infty.$$

The little hyperbolic Bloch-type class $\mathcal{B}^*_{\alpha,0}$ consists of all $f \in \mathcal{B}^*_{\alpha}$ such that

$$\lim_{|z| \to 1} f^*(z)(1-|z|^2)^{\alpha} = 0.$$

The Schwarz-Pick lemma implies $\mathcal{B}^*_{\alpha} = B(\mathbb{D})$ for all $\alpha \geq 1$ with $||f||_{\mathcal{B}^*_{\alpha}} \leq 1$, and therefore the hyperbolic α -Bloch-classes are of interest only when $0 < \alpha < 1$. The usual α -Bloch-spaces and their norms are denoted by the same symbols but without *.

Pérez-Gonzálezet al. defined a natural metric on the hyperbolic α -Bloch class \mathcal{B}^*_{α} in [11] as

$$d(f,g;\mathcal{B}^*_{\alpha}) := d_{\mathcal{B}^*_{\alpha}}(f,g) + ||f-g||_{\mathcal{B}_{\alpha}} + |f(0) - g(0)|,$$

where

$$d_{\mathcal{B}^*_{\alpha}}(f,g) := \sup_{a \in \mathbb{D}} \left| \frac{f'(z)}{1 - |f(z)|^2} - \frac{g'(z)}{1 - |g(z)|^2} \right| (1 - |z|^2)^{\alpha}$$

for $f, g \in \mathcal{B}^*_{\alpha}$.

Definition 2.2. (see [10]) For $0 < p, s < \infty, -2 < q < \infty$, the hyperbolic class $F^*(p,q,s)$ consists of those functions $f \in B(\mathbb{D})$ for which

$$||f||_{F^*(p,q,s)}^p = \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} (f^*(z))^p (1-|z|^2)^q g^s(z,a) dA(z) < \infty.$$

Moreover, we say that $f\in F^*(p,q,s)$ belongs to the class $F^*_0(p,q,s)$ if

$$\lim_{|a|\to 1} \int_{\mathbb{D}} (f^*(z))^p (1-|z|^2)^q g^s(z,a) dA(z) = 0.$$

Where dA is the normalized 2-dimensional Lebesgue measure on \mathbb{D} , $g(z, a) = \log \frac{1}{|\varphi_a(z)|}$ is the Green's function of \mathbb{D} with $\varphi_a(z) = \frac{a-z}{1-\bar{a}z}$ is the Möbius transformation related to the point $a \in \mathbb{D}$. Note that hyperbolic classes are not linear spaces, since they consist of functions that are self-maps of \mathbb{D} .

For $f, g \in F^*(p, q, s)$, defined their distance by

$$d(f,g;F^*(p,q,s)) := d_{F^*(p,q,s)}(f,g) + ||f - g||_{F(p,q,s)} + |f(0) - g(0)|,$$

where

$$d_{F^*(p,q,s)}(f,g) := \left(\sup_{z \in \mathbb{D}} \int_{\mathbb{D}} |f^*(z) - g^*(z)|^p (1 - |z|^2)^q g^s(z,a) dA(z)\right)^{\frac{1}{p}}, with \ p \ge 1.$$

The following result on the complete metric spaces $d(., .; \mathcal{B}^*_{\alpha})$ was proved in [11].

Proposition 2.1. The class \mathcal{B}^*_{α} equipped with the metric $d(., .; \mathcal{B}^*_{\alpha})$ is a complete metric space. Moreover, $\mathcal{B}_{\alpha,0}^*$ is a closed (and therefore complete) subspace of \mathcal{B}_{α}^* .

The following result on the complete metric spaces $d(., .; F^*(p, q, s))$ was proved in [8].

Proposition 2.2. The class $F^*(p,q,s)$ equipped with the metric $d(., .; F^*(p,q,s))$ is a complete metric space. Moreover, $F_0^*(p,q,s)$ is a closed (and therefore complete) subspace of $F^*(p,q,s)$.

Definition 2.3. The superposition operator $S_{\phi} : \mathcal{B}^*_{\alpha} \to F^*(p,q,s)$ is said to be bounded, if there is a positive constant C such that $||S_{\phi}f||_{F^*(p,q,s)} \leq C||f||_{\mathcal{B}^*_{\alpha}}$ for all $f \in \mathcal{B}^*_{\alpha}$.

Definition 2.4. The superposition operator $S_{\phi} : \mathcal{B}^*_{\alpha} \to F^*(p,q,s)$ is said to be compact, if it maps any ball in $\mathcal{B}^*_{p,\alpha}$ onto a pre-compact set in $F^*(p,q,s)$.

Lemma 2.1. For each positive number δ and for every sequence (γ_n) of complex numbers such that $\gamma_0 = 0$, $|\gamma_1| \ge 5\delta$, $|\arg\gamma_1 - \theta_0| < \frac{\pi}{4}$, $\arg\gamma_n \to \theta_0$, or $\arg\gamma_n \uparrow \theta_0$ and

$$|\gamma_n| \ge \max\left\{3|\gamma_{n-1}|, \sum_{k=1}^{n-1}|\gamma_k - \gamma_{k-1}|\right\} \quad for \ all \quad n \ge 2, \tag{1}$$

there exists a domain Ω with the following properties:

(i) Ω is simply connected;

(ii) Ω contains the infinite polygonal line $L = \bigcup_{n=1}^{\infty} [\gamma_{n-1}, \gamma_n]$, where $[\gamma_{n-1}, \gamma_n]$ denotes the line segment from γ_{n-1} to γ_n ;

(iii) There exists a conformal mapping f of Δ onto Ω which takes the origin to a prescribed point belongs to \mathcal{B}^* ;

(iv) $dist(\gamma, \partial \Delta) = \delta$ for each point γ on L.

Proof. The proof is very similar to the proof of lemma 3.3 in [2].

3. Lipschitz continuous and boundedness of superposition operators S_{ϕ} from \mathcal{B}^*_{α} to $F^*(p,q,s)$

Lemma 3.1. (see [13]) For $0 < \alpha < 1$, there exist two functions $f, g \in \mathcal{B}^*_{\alpha}$ such that for some constant ϵ ,

$$(|f'(z)| + |g'(z)|) \ge \frac{\epsilon}{(1 - |z|^2)^{\alpha}} > 0, \quad \forall z \in \mathbb{D}.$$

(2)

197

Throughout this paper we assume that

$$(\phi^*(f(z)) + \phi^*(g(z))) \ge \frac{\epsilon}{(1 - |f(z)|^2)^\alpha} > 0, \quad \forall \ z \in \mathbb{D}.$$
(3)

Now, we give the following result.

Theorem 3.1. Assume ϕ is non-constant analytic mapping from \mathbb{D} into itself and let $0 < \alpha \leq 1, \ 0 \leq p < \infty, \ -1 < q < \infty$ and $0 \leq s \leq 1$. Suppose that (3) is satisfied. Then the following statements are equivalent: (i) $S_{\phi} : \mathcal{B}^*_{\alpha} \to F^*(p, q, s)$ is bounded;

(ii) $S_{\phi}: \mathcal{B}^*_{\alpha} \to F^*(p,q,s)$ is Lipschitz continuous;

(iii)

$$\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|f'(z)|^p}{(1 - |f(z)|^2)^{p\alpha}} (1 - |z|^2)^q g^s(z, a) dA(z) < \infty.$$

Proof. To prove (i) \Leftrightarrow (iii), first assume that (iii) holds, for any $f \in \mathcal{B}^*_{\alpha}$, and |f(z)| is bounded. Then, we obtain

$$\begin{split} \|S_{\phi}f\|_{F^{*}(p,q,s)} &= \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \left((\phi \circ f)^{*}(z) \right)^{p} (1 - |z|^{2})^{q} g^{s}(z,a) dA(z) \\ &= \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \left(\phi^{*}(f(z))^{p} |f'(z)|^{p} (1 - |z|^{2})^{q} g^{s}(z,a) dA(z) \right) \\ &\leq \|\phi(f(z))\|_{\mathcal{B}^{*}_{\alpha}}^{p} \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|f'(z)|^{p}}{(1 - |f(z)|^{2})^{p\alpha}} (1 - |z|^{2})^{q} g^{s}(z,a) dA(z) < \infty \end{split}$$

Hence, it follows that (i) holds.

Conversely, by assuming that (i) holds and (3), there exists a constant $\epsilon > 0$ such that $(\phi^*(f(z)) + \phi^*(g(z))) \ge \frac{\epsilon}{(1-|f(z)|^2)^{\alpha}} > 0$, where $f, g \in \mathcal{B}^*_{\alpha}$, and $\|S_{\phi}f\|_{F^*(p,q,s)} \le C \|\phi(f(z))\|_{\mathcal{B}^*_{\alpha}}$.

We can assume $|f'(z)| \leq |g'(z)|$. Then, we have

$$\begin{split} \|S_{\phi}f\|_{F^{*}(p,q,s)} + \|S_{\phi}g\|_{F^{*}(p,q,s)} \\ &\geq \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \left[((\phi \circ f)^{*}(z))^{p} + ((\phi \circ g)^{*}(z))^{p} \right] g^{p}(z,a) dA(z) \\ &\geq \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \left[(\phi^{*}(f(z)))^{p} |f'(z)|^{2} + (\phi^{*}(g(z)))^{p} |g'(z)|^{p} \right] g^{p}(z,a) dA(z) \\ &\geq \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \left[(\phi^{*}(f(z)))^{p} + (\phi^{*}(g(z)))^{p} \right] |f'(z)|^{p} (1 - |z|^{2})^{q} g^{s}(z,a) dA(z) \\ &\geq \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \left[\phi^{*}(f(z)) + \phi^{*}(g(z)) \right]^{p} |f'(z)|^{p} (1 - |z|^{2})^{q} g^{s}(z,a) dA(z) \\ &\geq \epsilon^{p} \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|f'(z)|^{p}}{(1 - |f(z)|^{p})^{p\alpha}} (1 - |z|^{2})^{q} g^{s}(z,a) dA(z). \end{split}$$

Then, we have

$$\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|f'(z)|^p}{(1 - |f(z)|^2)^{p\alpha}} (1 - |z|^2)^q g^s(z, a) dA(z) \le \|S_{\phi}f\|_{F^*(p, q, s)}^p + \|S_{\phi}g\|_{F^*(p, q, s)}^p < \infty.$$

So (iii) is satisfied.

198

To prove (ii) \Leftrightarrow (iii), assume first that $S_{\phi} : \mathcal{B}^*_{\alpha} \to F^*(p,q,s)$ is Lipschitz continuous, that is, there exists a positive constant C such that

 $d(\phi \circ f, \phi \circ g; F^*(p, q, s)) \le Cd(\phi(f(z)), \phi(g(z)); \mathcal{B}^*_{\alpha}), \quad \text{for all } f, g \in \mathcal{B}^*_{\alpha}.$

Taking $\phi(g) = 0$, this implies

 $\|\phi \circ f\|_{F^*(p,q,s)} \leq C(\|\phi(f(z))\|_{\mathcal{B}^*_{\alpha}} + \|\phi(f(z))\|_{\mathcal{B}_{\alpha}} + |\phi(f(0))|), \text{ for all } f \in \mathcal{B}^*_{\alpha}.$ (4) The assertion (iii) for $\alpha = 1$, follows by choosing f(z) = z in (4). Moreover, from (3), for $f, g \in \mathcal{B}^*_{\alpha}$, we deduce that

$$\left(\phi^*(f(z)) + \phi^*(g(z))\right)(1 - |z|^2)^{\alpha} \ge \epsilon > 0, \quad \text{for all } z \in \mathbb{D}.$$
(5)

Therefore, combining (4) and (5), we have

$$\begin{split} &\|\phi(f(z))\|_{\mathcal{B}^*_{\alpha}} + \|\phi(g(z))\|_{\mathcal{B}^*_{\alpha}} + \|\phi(f(z))\|_{\mathcal{B}_{\alpha}} \\ &+\|\phi(g(z))\|_{\mathcal{B}_{\alpha}} + |\phi(f(0))| + |\phi(g(0))| \\ &\geq \|\phi \circ f\|_{F^*(p,q,s)} + \|\phi \circ g\|_{F^*(p,q,s)} \\ &\geq \epsilon^2 \int_{\mathbb{D}} \frac{|f'(z)|^p}{(1 - |f(z)|^2)^{p\alpha}} (1 - |z|^2)^q g^s(z,a) dA(z). \end{split}$$

For which the assertion (iii) follows.

Assume now that (iii) is satisfied, we have

$$\begin{aligned} &d(\phi \circ f, \phi \circ g; F^{*}(p, q, s)) \\ &= d_{F^{*}(p,q,s)}(\phi \circ f, \phi \circ g) + \|\phi \circ f - \phi \circ g\|_{F(p,q,s)} \\ &+ \left|\phi(f(0)) - \phi(g(0))\right| \\ &\leq d_{\mathcal{B}^{*}_{\alpha}}(\phi(f(z)), \phi(g(z))) \left(\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|f'(z)|^{p}}{(1 - |f(z)|^{2})^{2\alpha}} F^{*}(p, q, s) dA(z)\right)^{\frac{1}{p}} \\ &+ \|\phi(f(z)) - \phi(g(z))\|_{\mathcal{B}_{\alpha}} \left(\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|f'(z)|^{p}}{(1 - |f(z)|^{2})^{p\alpha}} F^{*}(p, q, s) dA(z)\right)^{\frac{1}{p}} \\ &+ |\phi(f(0)) - \phi(g(0))| \leq C \, d(\phi(f(z)), \phi(g(z)); \mathcal{B}^{*}_{\alpha}). \end{aligned}$$

Thus $S_{\phi}: \mathcal{B}^*_{\alpha} \to F^*(p,q,s)$ is Lipschitz continuous. This completes the proof.

Remark 3.1. We know that a superposition operator $S_{\phi} : \mathcal{B}^*_{\alpha} \to F^*(p,q,s)$ is said to be bounded if there is a positive constant C such that $||S_{\phi}f||_{F^*(p,q,s)} \leq C||\phi(f(z))||_{\mathcal{B}^*_{\alpha}}$; for all $f \in \mathcal{B}^*_{\alpha}$. Theorem 3.1 shows that $S_{\phi} : \mathcal{B}^*_{\alpha} \to F^*(p,q,s)$ is bounded if and only if it is Lipschitz continuous, that is, if there exists a positive constant C such that $d(\phi \circ f, \phi \circ g; F^*(p,q,s)) \leq Cd(\phi(f(z)), \phi(g(z)); \mathcal{B}^*_{\alpha})$, for all $f, g \in \mathcal{B}^*_{\alpha}$.

4. Compactness of superposition operator

The compactness of the superposition operator S_{ϕ} has been defined by Definition 2.4. The following proposition is based on the compactness of the operator S_{ϕ} .

Proposition 4.1. Assume ϕ is analytic mapping from \mathbb{D} into itself. Let $0 < \alpha \leq 1$, $-1 < q < \infty$ and $0 \leq p, s < \infty$. If $S_{\phi} : \mathcal{B}^*_{\alpha} \to F^*(p,q,s)$ is compact, it maps closed balls onto compact sets.

Proof. If $B \subset \mathcal{B}^*_{\alpha}$ is a closed ball and $g \in F^*(p, q, s)$ belongs to the closure of $S_{\phi}(B)$, we can find a sequence $(f_n)_{n=1}^{\infty} \subset B$ such that $\phi \circ f_n$ converges to $g \in F^*(p, q, s)$ as $n \to \infty$. But $(f_n)_{n=1}^{\infty}$ is a normal family, hence it has a subsequence $(f_{n_j})_{j=1}^{\infty}$ converging uniformly on the compact subsets of \mathbb{D} to an analytic function f. As in earlier arguments of proposition 2.1 in [11], we get a positive estimate which shows that f must belong to the closed ball B. On the other hand, also the sequence $\phi \circ (f_{n_j})_{j=1}^{\infty}$ converges uniformly on compact subsets to an analytic function, which is $g \in F^*(p, q, s)$. We get $g = \phi \circ f$, i.e. g belongs to $S_{\phi}(B)$. Thus, this set is closed and also compact.

Compactness of superposition operators acting between \mathcal{B}^*_{α} and $F^*(p,q,s)$ classes can be given in the following result.

Theorem 4.1. Assume ϕ is analytic mapping from \mathbb{D} into itself. $0 \leq p < \infty$, $-1 < q < \infty$ and $0 \leq s \leq 1$. Then $S_{\phi} : \mathcal{B}^*_{\alpha} \to F^*(p,q,s)$ is compact if

$$\lim_{r \to 1^{-}} \sup_{a \in \mathbb{D}} \int_{|f(z)| > r} \frac{|f'(z)|^p}{(1 - |f(z)|^2)^{p\alpha}} (1 - |z|^2)^q g^s(z, a) dA(z) = 0.$$
(6)

Proof. We first assume that (6) holds. Let $B := B(g, \delta) \subset \mathcal{B}^*_{\alpha}$, $g \in \mathcal{B}^*_{\alpha}$ and $\delta > 0$, be a closed ball, and let $(f_n)_{n=1}^{\infty} \subset B$ be any sequence. We show that its image has a convergent subsequence in $F^*(p, q, s)$, which proves the compactness of S_{ϕ} by definition.

Again, $(f_n)_{n=1}^{\infty} \subset B(\mathbb{D})$ is normal, hence, there is a subsequence $(f_{n_j})_{j=1}^{\infty}$ which converges uniformly on the compact subsets of \mathbb{D} to an analytic function f. By Cauchy formula for the derivative of an analytic function, also the sequence $(f'_{n_j})_{j=1}^{\infty}$ converges uniformly on the compact subsets of \mathbb{D} to f_{n_j} . It follows that also the sequences $(\phi \circ f_{n_j})_{j=1}^{\infty}$ and $(\phi \circ f'_{n_j})_{j=1}^{\infty}$ converge uniformly on the compact subsets of \mathbb{D} to $\phi \circ f$ and $\phi \circ f'$, respectively. Moreover, $f \in B \subset \mathcal{B}^*_{\alpha}$ since for any fixed R, 0 < R < 1, the uniform convergence yield

$$\begin{split} \sup_{|z| \le R} & \left| \frac{f'(z)}{1 - |f(z)|^2} - \frac{g'(z)}{1 - |g(z)|^2} \right| (1 - |z|^2)^{\alpha} \\ &+ \sup_{|z| \le R} |f'(z) - g'(z)| (1 - |z|^2)^{\alpha} + |f(0) - g(0)| \\ &= \lim_{j \to \infty} \sup_{|z| \le R} \left| \frac{f'_{n_j}(z)}{1 - |f_{n_j}(z)|^2} - \frac{g'(z)}{1 - |g(z)|^2} \right| (1 - |z|^2)^{\alpha} \\ &+ \lim_{j \to \infty} \left(\sup_{|z| \le R} |f'_{n_j}(z) - g'(z)| (1 - |z|^2)^{\alpha} + |f_{n_j}(0) - g(0)| \right) < \delta. \end{split}$$

Hence, $d(f, g; \mathcal{B}^*_{\alpha}) \leq \delta$.

Let $\varepsilon > 0$. Since (6) is satisfied, we may fix r, 0 < r < 1, such that

$$\sup_{a \in \mathbb{D}} \int_{|f(z)| > r} \frac{|f'(z)|^p}{(1 - |f(z)|^2)^{p\alpha}} (1 - |z|^2)^q g^s(z, a) dA(z) \le \varepsilon.$$

By the uniform convergence, we may fix $N_1 \in \mathbb{N}$ such that

$$|\phi(0) \circ f_{n_j} - \phi(0) \circ f| \le \varepsilon, \quad \text{for all } j \ge N_1.$$
(7)

The condition (6) is known to imply the compactness of $S_{\phi} : \mathcal{B}_{\alpha} \to F(p,q,s)$, hence possibly to passing once more to a subsequence and adjusting the notations,

we may assume that

$$\|\phi \circ f_{n_j} - \phi \circ f\|_{F(p,q,s)} \le \varepsilon, \quad \text{for all } j \ge N_2; \ N_2 \in \mathbb{N}.$$
(8)

Since $(f_{n_j})_{j=1}^{\infty} \subset B$, $f \in B$ and $|f'_{n_j}(z)| \le |f'(z)|$ it follows that

$$\begin{split} \sup_{a \in \mathbb{D}} & \int_{|f(z)| \ge r} \left[(\phi \circ f_{n_j})^*(z) - (\phi \circ f)^*(z) \right]^p (1 - |z|^2)^q g^s(z, a) dA(z) \\ \le & \sup_{a \in \mathbb{D}} \int_{|f(z)| \ge r} \left[(\phi^*(f_{n_j}(z)) |f'_{n_j}(z)| - (\phi^*(f(z))) |f'(z)| \right]^p (1 - |z|^2)^q g^s(z, a) dA(z) \\ \le & \sup_{a \in \mathbb{D}} \int_{|f(z)| \ge r} \left[(\phi^*(f_{n_j}(z)) - (\phi^*(f(z))) \right]^p |f'(z)|^p (1 - |z|^2)^q g^s(z, a) dA(z) \\ \le & d_{\mathcal{B}^*_{\alpha}} (\phi(f_{n_j}(z)), \phi(f(z))) \sup_{a \in \mathbb{D}} \int_{|f(z)| > r} \frac{|f'(z)|^p}{(1 - |f(z)|^2)^{p\alpha}} (1 - |z|^2)^q g^s(z, a) dA(z), \end{split}$$

hence,

$$\sup_{a \in \mathbb{D}} \int_{|f(z)| \ge r} \left[(\phi \circ f_{n_j})^*(z) - (\phi \circ f)^*(z) \right]^p (1 - |z|^2)^q g^s(z, a) dA(z) \le C\varepsilon.$$
(9)

On the other hand, by the uniform convergence on the compact disc \mathbb{D} , we can find an $N_3 \in \mathbb{N}$ such that for all $j \geq N_3$,

$$\left|\frac{\phi'(f_{n_j})(z)}{1-|\phi(f_{n_j}(z))|^2} - \frac{\phi'(f(z))}{1-|\phi(f(z))|^2}\right| \le \varepsilon.$$

For all z with $|f(z)| \leq r$. Hence, for such j,

$$\begin{split} &\sup_{a\in\mathbb{D}}\int_{|f(z)|\leq r} \left[(\phi\circ f_{n_{j}})^{*}(z) - (\phi\circ f)^{*}(z) \right]^{p} (1-|z|^{2})^{q} g^{s}(z,a) dA(z) \\ &\leq \sup_{a\in\mathbb{D}}\int_{|f(z)|\leq r} \left[\phi^{*}(f_{n_{j}}(z)) - \phi^{*}(f(z)) \right]^{p} |f'(z)|^{p} (1-|z|^{2})^{q} g^{s}(z,a) \right] dA(z) \\ &\leq \varepsilon \left(\sup_{a\in\mathbb{D}}\int_{|f(z)|\leq r} \frac{|f'(z)|^{p}}{(1-|f(z)|^{2})^{p\alpha}} (1-|z|^{2})^{q} g^{s}(z,a) dA(z) \right)^{\frac{1}{p}} \leq C\varepsilon, \end{split}$$

hence,

$$\sup_{a \in \mathbb{D}} \int_{|f(z)| \le r} \left[(\phi \circ f_{n_j})^*(z) - (\phi \circ f)^*(z) \right]^p (1 - |z|^2)^q g^s(z, a) dA(z) \le C \varepsilon.$$
(10)

where C is a positive constant which is obtained from (iii) of Theorem 3.1. Combining (7), (8), (9) and (10) we deduce that $f_{n_j} \to f$ in $F^*(p,q,s)$. The proof is therefore completed.

5. Superposition operators from \mathcal{B}^*_{α} to \mathcal{B}^*_{β}

First we show that S_{ϕ} maps \mathcal{B}^*_{α} into \mathcal{B}^*_{β} unless ϕ is a constant, where $0 < \beta < \alpha$.

Theorem 5.1. Let $0 < \beta < \alpha$ and ϕ be an entire function.

Suppose that $|f(z)| \leq \lambda$, where λ is a positive constant and $f \in \mathcal{B}^*_{\alpha}$. Then the superposition operator S_{ϕ} maps \mathcal{B}^*_{α} into \mathcal{B}^*_{β} if and only if ϕ is a constant function.

Proof. If ϕ is a constant, it is obvious that $S_{\phi}(\mathcal{B}^*_{\alpha}) \subset \mathcal{B}^*_{\beta}$. Now assume that ϕ is not a constant. We distinguish two cases to prove that $S_{\phi}(\mathcal{B}^*_{\alpha}) \not\subset \mathcal{B}^*_{\beta}$.

(i) If $0 < \alpha < 1$. Since ϕ is not a constant, there exists a disk $|\gamma - \gamma_0| < r$ and $\begin{array}{l} 0<\gamma_0<1,\, \text{on which } \phi^*(f(z))>\delta>0.\\ \text{Let } f(z)=\gamma_0+r(1-z)^{1-\alpha}\in\mathcal{B}^*_\alpha. \text{ Then, for } z\in\mathbb{D}, \end{array}$

$$\begin{aligned} (1-|z|^2)^{\beta}((\phi\circ f)^*(z)) &= (1-|z|^2)^{\beta}(\phi^*(f(z)))|f'(z)|\\ &\geq \frac{\delta r(1-\alpha)(1-|z|^2)^{\beta}}{|1-z|^{\alpha}}. \end{aligned}$$

The right side of the above inequality tends to infinity as $z \to 1$ along with the positive radius. This shows that $S_{\phi}(f) = (\phi \circ f) \notin \mathcal{B}_{\beta}^*$ and $S_{\phi}(\mathcal{B}_{\alpha}^*) \notin \mathcal{B}_{\beta}^*$.

(ii) If $\alpha = 1$. Since ϕ is unbounded, there exists a complex sequence (γ_n) with $\gamma_n \to \infty$, as $n \to \infty$ such that $|\phi(\gamma_n)| \to \infty$ as $n \to \infty$. Without loss of generality, we may assume that γ_n satisfies the conditions in Lemma 2.1 with some $\delta > 0$ by adding $\gamma_0 = 0$ and choosing a subsequence if necessary. By Lemma 2.1, there exists a domain Ω and a conformal mapping f of \mathbb{D} onto Ω such that $\gamma_n \in \Omega$ for n = 0, 1, ...and $f \in \mathcal{B}^*$. Since any function in \mathcal{B}^*_β is bounded and, hence, $S_\phi(f) = (\phi \circ f) \notin \mathcal{B}^*_\beta$ and $S_{\phi}(\mathcal{B}^*_{\alpha}) \not\subset \mathcal{B}^*_{\beta}$, since $(\phi \circ f)$ is unbounded. The proof is completed.

In the next theorem we study superposition operator from \mathcal{B}^*_{α} to \mathcal{B}^*_{β} , where $\alpha \leq$ β.

Theorem 5.2. Let $0 < \alpha < 1$, $\alpha \leq \beta$. Suppose that $|f(z)| \leq \lambda$, where λ is a positive constant and $f \in \mathcal{B}^*_{\alpha}$. Then for any entire function ϕ , S_{ϕ} is a bounded operator from \mathcal{B}^*_{α} into \mathcal{B}^*_{β} .

Proof. Let $\alpha < 1$, $\alpha \leq \beta$, and ϕ be an entire function. Let M > 0. For a function f with $||f||_{\mathcal{B}_{\alpha}} \leq M$ we have,

$$\phi^*(f(0)) \le M_1 = \max_{|\gamma| = \lambda} |\phi(\gamma)|,$$

$$\phi^*(f(z)) \le M_2 = \max_{|\gamma| = \lambda} \phi^*(\gamma), \text{ for } z \in \mathbb{D}$$

Thus

$$\begin{split} \|\phi \circ f\|_{\mathcal{B}^*_{\beta}} &\leq |(\phi \circ f)^*(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} (\phi^*(f(z)))|f'(z)| \\ &\leq M_1 + M_2 \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f'(z)| \\ &= M_1 + M_2 |f|_{\mathcal{B}_{\alpha}} \\ &\leq M_1 + MM_2. \end{split}$$

This completes the proof.

References

- [1] V. Álvarez, M. A. Márquez and D. Vukotić, Superposition operators between the Bloch space and Bergman spaces, Ark. Mat. 42(2004), 205-216.
- [2] José Bonet and Dragan Vukotić, Superposition operators between weighted Banach spaces of analytic functions of controlled growth, Monatsh. Math. 170, No. 3-4(2013), 311-323.

- [3] S. M. Buckley, J. L. Fernández and D. Vukotić, Superposition operators on Dirichlet type spaces, in: Papers on Analysis: A Volume Dedicated to Olli Martio on the Occasion of his 60th Birthday, Rep. Univ. Jyvaskylä Dept. Math. Stat. 83, pp. 41- 61, University of Jyväskylä, Jyväskylä, 2001.
- [4] S. M. Buckley and D. Vukotić, Univalent interpolation in Besov spaces and superposition into Bergman spaces, Pot. Anal 29(2008), 1-16.
- [5] G. A. Cámera and J. Gimenez, The nonlinear superposition operator acting on Bergman spaces, Compos. Math. 93 (1994), 23-35.
- [6] G. A. Cámera, Nonlinear superposition on spaces of analytic functions, in: Harmonic Analysis and Operator Theory (Caracas, 1994), Contemp. Math. 189, pp. 103-116, Amer. Math. Soc., Providence, RI, 1995.
- [7] A. El-Sayed Ahmed, Natural metrics and composition operators in generalized hyperbolic function spaces, J. Inequal. Appl. (2012), 1-13.
- [8] A. El-Sayed Ahmed, M. A. Bakhit, Composition operators in hyperbolic general Besov-type spaces. Cubo Math. J. 3(15)2013, 19-30.
- [9] T. Hosokawa, Differences of weighted composition operators on the Bloch spaces, Complex Anal. Oper. Theory. (2008), 1-20.
- [10] X. Li, On hyperbolic Q classes, Dissertation, University of Joensuu, Joensuu, 2005, Ann. Acad. Sci. Fenn. Math. Diss. No. 145 (2005), 65 pp.
- [11] F. Pérez-González, J.Rättyä and J. Taskinen, Lipschitz continuous and compact composition operators in hyperbolic classes, Mediterr. J. Math. 8 (2011), 123-135
- [12] W. Smith, Inner functions in the hyperbolic little Bloch class, Michigan Math. J. 45(1) (1998), 103-114.
- [13] J. Xiao, Holomorphic Q classes, Lecture Notes in Mathematics, 1767, Springer-Verlag, Berlin, 2001.
- [14] J. Xiao, Composition operators associated with Bloch-type spaces, Complex Variables Theory Appl. 46 (2001), no. 2, 109-121.
- [15] Wen Xu, Superposition operators on Bloch-type spaces, Comput. Methods Funct. Theory, Volume 7(2) (2007), 501-507.

A. EL-SAYED AHMED

Sohag University, Faculty of Science, Mathematics Department,, 82524 Sohag, Egypt, Current address: Taif University, Faculty of Science, Mathematics, Department, Box 888 El-Hawiah- Taif, Saudi Arabia

E-mail address: ahsayed80@hotmail.com

A. KAMAL

Port Said University, Faculty of Science, Department of Mathematics,, Port Said, Egypt

E-mail address: alaa_mohamed1@yahoo.com

T.I. YASSEN

EL AZHAR UNIVERSITY AT ASSIUT,, FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS,, ASSIUT, EGYPT

E-mail address: taha_hmour@yahoo.com