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NATURAL METRICS AND BOUNDEDNESS OF

SUPERPOSITION OPERATOR ACTING BETWEEN B∗
α AND

F ∗(p, q, s)

A. EL-SAYED AHMED, A. KAMAL, T.I. YASSEN

Abstract. In this paper, we study Lipschitz continuous and boundedness of
the superposition operator Sϕ acting between the hyperbolic B∗

α and the hy-

perbolic F ∗(p, q, s) spaces. We characterize all entire functions that transform
hyperbolic Bloch-type spaces into another by superposition operator. We prove
that all superposition operators induced by such entire functions are bounded.

1. Introduction

Let X and Y be two metric spaces of analytic functions on the unit disk and ϕ
denotes a complex-valued function in the plane C such that ϕ ◦ f ∈ Y whenever
f ∈ X we say that ϕ acts by superposition from X into Y. If X and Y contain
the linear function, then ϕ must be entire function. We denote the unit disc of the
complex plane by D. The superposition operator Sϕ on X is defined by

Sϕ(f) = (ϕ ◦ f), f ∈ X.

If Sϕf ∈ Y for f ∈ X, note that if X and Y are also linear spaces, the operator
Sϕ is linear if and only if ϕ is a linear function that fixes the origin. LetH(D) denote
the classes of functions holomorphic in the unit disc D. A function f ∈ H(D) belongs
to α-Bloch space Bα, 0 < α < ∞ if

∥f∥Bα = sup
z∈D

(1− |z|)α|f ′(z)| < ∞.

The little α-Bloch space Bα,0 consisting of all f ∈ Bα such that

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.

If (X, d) is a metric space, we denote the open and closed balls with center x and
radius r > 0 by B(x, r) := {y ∈ X : d(y, x) < r} and B̄(x, r) := {y ∈ X : d(x, y) ≤
r}, respectively.
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Superposition operators in Bergman space Ap studied in [5, 6]. Later, Buckley
and Vukotic considered superposition operators from Besov spaces into Bergman
spaces in [3], univalent interpolation in Besov spaces and superposition into Bergman
spaces in [4], superposition operators between the Bloch space and Bergman spaces
were characterised in [1], and those between the conformally invariant Qp spaces
and Bloch-type spaces in [15].

2. Basic concepts and propositions

The class of hyperbolic functions is a subset of the class B(D) of all analytic
functions f in the unit disc D such that |f(z)| < 1 for all z ∈ D.

They are usually defined by using either the hyperbolic derivative f∗(z) =
|f ′(z)|

1−|f(z)|2 of f ∈ B(D), and ϕ∗(z) = 1−|z|
1−|ϕ(z)|2ϕ

′(z) (cf. [9]).

The hyperbolic Bloch space is defined as follows:

Definition 2.1. (see [11]) For 0 < α ≤ 1, a function f ∈ B(D) is said to belong
to the hyperbolic α-Bloch class B∗

α if

∥f∥B∗
α
= sup

z∈D
f∗(z)(1− |z|2)α < ∞.

The little hyperbolic Bloch-type class B∗
α,0 consists of all f ∈ B∗

α such that

lim
|z|→1

f∗(z)(1− |z|2)α = 0.

The Schwarz-Pick lemma implies B∗
α = B(D) for all α ≥ 1 with ∥f∥B∗

α
≤ 1,

and therefore the hyperbolic α-Bloch-classes are of interest only when 0 < α < 1.
The usual α-Bloch-spaces and their norms are denoted by the same symbols but
without *.

Pérez-Gonzálezet al. defined a natural metric on the hyperbolic α-Bloch class
B∗
α in [11] as

d(f, g;B∗
α) := dB∗

α
(f, g) + ∥f − g∥Bα + |f(0)− g(0)|,

where

dB∗
α
(f, g) := sup

a∈D

∣∣∣∣ f ′(z)

1− |f(z)|2
− g′(z)

1− |g(z)|2

∣∣∣∣(1− |z|2)α

for f, g ∈ B∗
α.

Definition 2.2. (see [10]) For 0 < p, s < ∞, −2 < q < ∞, the hyperbolic class
F ∗(p, q, s) consists of those functions f ∈ B(D) for which

∥f∥pF∗(p,q,s) = sup
a∈D

∫
D
(f∗(z))p(1− |z|2)qgs(z, a)dA(z) < ∞.

Moreover, we say that f ∈ F ∗(p, q, s) belongs to the class F ∗
0 (p, q, s) if

lim
|a|→1

∫
D
(f∗(z))p(1− |z|2)qgs(z, a)dA(z) = 0.

Where dA is the normalized 2-dimensional Lebesgue measure on D, g(z, a) =
log 1

|φa(z)| is the Green’s function of D with φa(z) =
a−z
1−āz is the Möbius transforma-

tion related to the point a ∈ D. Note that hyperbolic classes are not linear spaces,
since they consist of functions that are self-maps of D.
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For f, g ∈ F ∗(p, q, s), defined their distance by

d(f, g;F ∗(p, q, s)) := dF∗(p,q,s)(f, g) + ∥f − g∥F (p,q,s) + |f(0)− g(0)|,

where

dF∗(p,q,s)(f, g) :=

(
sup
z∈D

∫
D
|f∗(z)− g∗(z)|p(1− |z|2)qgs(z, a)dA(z)

) 1
p

, with p ≥ 1.

The following result on the complete metric spaces d(., .;B∗
α) was proved in [11].

Proposition 2.1. The class B∗
α equipped with the metric d(., .;B∗

α) is a complete
metric space. Moreover,B∗

α,0 is a closed (and therefore complete) subspace of B∗
α.

The following result on the complete metric spaces d(., .;F ∗(p, q, s)) was proved
in [8].

Proposition 2.2. The class F ∗(p, q, s) equipped with the metric d(., .;F ∗(p, q, s)) is
a complete metric space. Moreover, F ∗

0 (p, q, s) is a closed (and therefore complete)
subspace of F ∗(p, q, s).

Definition 2.3. The superposition operator Sϕ : B∗
α → F ∗(p, q, s) is said to be

bounded, if there is a positive constant C such that ∥Sϕf∥F∗(p,q,s) ≤ C∥f∥B∗
α
for all

f ∈ B∗
α.

Definition 2.4. The superposition operator Sϕ : B∗
α → F ∗(p, q, s) is said to be

compact, if it maps any ball in B∗
p,α onto a pre-compact set in F ∗(p, q, s).

Lemma 2.1. For each positive number δ and for every sequence (γn) of complex
numbers such that γ0 = 0, |γ1| ≥ 5δ, |argγ1 − θ0| < π

4 , argγn → θ0, or argγn ↑ θ0
and

|γn| ≥ max

{
3|γn−1|,

n−1∑
k=1

|γk − γk−1|
}

for all n ≥ 2, (1)

there exists a domain Ω with the following properties:

(i) Ω is simply connected;

(ii) Ω contains the infinite polygonal line L =
∪∞

n=1[γn−1, γn], where [γn−1, γn]
denotes the line segment from γn−1 to γn;

(iii) There exists a conformal mapping f of ∆ onto Ω which takes the origin to a
prescribed point belongs to B∗;

(iv) dist(γ, ∂∆) = δ for each point γ on L.

Proof. The proof is very similar to the proof of lemma 3.3 in [2].

3. Lipschitz continuous and boundedness of superposition operators
Sϕ from B∗

α to F ∗(p, q, s)

Lemma 3.1. (see [13]) For 0 < α < 1, there exist two functions f, g ∈ B∗
α such

that for some constant ϵ,

(|f ′(z)|+ |g′(z)|) ≥ ϵ

(1− |z|2)α
> 0, ∀ z ∈ D.

(2)
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Throughout this paper we assume that

(ϕ∗(f(z)) + ϕ∗(g(z))) ≥ ϵ

(1− |f(z)|2)α
> 0, ∀ z ∈ D.

(3)

Now, we give the following result.

Theorem 3.1. Assume ϕ is non-constant analytic mapping from D into itself and
let 0 < α ≤ 1, 0 ≤ p < ∞, −1 < q < ∞ and 0 ≤ s ≤ 1. Suppose that (3) is
satisfied. Then the following statements are equivalent:
(i) Sϕ : B∗

α → F ∗(p, q, s) is bounded;

(ii) Sϕ : B∗
α → F ∗(p, q, s) is Lipschitz continuous;

(iii)

sup
a∈D

∫
D

|f ′(z)|p

(1− |f(z)|2)pα
(1− |z|2)qgs(z, a)dA(z) < ∞.

Proof. To prove (i)⇔ (iii), first assume that (iii) holds, for any
f ∈ B∗

α, and |f(z)| is bounded. Then, we obtain

∥Sϕf∥F∗(p,q,s) = sup
a∈D

∫
D
((ϕ ◦ f)∗(z))p(1− |z|2)qgs(z, a)dA(z)

= sup
a∈D

∫
D
(ϕ∗(f(z))p|f ′(z)|p(1− |z|2)qgs(z, a)dA(z)

≤ ∥ϕ(f(z))∥pB∗
α
sup
a∈D

∫
D

|f ′(z)|p

(1− |f(z)|2)pα
(1− |z|2)qgs(z, a)dA(z) < ∞.

Hence, it follows that (i) holds.
Conversely, by assuming that (i) holds and (3), there exists a constant ϵ > 0 such
that (ϕ∗(f(z))+ϕ∗(g(z))) ≥ ϵ

(1−|f(z)|2)α > 0, where f, g ∈ B∗
α, and ∥Sϕf∥F∗(p,q,s) ≤

C∥ϕ(f(z))∥B∗
α
.

We can assume |f ′(z)| ≤ |g′(z)|. Then, we have

∥Sϕf∥F∗(p,q,s) + ∥Sϕg∥F∗(p,q,s)

≥ sup
a∈D

∫
D

[
((ϕ ◦ f)∗(z))p + ((ϕ ◦ g)∗(z))p

]
gp(z, a)dA(z)

≥ sup
a∈D

∫
D

[
(ϕ∗(f(z)))p|f ′(z)|2 + (ϕ∗(g(z)))p|g′(z)|p

]
gp(z, a)dA(z)

≥ sup
a∈D

∫
D

[
(ϕ∗(f(z)))p + (ϕ∗(g(z)))p

]
|f ′(z)|p (1− |z|2)qgs(z, a)dA(z)

≥ sup
a∈D

∫
D

[
ϕ∗(f(z)) + ϕ∗(g(z))

]p|f ′(z)|p (1− |z|2)qgs(z, a)dA(z)

≥ ϵp sup
a∈D

∫
D

|f ′(z)|p

(1− |f(z)|p)pα
(1− |z|2)qgs(z, a)dA(z).

Then, we have

sup
a∈D

∫
D

|f ′(z)|p

(1− |f(z)|2)pα
(1−|z|2)qgs(z, a)dA(z) ≤ ∥Sϕf∥pF∗(p,q,s)+∥Sϕg∥pF∗(p,q,s) < ∞.

So (iii) is satisfied.
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To prove (ii)⇔ (iii), assume first that Sϕ : B∗
α → F ∗(p, q, s) is Lipschitz contin-

uous, that is, there exists a positive constant C such that

d(ϕ ◦ f, ϕ ◦ g;F ∗(p, q, s)) ≤ Cd(ϕ(f(z)), ϕ(g(z));B∗
α), for all f, g ∈ B∗

α.

Taking ϕ(g) = 0, this implies

∥ϕ◦f∥F∗(p,q,s) ≤ C
(
∥ϕ(f(z))∥B∗

α
+∥ϕ(f(z))∥Bα + |ϕ(f(0))|

)
, for all f ∈ B∗

α. (4)

The assertion (iii) for α = 1, follows by choosing f(z) = z in (4). Moreover, from
(3), for f, g ∈ B∗

α, we deduce that(
ϕ∗(f(z)) + ϕ∗(g(z))

)
(1− |z|2)α ≥ ϵ > 0, for all z ∈ D. (5)

Therefore, combining (4) and (5), we have

∥ϕ(f(z))∥B∗
α
+ ∥ϕ(g(z))∥B∗

α
+ ∥ϕ(f(z))∥Bα

+∥ϕ(g(z))∥Bα + |ϕ(f(0))|+ |ϕ(g(0))|
≥ ∥ϕ ◦ f∥F∗(p,q,s) + ∥ϕ ◦ g∥F∗(p,q,s)

≥ ϵ2
∫
D

|f ′(z)|p

(1− |f(z)|2)pα
(1− |z|2)qgs(z, a)dA(z).

For which the assertion (iii) follows.

Assume now that (iii) is satisfied, we have

d(ϕ ◦ f, ϕ ◦ g;F ∗(p, q, s))

= dF∗(p,q,s)(ϕ ◦ f, ϕ ◦ g) + ∥ϕ ◦ f − ϕ ◦ g∥F (p,q,s)

+
∣∣ϕ(f(0))− ϕ(g(0))

∣∣
≤ dB∗

α
(ϕ(f(z)), ϕ(g(z)))

(
sup
a∈D

∫
D

|f ′(z)|p

(1− |f(z)|2)2α
F ∗(p, q, s)dA(z)

) 1
p

+∥ϕ(f(z))− ϕ(g(z))∥Bα

(
sup
a∈D

∫
D

|f ′(z)|p

(1− |f(z)|2)pα
F ∗(p, q, s)dA(z)

) 1
p

+|ϕ(f(0))− ϕ(g(0))| ≤ C d(ϕ(f(z)), ϕ(g(z));B∗
α).

Thus Sϕ : B∗
α → F ∗(p, q, s) is Lipschitz continuous. This completes the proof.

Remark 3.1. We know that a superposition operator Sϕ : B∗
α → F ∗(p, q, s) is

said to be bounded if there is a positive constant C such that ∥Sϕf∥F∗(p,q,s) ≤
C∥ϕ(f(z))∥B∗

α
; for all f ∈ B∗

α. Theorem 3.1 shows that Sϕ : B∗
α → F ∗(p, q, s) is

bounded if and only if it is Lipschitz continuous, that is, if there exists a positive con-
stant C such that d(ϕ◦f, ϕ◦g;F ∗(p, q, s)) ≤ Cd(ϕ(f(z)), ϕ(g(z));B∗

α), for all f, g ∈
B∗
α.

4. Compactness of superposition operator

The compactness of the superposition operator Sϕ has been defined by Definition
2.4. The following proposition is based on the compactness of the operator Sϕ.

Proposition 4.1. Assume ϕ is analytic mapping from D into itself. Let 0 < α ≤ 1,
−1 < q < ∞ and 0 ≤ p, s < ∞. If Sϕ : B∗

α → F ∗(p, q, s) is compact, it maps closed
balls onto compact sets.
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Proof. If B ⊂ B∗
α is a closed ball and g ∈ F ∗(p, q, s) belongs to the closure of Sϕ(B),

we can find a sequence (fn)
∞
n=1 ⊂ B such that ϕ ◦ fn converges to g ∈ F ∗(p, q, s)

as n → ∞. But (fn)
∞
n=1 is a normal family, hence it has a subsequence (fnj )

∞
j=1

converging uniformly on the compact subsets of D to an analytic function f. As in
earlier arguments of proposition 2.1 in [11], we get a positive estimate which shows
that f must belong to the closed ball B. On the other hand, also the sequence
ϕ◦ (fnj )

∞
j=1 converges uniformly on compact subsets to an analytic function, which

is g ∈ F ∗(p, q, s). We get g = ϕ ◦ f, i.e. g belongs to Sϕ(B). Thus, this set is closed
and also compact.

Compactness of superposition operators acting between B∗
α and F ∗(p, q, s) classes

can be given in the following result.

Theorem 4.1. Assume ϕ is analytic mapping from D into itself. 0 ≤ p < ∞,
−1 < q < ∞ and 0 ≤ s ≤ 1. Then Sϕ : B∗

α → F ∗(p, q, s) is compact if

lim
r→1−

sup
a∈D

∫
|f(z)|>r

|f ′(z)|p

(1− |f(z)|2)pα
(1− |z|2)qgs(z, a)dA(z) = 0. (6)

Proof. We first assume that (6) holds. Let B := B̄(g, δ) ⊂ B∗
α, g ∈ B∗

α and δ > 0,
be a closed ball, and let (fn)

∞
n=1 ⊂ B be any sequence. We show that its image

has a convergent subsequence in F ∗(p, q, s), which proves the compactness of Sϕ by
definition.

Again, (fn)
∞
n=1 ⊂ B(D) is normal, hence, there is a subsequence (fnj )

∞
j=1 which

converges uniformly on the compact subsets of D to an analytic function f. By
Cauchy formula for the derivative of an analytic function, also the sequence (f ′

nj
)∞j=1

converges uniformly on the compact subsets of D to fnj . It follows that also the
sequences (ϕ ◦ fnj )

∞
j=1 and (ϕ ◦ f ′

nj
)∞j=1 converge uniformly on the compact subsets

of D to ϕ ◦ f and ϕ ◦ f ′, respectively. Moreover, f ∈ B ⊂ B∗
α since for any fixed

R, 0 < R < 1, the uniform convergence yield

sup
|z|≤R

∣∣∣∣ f ′(z)

1− |f(z)|2
− g′(z)

1− |g(z)|2

∣∣∣∣(1− |z|2)α

+ sup
|z|≤R

|f ′(z)− g′(z)|(1− |z|2)α + |f(0)− g(0)|

= lim
j→∞

sup
|z|≤R

∣∣∣∣ f ′
nj
(z)

1− |fnj (z)|2
− g′(z)

1− |g(z)|2

∣∣∣∣(1− |z|2)α

+ lim
j→∞

(
sup
|z|≤R

|f ′
nj
(z)− g′(z)|(1− |z|2)α + |fnj (0)− g(0)|

)
< δ.

Hence, d(f, g;B∗
α) ≤ δ.

Let ε > 0. Since (6) is satisfied, we may fix r, 0 < r < 1, such that

sup
a∈D

∫
|f(z)|>r

|f ′(z)|p

(1− |f(z)|2)pα
(1− |z|2)qgs(z, a)dA(z) ≤ ε.

By the uniform convergence, we may fix N1 ∈ N such that

|ϕ(0) ◦ fnj − ϕ(0) ◦ f | ≤ ε, for all j ≥ N1. (7)

The condition (6) is known to imply the compactness of Sϕ : Bα → F (p, q, s),
hence possibly to passing once more to a subsequence and adjusting the notations,
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we may assume that

∥ϕ ◦ fnj − ϕ ◦ f∥F (p,q,s) ≤ ε, for all j ≥ N2; N2 ∈ N. (8)

Since (fnj )
∞
j=1 ⊂ B, f ∈ B and |f ′

nj
(z)| ≤ |f ′(z)| it follows that

sup
a∈D

∫
|f(z)|≥r

[
(ϕ ◦ fnj )

∗(z)− (ϕ ◦ f)∗(z)
]p
(1− |z|2)qgs(z, a)dA(z)

≤ sup
a∈D

∫
|f(z)|≥r

[
(ϕ∗(fnj (z))|f ′

nj
(z)| − (ϕ∗(f(z))|f ′(z)|

]p
(1− |z|2)qgs(z, a)dA(z)

≤ sup
a∈D

∫
|f(z)|≥r

[
(ϕ∗(fnj (z))− (ϕ∗(f(z))

]p|f ′(z)|p(1− |z|2)qgs(z, a)dA(z)

≤ dB∗
α
(ϕ(fnj (z)), ϕ(f(z))) sup

a∈D

∫
|f(z)|>r

|f ′(z)|p

(1− |f(z)|2)pα
(1− |z|2)qgs(z, a)dA(z),

hence,

sup
a∈D

∫
|f(z)|≥r

[
(ϕ ◦ fnj

)∗(z)− (ϕ ◦ f)∗(z)
]p
(1− |z|2)qgs(z, a)dA(z) ≤ Cε. (9)

On the other hand, by the uniform convergence on the compact disc D, we can
find an N3 ∈ N such that for all j ≥ N3,∣∣∣∣ ϕ′(fnj )(z)

1− |ϕ(fnj (z))|2
− ϕ′(f(z))

1− |ϕ(f(z))|2

∣∣∣∣≤ ε.

For all z with |f(z)| ≤ r. Hence, for such j,

sup
a∈D

∫
|f(z)|≤r

[
(ϕ ◦ fnj )

∗(z)− (ϕ ◦ f)∗(z)
]p
(1− |z|2)qgs(z, a)dA(z)

≤ sup
a∈D

∫
|f(z)|≤r

[
ϕ∗(fnj (z))− ϕ∗(f(z))

]p|f ′(z)|p(1− |z|2)qgs(z, a)
)
dA(z)

≤ ε

(
sup
a∈D

∫
|f(z)|≤r

|f ′(z)|p

(1− |f(z)|2)pα
(1− |z|2)qgs(z, a)dA(z)

) 1
p

≤ Cε,

hence,

sup
a∈D

∫
|f(z)|≤r

[
(ϕ ◦ fnj )

∗(z)− (ϕ ◦ f)∗(z)
]p
(1− |z|2)qgs(z, a)dA(z) ≤ C ε. (10)

where C is a positive constant which is obtained from (iii) of Theorem 3.1. Com-
bining (7), (8), (9) and (10) we deduce that fnj → f in F ∗(p, q, s).
The proof is therefore completed.

5. Superposition operators from B∗
α to B∗

β

First we show that Sϕ maps B∗
α into B∗

β unless ϕ is a constant, where 0 < β < α.

Theorem 5.1. Let 0 < β < α and ϕ be an entire function.
Suppose that |f(z)| ≤ λ, where λ is a positive constant and f ∈ B∗

α. Then the
superposition operator Sϕ maps B∗

α into B∗
β if and only if ϕ is a constant function.
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Proof. If ϕ is a constant, it is obvious that Sϕ(B∗
α) ⊂ B∗

β . Now assume that ϕ is not

a constant. We distinguish two cases to prove that Sϕ(B∗
α) ̸⊂ B∗

β .

(i) If 0 < α < 1. Since ϕ is not a constant, there exists a disk |γ − γ0| < r and
0 < γ0 < 1, on which ϕ∗(f(z)) > δ > 0.
Let f(z) = γ0 + r(1− z)1−α ∈ B∗

α. Then, for z ∈ D,

(1− |z|2)β((ϕ ◦ f)∗(z)) = (1− |z|2)β(ϕ∗(f(z)))|f ′(z)|

≥ δr(1− α)(1− |z|2)β

|1− z|α
.

The right side of the above inequality tends to infinity as z → 1 along with the
positive radius. This shows that Sϕ(f) = (ϕ ◦ f) ̸∈ B∗

β and Sϕ(B∗
α) ̸⊂ B∗

β .

(ii) If α = 1. Since ϕ is unbounded, there exists a complex sequence (γn) with
γn → ∞, as n → ∞ such that |ϕ(γn)| → ∞ as n → ∞. Without loss of generality,
we may assume that γn satisfies the conditions in Lemma 2.1 with some δ > 0 by
adding γ0 = 0 and choosing a subsequence if necessary. By Lemma 2.1, there exists
a domain Ω and a conformal mapping f of D onto Ω such that γn ∈ Ω for n = 0, 1, ...
and f ∈ B∗. Since any function in B∗

β is bounded and, hence, Sϕ(f) = (ϕ ◦ f) ̸∈ B∗
β

and Sϕ(B∗
α) ̸⊂ B∗

β , since (ϕ ◦ f) is unbounded. The proof is completed.

In the next theorem we study superposition operator from B∗
α to B∗

β , where α ≤
β.

Theorem 5.2. Let 0 < α < 1, α ≤ β. Suppose that |f(z)| ≤ λ, where λ is a
positive constant and f ∈ B∗

α.Then for any entire function ϕ, Sϕ is a bounded
operator from B∗

α into B∗
β .

Proof. Let α < 1, α ≤ β, and ϕ be an entire function. Let M > 0. For a function
f with ∥f∥Bα ≤ M we have,

ϕ∗(f(0)) ≤ M1 = max
|γ|=λ

|ϕ(γ)|,

ϕ∗(f(z)) ≤ M2 = max
|γ|=λ

ϕ∗(γ), for z ∈ D.

Thus

∥ϕ ◦ f∥B∗
β

≤ |(ϕ ◦ f)∗(0)|+ sup
z∈D

(1− |z|2)β(ϕ∗(f(z)))|f ′(z)|

≤ M1 +M2 sup
z∈D

(1− |z|2)α|f ′(z)|

= M1 +M2|f∥Bα

≤ M1 +MM2.

This completes the proof.
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