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GLOBAL CHARACTER OF SYSTEMS OF RATIONAL

DIFFERENCE EQUATIONS

YACINE HALIM

Abstract. This paper deals with the solutions, stability character and as-
ymptotic behavior of the systems of difference equations

xn+1 =
1

1± yn
, yn+1 =

1

1± xn
, n ∈ N0

where N0 = N ∪ {0}and the initial conditions x0 and y0, are nonzero real
numbers, such that their solutions are associated to Fibonacci numbers.

1. Introduction

There has been a great interest in studying difference equations and systems,
see [1]-[13] and references cited therein. Difference equations usually describe the
evolution of certain phenomena over the course of time. Indeed difference equations
have been applied in several mathematical models in biology, economics, genetics,
population dynamics, medicines and so forth.

In this paper and motivated by [7], We deal with the form of the solutions of the
following systems of rational difference equations

xn+1 =
1

1± yn
, yn+1 =

1

1± xn

initials conditions are arbitrary nonzero real numbers.
Now, We review some results which will be useful in our investigation.

1.1. Fibonacci numbers. Here we will give some information about Fibonacci
numbers. Fibonacci sequence {Fn}n∈N are defined by

Fn+2 = Fn+1 + Fn, n ∈ N0 (1.1)

where F0 = 0, F1 = 1. The solution of equation (1.1) is given by following formula

Fn =
αn − βn

α− β
(1.2)
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which is called Binet formula of Fibonacci numbers, where α =
1 +

√
5

2
and β =

1−
√
5

2
. Also, it is obtained to extend the Fibonacci sequence backward as

F−n = F−n+2 − F−n+1 = (−1)n+1Fn.

More generally, we can give the following limit

lim
n→∞

Fn+r

Fn
= αr, r ∈ Z.

1.2. Linearized stability. Let f and g be two continuously differentiable func-
tions:

f : I × J −→ I, g : I × J −→ J

where I, J are some interval of real numbers. Consider the system of difference
equations

xn+1 = f (xn, yn) , yn+1 = f (xn, yn) , (1.3)

where n ∈ N0, x0 ∈ I and y0 ∈ J .
Define the map

H : I × J −→ I × J

by

H(V ) = (f(V ), g(V ))

where V = (u, v)T . Let Vn = (xn, yn)
T
, then, we can easily see that system (1.3)

is equivalent to the following system written in the vector form

Vn+1 = H(Vn), n = 0, 1, . . . , (1.4)

Definition 1.

• An equilibrium point point (x, y) ∈ I × J of system (1.3) is a solution of
the system

x = f (x, y) , y = g (x, y) .

• An equilibrium point V ∈ I × J of system (1.4) is a solution of the system

V = H(V ).

Remark 1. The linearized system, associated to System (1.3), about the equilibrium
point (x, y) is given by

(
xn+1

yn+1

)
=


∂f

∂x
(x, y)

∂f

∂y
(x, y)

∂g

∂x
(x, y)

∂g

∂y
(x, y)

( xn

yn

)
.

Definition 2. Let V be an equilibrium point of system (1.4) and ∥ . ∥ any norm,
for example the Euclidean norm.

(1) The equilibrium point V is called stable (or locally stable) if for every ϵ > 0
there exist δ > 0 such that ∥ V0 − V ∥< δ implies ∥ Vn − V ∥< ϵ for n ≥ 0.
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(2) The equilibrium point V is called asymptotically stable (or locally asymp-
totically stable) if it is stable and there exist γ > 0 such that ∥ V0 −V ∥< γ
implies

∥ Vn − V ∥→ 0, n → +∞.

(3) The equilibrium point V is said to be global attractor (respectively global
attractor with basin of attraction a set G ⊆ I×J , if for every V0 (respectively
for every V0 ∈ G)

∥ Vn − V ∥→ 0, n → +∞.

(4) The equilibrium point V is called globally asymptotically stable (respectively
globally asymptotically stable relative to G) if it is asymptotically stable,
and if for every V0 (respectively for every V0 ∈ G),

∥ Vn − V ∥→ 0, n → +∞.

(5) The equilibrium point V is called instable if it is not stable.

Theorem 1. (Linearized stability)

(1) If all the eigenvalues of the Jacobian matrix lie in the open unit disk |λ| < 1,
then the equilibrium point V of system (1.4) is asymptotically stable.

(2) If at least one eigenvalue of the Jacobian matrix have absolute value greater
than one, then the equilibrium point V of system (1.4) is unstable.

2. First System

In this section, we study the solutions of the system of difference equations

xn+1 =
1

1 + yn
, yn+1 =

1

1 + xn
(2.1)

where the initial values are arbitrary real numbers with x0, y0 /∈
{
− F2n

F2n−1
, n =

1, 2, ...
}
∪
{
− F2n+1

F2n
, n = 1, 2, ...

}
.

2.1. Form of the solutions. The following theorem describes the form of the
solutions of system (2.1).

Theorem 2. Let {xn}n≥0, {yn}n≥0 be a solution of (2.1). Then for n = 1, 2, ...,

x2n−1 =
F2n−1 + F2n−2y0
F2n + F2n−1y0

, x2n =
F2n + F2n−1x0

F2n+1 + F2nx0
,

y2n−1 =
F2n−1 + F2n−2x0

F2n + F2n−1x0
, y2n =

F2n + F2n−1y0
F2n+1 + F2ny0

.

Proof. For n = 0 the result holds. Suppose that n > 0 and that our assumption
holds for n− 1. That is,

x2n−3 =
F2n−3 + F2n−4y0
F2n−2 + F2n−3y0

, x2n−2 =
F2n−2 + F2n−3x0

F2n−1 + F2n−2x0
,

y2n−3 =
F2n−3 + F2n−2x0

F2n−2 + F2n−3x0
, y2n−2 =

F2n−2 + F2n−3y0
F2n−1 + F2n−2y0

.

Now it follows from system (2.1) that
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x2n−1 =
1

1 + y2n−2

=
1

1 +
F2n−2 + F2n−3y0
F2n−1 + F2n−2y0

=
1

F2n−1 + F2n−2y0 + F2n−2 + F2n−3y0
F2n−1 + F2n−2y0

=
F2n−1 + F2n−2y0

F2n−1 + F2n−2 + (F2n−2 + F2n−3)y0
.

So, we have

x2n−1 =
F2n−1 + F2n−2y0
F2n + F2n−1y0

.

Also, it follow from System (2.1) that

y2n−1 =
1

1 + x2n−2

=
1

1 +
F2n−2 + F2n−3x0

F2n−1 + F2n−2x0

=
1

F2n−1 + F2n−2x0 + F2n−2 + F2n−3x0

F2n−1 + F2n−2x0

=
F2n−1 + F2n−2x0

F2n−1 + F2n−2 + (F2n−2 + F2n−3)x0
.

Hence we have

y2n−1 =
F2n−1 + F2n−2x0

F2n + F2n−1x0
.

Similarly, it follow from System (2.1) that

x2n =
1

1 + y2n−1

=
1

1 +
F2n−1 + F2n−2x0

F2n + F2n−1x0

=
1

F2n + F2n−1x0 + F2n−1 + F2n−2x0

F2n + F2n−1x0

=
F2n + F2n−1x0

F2n + F2n−1 + (F2n−1 + F2n−2)x0
.

So, we have

x2n =
F2n + F2n−1x0

F2n+1 + F2nx0
.
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Also, it follow from System (2.1) that

y2n =
1

1 + x2n−1

=
1

1 +
F2n−1 + F2n−2y0
F2n + F2n−1y0

=
1

F2n + F2n−1y0 + F2n−1 + F2n−2y0
F2n + F2n−1y0

=
F2n + F2n−1y0

F2n + F2n−1 + (F2n−1 + F2n−2)y0
.

So we get

y2n =
F2n + F2n−1y0
F2n+1 + F2ny0

.

�

2.2. Global stability of positive solutions. Our aim in this section is to study
the asymptotic behavior of positive solutions of the system (2.1). Let I = J =
(0,+∞), and consider the functions

f : I × J −→ I, g : I× −→ J

defined by

f(x, y) =
1

1 + y
,

g(x, y) =
1

1 + x
.

Corollary 1. System (2.1) has a unique equilibrium point in I × J , namely

E =

(
−1 +

√
5

2
,
−1 +

√
5

2

)
.

Proof. Clearly the system

x =
1

1 + y
, y =

1

1 + x
,

has a unique solution in I × J which is

E =

(
−1 +

√
5

2
,
−1 +

√
5

2

)
.

�

Theorem 3. The equilibrium point E is locally asymptotically stable.

Proof. The linearized system, associated to System (2.1), about the equilibrium E
is (

xn+1

yn+1

)
=

(
0 −3+

√
5

2
−3+

√
5

2 0

)(
xn

yn

)
. (2.2)



EJMAA-2015/3(1) GLOBAL CHARACTER OF SYSTEMS... 209

The characteristic polynomial of the System (2.2) about E is given by

P (λ) = λ2 −

(
−3 +

√
5

2

)2

Consider the two functions defined by

a(λ) = λ2, b(λ) =

(
−3 +

√
5

2

)2

.

We have ∣∣∣∣∣−3 +
√
5

2

∣∣∣∣∣ < 1.

Then
|b(λ)| < |a(λ)| , ∀λ : |λ| = 1

Thus, by Rouche’s theorem, all zeros of P (λ) = a(λ)− b(λ) = 0 lie in |λ| < 1. So,
by theorem (1) we get that E is locally asymptotically stable. �
Theorem 4. The equilibrium point E is globally asymptotically stable.

Proof. Let {xn, yn}n≥0 be a solution of system (2.1). By theorem (3) we need only
to prove that E is global attractor, that is

lim
n→∞

(xn, yn) = E.

From Theorem (2), We have

lim
n→∞

x2n = lim
n→∞

F2n + F2n−1x0

F2n+1 + F2nx0

= lim
n→∞

1 + x0
F2n−1

F2n

F2n+1

F2n
+ x0

=
1 + x0

1
α

α+ x0

=
−1 +

√
5

2
,

and

lim
n→∞

x2n−1 = lim
n→∞

F2n−1 + F2n−2y0
F2n + F2n−1y0

= lim
n→∞

1 + x0
F2n−2

F2n−1

F2n

F2n−1
+ x0

=
1 + x0

1
α

α+ x0

=
−1 +

√
5

2
.

Then lim
n→∞

xn =
−1 +

√
5

2
. Similarly, we obtain lim

n→∞
yn =

−1 +
√
5

2
. Hence we

have
lim

n→∞
(xn, yn) = E.
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�

2.3. Numerical example. For confirming the results of this section, we consider
the following numerical example.

Example 1. We assume x0 = 0.4 and y0 = 3.2 (See Fig. (1)).

0 5 10 15 20 25
0

1

2

3

4

5

6

n

x(
n)

Figure 1. This figure shows that the solution of the system (2.1)
is global attractor.

3. Second System

In this section, we study the solutions of the system of difference equations

xn+1 =
1

1− yn
, yn+1 =

1

1− xn
(3.1)

where the initial values are arbitrary real numbers with x0, y0 /∈
{
0, 1
}
.

3.1. Periodicity of solutions.

Lemma 1. Let
{
xn

}
n≥0

,
{
yn
}
n≥0

be a solution of (3.1). Then for n ≥ 0 we have

xn+6 = xn,

yn+6 = yn,

that is
{
xn

}
n≥0

and
{
yn
}
n≥0

are periodic with periods six.
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Proof.

xn+6 = x(n+5)+1 =
1

1− yn−5

=
1

1− 1

1− xn+4

=
−1 + xn+4

xn+4

=

1− 1

−1 + yn+3

1

1− yn+3

= yn+3

=
1

1− xn+2
=

1

1− 1

1− yn+1

=
−1 + yn+1

yn+1
=

−1 +
1

1− xn

1

1− xn

.

Hence we have

xn+6 = xn, n ≥ 0.

Similarly, we have

yn+6 = y(n+5)+1 =
1

1− xn−5

=
1

1− 1

1− yn+4

=
−1 + yn+4

yn+4

=

1− 1

−1 + xn+3

1

1− xn+3

= xn+3

=
1

1− yn+2
=

1

1− 1

1− xn+1

=
−1 + xn+1

xn+1
=

−1 +
1

1− yn
1

1− yn

.

So we have

yn+6 = yn, n ≥ 0.

�
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3.2. Form of the solutions. In the following theorem we give explicit formulas
for the solutions of system (3.1).

Theorem 5. Let {xn}n≥0, {yn}n≥0 be a solution of (3.1). Then for n = 1, 2, ...,

x6n−5 =
1

1− y0
, y6n−5 =

1

1− x0
,

x6n−4 =
−1 + x0

x0
, y6n−4 =

−1 + y0
y0

,

x6n−3 = y0, y6n−3 = x0,

x6n−2 =
1

1− x0
, y6n−2 =

1

1− y0
,

x6n−1 =
−1 + y0

y0
, y6n−1 =

−1 + x0

x0
,

x6n = x0, y6n = y0.

Proof. For n = 0 the result holds. Suppose that n > 0 and that our assumption
holds for n− 1. That is,

x6n−11 =
1

1− y0
, y6n−11 =

1

1− x0
,

x6n−10 =
−1 + x0

x0
, y6n−10 =

−1 + y0
y0

,

x6n−9 = y0, y6n−9 = x0,

x6n−8 =
1

1− x0
, y6n−8 =

1

1− y0
,

x6n−7 =
−1 + y0

y0
, y6n−7 =

−1 + x0

x0
,

x6n−6 = x0, y6n−6 = y0.
Now it follows from system (3.1) that

x6n−5 =
1

1− y6n−6
=

1

1− y0

and

y6n−5 =
1

1− x6n−6
=

1

1− x0
.

Also, it follow from System (3.1) that

x6n−4 =
1

1− y6n−5

=
1

1− 1

1− x0

.

So we get

x6n−4 =
−1 + x0

x0
.

Again from System (3.1)
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y6n−4 =
1

1− x6n−5

=
1

1− 1

1− y0

.

So we have

y6n−4 =
−1 + y0

y0
.

Similarly, one can easily prove the other relations. Thus, the proof is complete. �

3.3. Numerical example. For confirming the results of this section, we consider
the following numerical example.

Example 2. We assume x0 = 0.2 and y0 = 1.1 (See Fig. (2)).
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Figure 2. This figure shows the periodicity the solution of the
system (3.1).

4. Conclusion

In this study, we mainly obtained the relation between the solutions of system
of difference equations (2.1) and Fibonacci numbers. We also presented that the

solutions of equations in (2.1) actually converge to
(

−1+
√
5

2 , −1+
√
5

2

)
. We prove also

that the solutions of system of difference equations (3.1) are periodic with period
six and so this solutions are unstable.
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