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UNSTEADY MAGNETOHYDRODYNAMIC FLOW OF SECOND

GRADE FLUID DUE TO IMPULSIVE MOTION OF PLATE

AMIR KHAN, GUL ZAMAN

Abstract. New analytic solutions for unsteady magnetohydrodynamic (MHD)
flows of a generalized second-grade fluid have been derived. The generalized
second-grade fluid saturates the porous space. Fractional derivative is used in

the governing equation. The analytical expressions for velocity and shear stress
fields have been obtained by using Laplace transform technique for the frac-
tional calculus. The obtained solutions are expressed in series form in terms
of Fox H-functions. The corresponding solutions for ordinary second-grade

fluid passing through a porous space are obtained as special cases of general
solutions. Moreover, several figures are sketched for the pertinent parameters
to analyze the characteristics of velocity field and shear stress.

1. Introduction

Interest and research activities regarding the flows of non-Newtonian fluids have
increased in the last few decades. This is due to their industrial and engineering
applications as well as the interesting mathematical challenges offered by the equa-
tions governing the flows. A large class of fluid is Non-Newtonian fluid in which
the relation between the deformation rate and shear stress is non-linear. Since we
have no model available which is considered to be a universal constitutive model
and can also predict the behavior of all available non-Newtonian fluids. As a result,
many constitutive models of non-Newtonian fluids have been developed. Rivlin and
Ericksen [1] introduced a subclass of non-Newtonian fluids known as second-grade
fluid for which a possibility exist to obtain the exact solution. Exact solutions of
second-grade fluid for start-up flows have been investigated by Bandelli [2] using
integral transform technique. Tan [3] discussed the flow of suddenly moved flat
plate in a generalized second-grade. Exact solutions of a generalized second grade
fluid corresponding to the oscillatory flow between two cylinders have been achieved
by Mahmood et al. [4]. Tripathy [5] discussed peristaltic motion of a generalized
second grade fluid passing through a cylindrical tube. Tan [6] obtained solutions
for unsteady motions between two parallel plates of the generalized second grade
fluid.
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In the last few decades the study of fluid motions through porous medium have
received much attention due to its importance not only to the field of academic
but also to the industry. Such motions have many applications in many industrial
and biological processes such as food industry, irrigation problems, oil exploitation,
motion of blood in the cardiovascular system [7], chemistry and bio-engineering,
soap and cellulose solutions and in biophysical sciences where the human lungs are
considered as a porous layer. etc. Unsteady MHD flows of viscoelastic fluids pass-
ing through porous space are of considerable interest. In the last few years alot of
work has been done on MHD flow, see [8-12] and reference therein.
Recently, the fractional derivative [13] approach is proving to be an important tool
for considering the behaviors of such types of fluids. Many researchers investi-
gated different problems using fractional derivative technique regarding such fluids.
In their works, the integer order time derivatives in the constitutive models for
generalized second-grade fluids are replaced by the Riemann-Liouville fractional
derivatives. Alot of work has been done on fractional derivatives during the last
few years. Here we mention only those contributions which regards with the vis-
coelastic type fluids [13-20] and the references therein.
According to the authors informations upto yet no study has been done on the
MHD flow of generalized second-grade fluid induced by impulsive motion of the
plate flowing through a porous space. Hence, our main objective in this note is
to make a contribution in this regard. We take an incompressible MHD flow pass-
ing through porous space of a generalized second-grade fluid. Laplace transform
method has been used for the fractional calculus to obtained analytic solutions for
the profiles of velocity field and the corresponding shear stress. The obtained solu-
tions satisfies all the imposed initial and boundary conditions are expressed in terms
of Fox-H function. Similar solutions for ordinary second-grade fluid are obtained
as particular case of general solution. Finally, the effects of different parameters on
the motion are analyzed graphically.

2. Governing equations

The equation of continuity and momentum of MHD flow passing through porous
space is given by:(Tan and Masuoka [6])

∇ ·V = 0; ρ(
dV

dt
) = divT− σβ2

oV+R, (1)

where V=(u,v,w) represents velocity vector, electrical conductivity and density of
the fluid are represented by σ and ρ respectively, B0 is the magnitude of a uniform
magnetic field, material time derivative is denoted by d/dt, Cauchy stress tensor is
represented by T, and R is the Darcy’s resistance of the porous space.
For an incompressible and unsteady generalized second-grade fluid the cauchy stress
tensor T is given as [7]:

T = S− pI; S = µW1 + α1W2 + α2W
2
1, (2)

where S and pI represents the extra stress tensor and the indeterminate spherical
stress, the dynamic viscosity is denoted by µ, normal stress moduli are represented
by α1 and α2 and the kinematic tensors are W1 and W2 defined as

W1 = L+ L
T , W2 = Dβ

t +W1L+ L
T
W1 (3)
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where L is the velocity gradient and Dβ
t represents the operator for fractional

differentiation whose order is β and is based on the Riemann-Liouville definition
[13],

Db
a[g(a)] =

1

Γ(1− b)

d

da

∫ a

0

g(t)

(a− t)b
dt, 0 ≤ b < 1 (4)

where Gamma function is denoted by Γ(·). Model for ordinary second-grade fluid
can be obtained by putting β = 1. For the compatibility of this model with ther-
modynamics it is required that the material moduli should obey the following con-
ditions

α1 + α2 = 0, 0 ≤ α1 and µ ≥ 0. (5)

For the second-grade fluid the Darcy’s resistance satisfies the following equation
[8]:

R = −φ

κ
(µ+ α1

∂

∂t
)V (6)

where k > 0 and φ(0 < φ < 1) are the permeability and the porosity of the porous
medium. For the following problem we consider the velocity field and an extra
stress of the form

V = (u(y, t), 0, 0), S = S(y, t). (7)

where u is the velocity taken in the x-direction. Substituting Eq.(7) into Eq.(2)
and taking into account the initial condition

S(y, 0) = 0, y > 0, (8)

the fluid being at rest up to the time t = 0, we get

Sxy = (µ+ α1D
β
t )∂yu(y, t), (9)

where Syy = Szz = Sxz = Syz = 0, and Sxy = Syx. The balance of linear
momentum in the absence of body forces and pressure gradient is given as:

∂ySxy − σB2
0u(y, t)−

φ

κ
(µ+ α1

∂

∂t
)u(y, t) = ρ∂tu(y, t), (10)

By putting Sxy from Eq. (9) into (10), we find the governing equation under the
form

ρ∂tu(y, t) = (µ+ α1D
β
t )∂

2
yu(y, t)− σB2

0u(y, t)−
φ

κ
(µ+ α1

∂

∂t
)u(y, t), (11)

3. Statement of the problem

We take an unsteady incompressible flow of homogenous and electrically con-
ducting second-grade fluid bounded by a rigid plate at y = 0. The plate is taken
normal to y-axis and the fluid saturates the porous medium y > 0. The electri-
cally conducting fluid is stressed by a uniform magnetic field B0 parallel to the y
axis, while the induced magnetic field is neglected by choosing a small magnetic
Reynolds number. Initially, both the plate and the fluid are at rest, and after time
t=0, it is suddenly set into motion by translating the flate plate in its plane, with
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a constant velocity A. The initial and boundary conditions of velocity field are:

u(y, 0) = 0; y > 0,

u(0, t) = A; t > 0,

u(y, t), ∂yu(y, t) → 0 as y → ∞ and t > 0.

(12)

4. Calculation of Velocity field

Employing the non-dimensional quantities

u∗ = u
U , y∗ = yU

ν , t∗ = tU2

ν , α∗ = α1U
2

ρν2 , A∗ = A
U

τ = S
ρU2 , K = κU2

φν2 , M2 =
σνB2

0

ρU2 ,

(13)

The dimensionless mark * is omitted here for simplicity. Thus, the governing equa-
tions of dimensionless motion becomes

∂tu(y, t) = (1 + αDβ
t )∂

2
yu(y, t)−

1

K
(1 + α

∂

∂t
)u(y, t)−M2u(y, t), (14)

τ(y, t) = (1 + αDβ
t )∂yu(y, t) (15)

with the given conditions as

u(y, 0) = 0; y > 0,

u(0, t) = A; t > 0,

u(y, t), ∂yu(y, t) → 0 as y → ∞, and t > 0.

(16)

First we will apply the Laplace transform to eq (14) and using the Laplace transform
formula for sequential fractional derivatives [21]

ū(y, t) =

∫

∞

o

u(y, t)e−stdt, s ≥ 0, (17)

Taking into the account the corresponding initial and boundary conditions (16), we
get the following differential equation

∂2
y ū(y, q)−

(

1 + αq

K(1 + αqβ)
+

q +M2

1 + αqβ

)

ū(y, q) = 0, s ≥ 0, (18)

ū(0, q) =
A

q
; t > 0,

ū(y, q), ∂yū(y, q) → 0 as y → ∞, and q > 0. (19)

The solution of Eq.(18) satisfying the boundary conditions (19) is of the following
form:

ū(y, q) =
A

q
exp

(

− y

√

1

K(1 + αqβ)
((1 + αq) +K(q +M2))

)

(20)
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To get the analytical solution for velocity field and to avoid difficult calculations of
contour integrals and residues, we will apply the discrete inverse Laplace transform
method [21], but first we have to expressed Eq. (20) in series form as

ū(y, q) =

∞
∑

e1=0

∞
∑

f1=0

∞
∑

g1=0

∞
∑

h1=0

∞
∑

r=0

∞
∑

s=0

A(−1)e1+f1+g1+h1+r+sαh1+r+sM2g1ye1

e1!f1!g1!h1!r!s!Ke1/2−f1q−f1−h1−βr−s+1

× Γ(f1 − e1/2)Γ(g1 − f1)Γ(h1 + f1)Γ(r + e1/2)Γ(s− e1/2)

Γ(e1/2)Γ(−e1/2)Γ(e1/2)Γ(f1)Γ(−f1)
(21)

Now apply the discrete inverse Laplace transform to Eq. (22), we get

u(y, t) =

∞
∑

e1=0

∞
∑

f1=0

∞
∑

g1=0

∞
∑

h1=0

∞
∑

r=0

∞
∑

s=0

A(−1)e1+f1+g1+h1+r+st−f1−h1−βr−sαh1+r+s

e1!f1!g1!h1!r!s!Γ(−f1)Ke1/2−f1

× Γ(f1 − e1/2)Γ(g1 − f1)Γ(h1 + f1)Γ(r + e1/2)Γ(s− e1/2)M
2g1ye1

Γ(e1/2)Γ(−e1/2)Γ(e1/2)Γ(f1)Γ(−f1 − h1 − βr − s+ 1)
(22)

To get Eq. (23) in a more compact form we use Fox H-function [13],

u(y, t) = A
∞
∑

e1=0

∞
∑

f1=0

∞
∑

g1=0

∞
∑

r=0

∞
∑

s=0

(−1)e1+f1+g1+r+sM2g1ye1t−f1−βr−s+1αr+s

e1!f1!g1!r!s!Ke1/2−f1

×H
1,5

5,7

[

α

t

∣

∣

∣

∣

∣

∣

∣

∣

(1− f1 + e1/2, 0), (1− g1 + f1, 0), (1− f1, 1), (1− s+ e1/2, 0),
(1− r − e1/2, 0).

(1− e1/2, 0), (1− f1, 0), (1 + f1, 0), (0, 1), (1 + e1/2, 0),
(1− e1/2, 0), (f1 + βr + s,−1).

]

(23)

To obtain Eq. (24), the following Fox H-function property has been used,

H
1,s

s,t+1

[

−σ

∣

∣

∣

∣

∣

(1− a1, A1), ..., (1− as, As)
(1, 0), (1− b1, B1), ..., (1− bt, Bt)

]

=
∞
∑

r=0

Γ(a1 +A1r)...Γ(as +Asr)

r!Γ(b1 +B1r)...Γ(bt +Btr)
σr.

5. Calculation of Shear Stress

To get the shear stress first we apply Laplace transform on Eq. (15), we get

τ̄(y, q) = (1 + αqβ)∂yū(y, q), (24)

Substituting ū(y, q) from eq. (20), we get

τ̄(y, t) = −A(1 + αqβ)

q
exp(−

√
By)

√
B. (25)

where

B =
(1 + αq) +K(q +M2)

K(1 + αqβ)
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To get a more compact form of τ̄(y, q), we write eq. (26) in series form as

τ̄(y, q) =
∞
∑

e1=0

∞
∑

f1=0

∞
∑

g1=0

∞
∑

h1=0

∗∗
∑

∞
∑

r=0

∞
∑

s=0

A(−1)e1+f1+g1+h1+ζ1+r+s+1

e1!f1!g1!h1!i1!j1!k1!l1!m1!r!s!

× αh1+k1+l1+m1+r+sΓ(f1 − e1/2)Γ(g1 − f1)Γ(h1 + f1)Γ(r + e1/2)Γ(s− e1/2)

Γ(e1/2)Γ(−e1/2)Γ(e1/2)Γ(f1)Γ(−f1)Ke1/2−f1−i1+1/2

× M2g1+2j1ye1Γ(i1 − 1/2)Γ(j1 − i1)Γ(k1 + i1)Γ(l1 − 1/2)Γ(m1 − 1/2)

Γ(1/2)Γ(1/2)Γ(1/2)Γ(i1)Γ(−i1)q−f1−h1−i1−k1−βl1−m1−βr−s+1
(26)

where

∗∗
∑

=
∞
∑

i1=0

∞
∑

j1=0

∞
∑

k1=0

∞
∑

l1=0

∞
∑

m1=0

,

ζ1 = i1 + j1 + k1 + l1 +m1,

Taking the inverse Laplace of eq.(27), we get

τ(y, t) =

∞
∑

e1=0

∞
∑

f1=0

∞
∑

g1=0

∞
∑

h1=0

∗∗
∑

∞
∑

r=0

∞
∑

s=0

A(−1)e1+f1+g1+h1+ζ1+r+s+1

e1!f1!g1!h1!i1!j1!k1!l1!m1!r!s!

× αh1+k1+l1+m1+r+sΓ(f1 − e1/2)Γ(g1 − f1)Γ(h1 + f1)Γ(r + e1/2)Γ(s− e1/2)

Γ(e1/2)Γ(−e1/2)Γ(e1/2)Γ(f1)Γ(−f1)Ke1/2−f1−i1+1/2

× M2g1+2j1ye1Γ(i1 − 1/2)Γ(j1 − i1)Γ(k1 + i1)Γ(l1 − 1/2)Γ(m1 − 1/2)

Γ(1/2)Γ(1/2)Γ(1/2)Γ(i1)Γ(−i1)Γ(−f1 − h1 − i1 − k1 − βl1 −m1 − βr − s+ 1)

× t−f1−h1−i1−k1−βl1−m1−βr−s (27)

Finally, using Fox H-function to get the stress field as,

τ(y, t) =

∞
∑

e1=0

∞
∑

f1=0

∞
∑

g1=0

∗∗
∑

∞
∑

r=0

∞
∑

s=0

A(−1)e1+f1+g1+ζ1+r+s+1ye1

e1!f1!g1!i1!j1!k1!l1!m1!r!s!M−2g1−2j1

× t−f1−i1−k1−βl1−m1−βr−s

α−k1−l1−m1−r−sKe1/2−f1−i1+1/2

H
1,10

10,12

[

α

t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(−i1 + 3/2, 0), (1− j1 + i1, 0), (1− k1 − i1, 0), (1− l1 + 1/2, 0),
(1− f1, 1), (1− s+ e1/2, 0), (1− r − e1/2, 0), (1− f1 + e1/2, 0),

(−m1 + 3/2, 0), (1− g1 + f1, 0).
(1/2, 0), (1− i1, 0), (1 + i1, 0), (1− e1/2, 0), (1− f1, 0), (0, 1),

(1 + f1, 0), (1− e1/2, 0), (1/2, 0), (1/2, 0), (1 + e1/2, 0)
(f1 + i1 + k1 + βl1 +m1 + βr + s,−1).

]

(28)
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6. Limiting Cases

By putting β → 1 in Eqs. (24) and (29), we get the velocity field and associated
shear stress of an ordinary second-grade fluid.

u(y, t) = A
∞
∑

e1=0

∞
∑

f1=0

∞
∑

g1=0

∞
∑

r=0

∞
∑

s=0

(−1)e1+f1+g1+r+sM2g1ye1t−f1−r−s+1αr+s

e1!f1!g1!r!s!Ke1/2−f1

×H
1,5

5,7

[

α

t

∣

∣

∣

∣

∣

∣

∣

∣

(1− f1 + e1/2, 0), (1− g1 + f1, 0), (1− f1, 1), (1− s+ e1/2, 0),
(1− r − e1/2, 0).

(1− e1/2, 0), (1− f1, 0), (1 + f1, 0), (0, 1), (1 + e1/2, 0),
(1− e1/2, 0), (f1 + r + s,−1).

]

(29)

τ(y, t) =

∞
∑

e1=0

∞
∑

f1=0

∞
∑

g1=0

∗∗
∑

∞
∑

r=0

∞
∑

s=0

A(−1)e1+f1+g1+ζ1+r+s+1ye1

e1!f1!g1!i1!j1!k1!l1!m1!r!s!M−2g1−2j1

× t−f1−i1−k1−l1−m1−r−s

α−k1−l1−m1−r−sKe1/2−f1−i1+1/2

H
1,10

10,12

[

α

t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(−i1 + 3/2, 0), (1− j1 + i1, 0), (1− k1 − i1, 0), (1− l1 + 1/2, 0),
(1− f1, 1), (1− s+ e1/2, 0), (1− r − e1/2, 0), (1− f1 + e1/2, 0),

(−m1 + 3/2, 0), (1− g1 + f1, 0).
(1/2, 0), (1− i1, 0), (1 + i1, 0), (1− e1/2, 0), (1− f1, 0), (0, 1),

(1 + f1, 0), (1− e1/2, 0), (1/2, 0), (1/2, 0), (1 + e1/2, 0)
(f1 + i1 + k1 + l1 +m1 + r + s,−1).

]

(30)

7. Numerical results and discussion

We have presented magnetohydrodynamic (MHD) flows of a generalized second-
grade fluid induced by impulsive motion of the plate. Analytic solutions are estab-
lished for such flow problem passing through porous medium. Laplace transform
technique has been used to obtain the solution and are expressed in series form
using Fox H-functions. Several graphs are presented here for the analysis of some
important physical aspects of the obtained solutions. The comparison between the
models are also analyzed. The numerical results shows the profiles of velocity and
the adequate shear stress for the MHD flow. We analyze these results by variating
different parameters of interest.
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Figure 1. velocity u(y,t) and shear stress τ(y, t) profiles given by
Eqs. (23) and (28), K=2, β = 0.6, t = 4s, M=0.3, P=1.2, A=1
and different values of α.
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Figure 2. velocity u(y,t) and shear stress τ(y, t) profiles given by
Eqs. (23) and (28), K=2, β = 0.6, t = 4s, M=0.3, P=1.2, A=1
and different values of β.
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Figure 3. velocity u(y,t) and shear stress τ(y, t) profiles given by
Eqs. (23) and (28), K=2, β = 0.6, t = 4s, M=0.3, P=1.2, A=1
and different values of K.
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Figure 4. velocity u(y,t) and shear stress τ(y, t) profiles given by
Eqs. (23) and (28), K=2, β = 0.6, t = 4s, M=0.3, P=1.2, A=1
and different values of M.

In Figure 1 the effect of viscoelastic parameter α on profiles of velocity and shear
stress have been shown. We show the profiles of velocity and shear stress for three
different values of α. From these figures it is observed that the profiles of velocity
and shear stress both increases with the increasing of α. Fig. 2 shows the variation
of the fractional parameter β. The velocity as well as the shear stress profiles
changed its monoticity by increasing β. Fig. 3 shows the effect of the permeability
K of the porous medium. As expected, the velocity profiles increases with the
increase of the permeability K of the porous medium which is the consequences
that K reduces the drag force. Similarly, the profile of shear stress also increases
with the increase of K. Fig. 4 shows the variation of magnetic parameter M. It is
observed that by increasing the magnetic parameter M the velocity decreases. The
higher this value, the more prominent is the reduction in velocity. This is because
the introduction of a transverse magnetic field has a tendency to develop a drag
that resists the flow. Also, it has been noticed that by increasing the transverse
magnetic field results in thinning the boundary layer thickness. Thus by increasing
the magnetic parameter M the permeability K of the porous medium shows an
opposite effect.
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