Journal of Agricultural Chemistry and Biotechnology

Journal homepage & Available online at: www.jacb.journals.ekb.eg

Using Cyanobacteria (*Nostoc* spp.) in the Biological Control of Damping off **Disease in Cotton**

Afify, Aida H.^{1*} and A. Z. A. Ashour²

¹Microbiol. Dept., Fac. Agric., Mansoura Univ., Mansoura, Egypt ² Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt

ABSTRACT

Cyanobacteria are one from the main classes of bacteria that promote growth of plants and in biocontrol of soil-borne fungi. In vitro and in vivo, this study investigated the effect of application Nostoc spp. filtrates (Nostoc lichenoides, Nostoc indistinguendun and Nostoc favosum) on the Fusarium oxysporum and Rhizoctonia solani that infects cotton (Gossypium barbadense L.) plant. Nostoc spp. strains were tested to antagonize both pathogenic fungi. Total phenolic compounds, polysaccharides contents and dry weight were determined of Nostoc spp. strains. In a greenhouse test in soil infested with F. oxysporum and R. solani isolates the three filtrates from cyanobacterial strains and their mixture were effective in increasing the dry weight and the surviving seedlings percentage; however, the filtrates of strains had no effect on seedling height. The strains showed that the highest efficiency to inhibit the post-damping off of F. oxysporum and R. solani when they were applied in a mixture. Under field conditions the three strains were consistently effective in increasing stand and yield of cotton plant in 2021 and 2022 growing seasons; however, their efficiency was much higher when they were applied in a mixture. Finally, from the obtained data we concluded that using biotic factors for controlling damping off of cotton plant pathogens such as F. oxysporum and R. solani were effective.

Keywords: Nostoc spp., biocontrol, cotton, pathogenic fungi

INTRODUCTION

The cyanobacteria are the largest diverse and widely distributed groups of photosynthetic prokaryotes (Stanier and Cohen-bazire, 1977) and introduce big amounts of biomass (Cannell, 1993). Recently, cyanobacteria are very important source of biologically active compounds for pathogenic bacteria and fungi. It can release soluble organic substances as extracellular products by the cyanobacteria which to increase growth of plant (Zulpa et al. 2003; Singh et al. 2016 & Sammauria et al. 2020). Microalgae are different communities of photosynthetic prokaryotes they found in soil, water, and air ecosystems (Seckbach, 2007). Currently, the farmers extensively used pesticides for the protection of crops from pests and insects (Parte et al. 2017). The use of pesticides in agriculture has become very essential because of the reduced crop yield due to pests (Verma et al. 2014). A major cause of environmental pollution because their pollutants (pesticides) in soil and water (Rani and Dhania 2014). The important source of a vast assortment of biologically active products are the algae (Metting and Pyne, 1986; Cannell, 1993; Radmer and Parker, 1994). Cyanobacteria and microalgae could be applied for plants to protect against pathogenic fungi. However, it is a greater chance of success when using culture filtrates or cell extracts from cyanobacteria applied to seeds as protectants from damping-off fungi : Fusarium spp., and Rhizoctonia solani (Burris, 1994). A number of cyanobacteria, produce various biologically active compounds which inhibited bacteria and fungi that incite diseases of plants (Papavizas and Lewis 1981 & Martin, 1995). The aims of this study is to evaluate biological control with the cyanobacterial strains and their products for the control of phytopathogenic fungi in cotton plants.

MATERIALS AND METHODS

Cyanobacterial strains

The three cyanobacterial strains (Nostoc lichenoides, Nostoc indistinguendun and Nostoc favosum) were isolated from clay loam soil which some physical and chemical characteristics and by culture, morphological and molecular according to Afify et al. (2023) were isolated and identified as Cyanobacteria phylum of the Bacteria domain. They form a monophyletic group with a high diversity in terms of morphology, physiology and molecular properties (Hillary et al. 2022).

Pathogenic strains

Fusarium oxysporum and Rhizoctonia solani isolates were isolated from diseased plants and identified by Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt.

Plant used

Cotton (Gossypium barbadense L.) cv. used as a host was obtained from the Agricultural Research Center (ARC), Giza, Egypt.

Preparation of cyanobacterial culture filterate

Culture at the exponential phase were centrifuged at 10,000 rpm for 3 min. and filtered through Wattman-4 filter paper (Starr et al. 1962).

Antagonism

In vitro plate assays were carried out for antagonism tests between cyanobacterial filtrate against damping-off fungi (F. oxysporum and R. solani). After incubated plates the inhibation zone were recorded when the control plate was full growth by tested fungus (Sivamani and Gnanamanickam, 1988).

Estimation of phenols and polysaccharides content

Phenols and Polysaccharides {Intracellular (IPS) and Extracellular Polysaccharides (EPS)} of tested cyanobacteria

DOI:10.21608/jacb.2023.220778.1058

were estimated according to Jindal and Singh (1975) & Shi *et al.* (2007) respectively.

Production of pathogenic fungi inoculum for soil infestation

Substrate for growth of fungi isolates were prepared in 500-ml glass bottles. Each contained 50g of sorghum grains and 40 ml tap water and autoclaved for 30 minutes. Inocula were taken from one-week old PDA cultures and aseptically introduced into the bottles and allowed to colonize sorghum grains for three weeks.

Prepartion of cyanobacteria inoculum for seed treatment

Each cyanobacterial strain was grown for 48 h at 28°C on broth medium. For single- strain inoculations 1.5 ml of a cyanobacterial filtrate and 5g of cotton seeds were mixed in a small plastic bag. For mixture strains inoculations, equal volumes of cell filtrate were mixed and 1.5 ml of this mixture was then applied to 5g of seeds. *In vivo*, cotton seeds treated with the cyanobacterial strains (individually or in mixture) were planted with one week after soil infestation. Percentage of surviving seedlings, dry weight (g/plant) and plant height (cm) were recorded 40 days from sowing (Afify and Ashour 2018). **Statistical analysis**

ANOVA was performed by the software A Microcomputer Program for the Design Management (MSTATC Michigan State Univ., USA). Before carrying out analysis of variance (ANOVA) to produce approximately constant variance percentage data were transformed into arc sine angles.

RESULTS AND DISCUSSION

Antagonism

Antagonism against the three *Nostoc* spp. filtrates and fungal isolates of *F. oxysporum* and *R. solani* (Table 1) *in vitro*. These cyanobacterial strains: *N. lichenoides*, *N. indistinguendun*, *N. favosum* and their mixture showed different of inhibition zone with the two tested pathogenic fungi. At the other side, cyanobacterial strain (*N. favosum*) was no effective or no antagonism, but the best antagonism showed with the mixture from strains (Table 1). Our data are in accordance with the reports *in vitro*, which reported that isolates of bacteria inhibited growth of pathogenic fungi (Ashour and Afify 1999 & Kumar and Kaur 2014) by various compounds as antifungal.

Table 1.	The antagonism between Nostoc spp.	against
	two fungi (F. oxysporum and R. solani)	in vitro

Nostoc spp.	Inhibition zone of fungal isolates (mm)				
No.	F. oxysporum	R. solani			
Nostoc lichenoides	5.0 ^a	3.0			
Nostoc indistinguendun	4.0	1.0			
Nostoc favosum	0.0	0.0			
Mixture	13.0	13.0			
Control (without cyanobacteria)	Full growth	Full growth			

^aInhibation zone (mm); Values represent Means (n=5)

All strains of *Nostoc* consistently showed no antagonism *in vitro* between their filtrates. Patterns of interaction among the three strains of *Nostoc* spp. filtrates on Nutrient Agar (NA) and Potato Dextrose Agar (PDA) media are shown in Table 2. All the three strains of *Nostoc* spp. filtrates were not inhibited by any strain with other. Fukui *et al.* (1994) reported that it is well-known that patterns of interacton among organisms *in vitro* do not necessarily occur *in vitro*, although the reasons are not clear.

The antifungal agents as phenols and polysaccharides content

Estimation of polysaccharides and phenol contents that produced from tested cyanobacteria strains and their

antifungal activities. The results showed that as the phenol contents of the tested *Nostoc* species were increased (Table 3). Our data are in agreement with a some of authors e.g., De Cano *et al.* (1990) found that phenolic compounds from *Nostoc* sp. inhibited the growth of pathogenic yeast and bacteria. At the same line, to polysaccharides which significant role as bioagent act for cyanobacteria. Results showed that the content of polysaccharides of *N. lichenoides* was higher than *N. indistinguendun* and *N. favosum* as the antifungal activity. Marine algae were used to protect plants from infections of phytopathogenic fungi by production oligosaccharides (Potin *et al.* (1999).

Table 2.	Antibiosis	between N	<i>lostoc</i> spp	o. strains o	on agar media
		37 /	•	14 10	

<i>Nostoc</i> spp. filtrates inoculated	Nostoc spp. inoculated first on nutrient agar (NA)			
second	Nostoc lichenoides	Nostoc indistinguendun	Nostoc favosum	
Nostoc lichenoides	+	_+	+	
Nostoc indistinguendun	+	-	_+	
Nostoc favosum	+	_+	_+	
	Nostoc spp. inoculated first on potato - dextrose agar (PDA)			
Nostoc lichenoides	+	+	_+	
Nostoc indistinguendun	+	-	_+	
Nostoc favosum	+	+_	_+	

Growth of strains inoculated second: + = normal growth equivalent to the growth in single inoculation; +: reduced growth compared to the growth in single inoculation; and - = no growth after 24h but slight growth observed after 72h.

Table 3.	Total	phenol	and	polysaccharides	contents	of
	Nost	oc spp.				

Biological agents	Total phenol	Polysaccharides content (mg/ g ⁻¹ DW) IPS EPS (mg/g ⁻¹ DW) (mg/mL ⁻¹)	
Cyanobacteria	contents (mg/ g ⁻¹ DW)		
Nostoc lichenoides	0.88	2.9	160.1
Nostoc indistinguendun	0.80	2.1	155.3
Nostoc favosum	0.44	1.9	151.7

IPS: Intracellular Polysaccharides; EPS: Extracellular Polysaccharides; Values represent Means (n=5)

All treatments showed significant variation in dry weight of seedlings. All *Nostoc* strains filtrats, whether they were applied singly or in a mixture effective in increasing dry weight of cotton seedlings; however, they showed the highest efficiency when applied in a mixture (Table 4). The cyanobacteria isolates are increased dry weight that described as indicator of cyanobacterial growth (Singh *et al.* 2016; Ramirez *et al.* 2019). *Nostoc* spp. had the highest biomass production, recording 348, 318 and 310 mg/100ml of liquid culture (Afify *et al.* 2023).

 Table 4. Effect of Nostoc spp. filtrates on dry weight in cotton seedlings under greenhouse conditions

Trearments	Fungi invo cotton seedlin	Natura soil	l Mean	
	F. oxysporum	R. solani	SOIL	
Nostoc lichenoides	2.00	2.02	1.88	1.96
Nostoc indistinguendun	2.04	2.99	2.06	2.36
Nostoc favosum	1.98	2.08	2.15	2.07
Mixture	2.16	2.09	1.86	2.03
Nutreint broth	1.86	1.78	2.18	1.94
Control (without cyanobacteria)	1.87	1.80	1.86	1.84
Mean	1.98	2.13	1.99	

L.S.D. for Treatments (T) = 0.06 (P= 0.05)

Effects of tested cyanobacteria under greenhouse and field conditions

Treatments were non significant source of variation in plant height that is *Nostoc* strains filtrates had no effect on plant height which was affected only by the fungal isolates (Table 5). In Table (6) mixture from *Nostoc* strains filtrates were significant effect on seedlings survival of cotton under greenhouse conditions. At the same time (Table 7), under field conditions *Nostoc* strains filtrates were consistently effective in increasing stand and yield in 2021 and 2022 growing seasons; however, their efficiency was mush higher when they were applied in a mixture. The current study demonstrates that, in greenhouse and field tests, certain *Nostoc* strains filtrates combinations have the potential for greater biocontrol activity, against soilborne fungi involved in cotton seedling disease, compared to the same strains applied individually. The data are agreement with those workers (Wolk and Sarkar 1993; Pierson and Weller 1994). Also, Kulik (1995) reported that when added cyanobacterial filtrates to seeds can protect plant from soil-borne fungi.

Table 5. Effect of <i>Nostoc</i> spp. filtrates on plant height (cm)
under greenhouse conditions	

Trearments	Fungi invo cotton seedlin		Natural soil	Mean
	F. oxysporum	R. solani	SOIL	
Nostoc lichenoides	31.1	30.2	35.3	32.2
Nostoc indistinguendun	31.0	30.9	33.7	31.8
Nostoc favosum	31.8	30.3	31.8	31.3
Mixture	33.53	35.0	34.5	34.3
Nutreint broth	29.08	29.1	30.6	29.5
Control (without cyanobacteria)	29.88	28.9	30.7	29.8
Mean	31.06	30.7	32.7	

L.S.D. for Fungi (F) = 1.1 (P = 0.05)

	Table 6.	Under greenhouse	conditions, Nostoc sr	op. filtrates effect of o	n seedlings survival of cotton
--	----------	------------------	-----------------------	---------------------------	--------------------------------

T	Fungi involved in cotton seedlings disease		Natural	Maan
Trearments -	F. oxysporum	R. solani	soil	Mean
Nostoc lichenoides	37.5 ^a (37.66) ^b	45.0 (42.12)	67.5 (58.61)	50.0 (45.57)
Nostoc indistinguendun	55.0 (47.89)	47.5 (43.56)	57.5 (49.33)	53.3 (46.89)
Nostoc favosum	55.0 (47.89)	27.5 (31.39)	57.5 (49.33)	46.6 (42.77)
Mixture	65.0 (53.78)	67.5 (55.29)	77.5 (61.78)	70.0 (57.11)
Nutreint broth	7.5 (13.83)	7.5 (13.83)	25.0 (29.89)	13.3 (21.12)
Control (without cyanobacteria)	7.5 (13.83)	15.0 (22.50)	22.5 (28.22)	15.0 (17. 33)
Mean	37.9 (37.73)	35.0 (36.22)	51.25 (45.89)	
^a Percentage data ^b Arc sine – tr	ansformed data	L.S.D. (transformed data) fo	or TXF = 7.68(P= 0.05)	

Table 7. Under field conditions, *Nostoc* spp. filtrates effect on the incidence of cotton seedlings disease and seed cotton yield

Trearments —	Seedling s	Seed cotton yield (kentar/ fed.)		
Trearments —	2021	2022	2021	2022
Nostoc lichenoides	*57.25(49.18)	54.00(47.31)	4.57	3.76
Nostoc indistinguendun	45.50(42.42)	37.75(37.75)	4.03	3.58
Nostoc favosum	43.25(46.87)	45.75(42.56)	4.10	3.42
Mixture	67.75(55.43)	67.25(55.14)	5.14	4.40
Nutreint broth	32.00(34.33)	33.00(35.05)	3.21	3.23
Control (without cyanobacteria)	28.25(32.07)	32.50(34.75)	3.19	3.20
Mean	45.66(42.50)	45.04(42.11)	4.04	3.59
L.S.D. $(P = 0.05)$	5.09	4.67	0.38	
	0.41			

* Before carrying out the analysis of variance percentage data were transformed into arc-sine angles.

CONCLUSION

This work is conducted for using cyanobacterial strains (*Nostoc* spp.) as bioagent against phytopathogenic fungi which the causal agent of cotton damping off. The bioagents factors contained phenols and polysaccharides used for their antifungal activity. Using filtrats of the *N. lichenoides, N. indistinguendun, N. favosum* and their mixture expressed potency in the improvement of cotton plant. Finally, from the obtained data we recommended use biotic factors for controlling damping off of cotton.

REFERENCES

- Afify, Aida H. and Ashour A.Z.A. (2018). Use of cyanobacteria for controlling flax seedling blight. J. Agric. Chem. and Biotechn., Mansoura Univ. Vol.9 (11): 259-161.
- Afify, Aida H.; Sheta Mohamed H. and Elzallal Aml S. (2023). Biodiversity, morphology and taxonomy of cyanobacteria isolated from soils with different texture. Egyptian J. Agric. Res. 101(2): 342-353.

- Ashour, A.Z.A. and Afify, Aida H. (1999). Biological control of cotton seedling disease by rhizobacteria. Proceeding 2nd Int. Conf. of Pest Control, Mansoura, Egypt, 357-370.
- Burris J. (1994). Film coating perspective. Seed World. 132: 36-40.
- Cannell R.J.P. (1993). Algae as source of biologically active products. Pestic. Sci. Vol. 39: 147-153.
- De Cano M.M.S.; De Mule M.C.Z.; De Caire G.Z. and De Halperin (1990). Inhibition of *Candida albicans* and *Staphylococcus aureus* by phenolic compounds from the terrestrial cyanobacterium *Nostoc muscorum*. J. Appl. Phycol., 2: 79-81.
- Fukui R.; Schroth M.N.; Hendson M. and Hancock J.G. (1994). Interaction between strains of Pseudomonads in sugar beet spemospheres and their relationship to pericarp colonization by Pythium ultimum. Phytopathol. 84: 1322-1330.
- Hillary R.; Ornella F.; Antera M.Q. and Roberta R. (2022). Cyanobacteria: A natural source for controlling agricultural plant diseases caused by fungal and oomycetes and improving plant growth. Horticlturae, 8(1), 58 pages.

- Jindal K.K. and Singh R.N. (1975). Phenolic content in male and female Carica papaya: A possible physiological marker sex identification of vegetative seedlings. Physical. Plant., 33: 104-107.
- Kulik, M.M. (1995). The potential for using cyanobacteria (blue-green-algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur. J. Plant Pathol., 101: 585-599.
- Kumar A. and Kaur R. (2014). Impact of cyanobacterial filtrare on seed germination behavior of wheat. Int. J. Basic and Appl. Biol. Vol. 1: 11-15.
- Martin M. Kulik (1995). The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. European J. of Plant Pathol. 101: 585-599.
- Metting B. and Pyne J.W. (1986). Biologically active compounds from microalgae. Enzyme and Microbial Technol. 8(7): 386-394.
- Papavizas G.C. and Lewis J.A. (1981). Introduction and augmentation of microbial antagonists for the control of soilborne plant pathogens. Pages: 305-322. In: Biological Control in Crop Production (BARC Symposium No. 5-Goerge C. Papavizas (ed.). Allanheid. Osmum, Totowa.
- Parte S.G.; Mohekar A.D. and Kharat A.S. (2017). Microbial degradation of pesticide: a review. Afr. J. Microbiol. Res. 11:992–1012.
- Pierson E. A. and Weller D.M. (1994). Use of mixture of fluorescent Pseudomonads to suppress take-all and improve the growth of wheat. Phytopathol. 84 (9): 940-947.
- Potin P.; Kamal B.; Frithjof K. and Bernard K. (1999). Oligosaccharide recognition signals and defence reactions in marine plant-microbe interactions. Curr. Opin. Microbiol., 2: 276-283.
- Radmer R.J. and Parker B.C. (1994). Commercial applications of algae: opportunities and constraints. J. Appl. Phycol. 6: 93-98.
- Ramirez L.C.; Esparza G.F.J.; Ferrera C.R.; Alarcon A. and Canizares V.R.O. (2019). Short- term effects of a photosynthetic microbial consortium and nitrogen fertilization on soil chemical properties, growth and yield of wheat under greenhouse conditions. J. Appl. Phycol. 31(1): 3617-3624.

- Rani K. and Dhania G. (2014). Bioremediation and biodegradation of pesticide from contaminated soil and water - a noval approach. Int. J. Curr. Microbiol. Appl. Sci. 3:23–33.
- Sammauria R.; Kumawat S.; Kumawat P.; Singh J. and Jatwa T. K. (2020). Microbial inoculants: potential tool for sustainability of agricultural production systems. Archives of Microbiol., 202(4): 677-693.
- Seckbach J. (2007). Algae and cyanobacteria in extreme environments, in Cellular Origin, Life in Extreme Habitats and Astrobiology, Seckbach, J., Ed., New York: Springer Science, Business Media, Vol. 11: 1–811.
- Shi Y.; Sheng J.; Yang F. and Hu Q. (2007). Purification and identification of polysaccharide from *Chlorella pyrenoidosa*. Food Chem., 103: 101-105.
- Singh J.S. ; Kumar A. ; Rai A.N. and Singh D.P. (2016). Cyanobacteria: a precious bio-resource in agriculture, ecosystem and environmental sustainability. Front Microbiol. 21(1): 527-529.
- Sivamani E. and Gnanamanickam S. S. (1988). Biological control of *Fusarium oxysporum f.* sp. *cubense* in banana by inoculation with *Pseudomonas fluorescens*. Plant and Soil 107: 3-9.
- Stanier R. Y. and Cohen-bazire G. (1977). Phototrophic prokaryotes: The cyanobacteria. Ann. Rev. Microbiol. Vol. 31: 225-274.
- Starr T. J.; Dieg E. F.; Church K. K. and Allen M.B. (1962). Antibacterial and antiviral activities of algal extracts studies by acridine orange staining. Texas Rep Biol. Med. 20(1): 271-278.
- Verma J.P.; Jaiswal D.K. and Sagar R. (2014). Pesticide relevance and their microbial degradation: a-state-ofart. Rev. Environ. Sci. Biotechnol. 13:429–466.
- Wolk M. and Sarkar S. (1993). Antagonism *in vitro* of *Bacillus* spp. against *Rhizoctonia solani* and *Pythium* spp. Anzeiger-fur Schadlingskunde, Pflanzenschutz, Umwelt-schutz 66(7): 121-125.
- Zulpa G.; Zaccaro M. C.; Boccazzi F.; Parada J. L. and Storni M. (2003). Bioactivity of intra and extracellular substances from cyanobacteria and lactic acid bacteria on-wood blue strain fungi. Biological control, 27(3): 345-348.

إستخدام السيانوبكتيريا (أنواع من النوستوك) في المقاومه الحيويه لأمراض موت البادرات في القطن

عايده حافظ عفيفي¹ وعبد الودود زكى عاشور²

ا قسم الميكروبيولوجى - كلية الزراعه – جامعة المنصوره – المنصوره – مص 2 معهد أمراض النباتات - مركز البحوث الزراعيه – الجيزه – مصر

الملخص

السياتوبكتيريا هي أحد مجموعات البروكاريوتات (بدائيات النواه) الهامه لما لها من تأثير على تطور نموالنبات بالإضافه لنور ها الكبير في المقاومه الحيويه لفطريات موت البلارات في نبات القطن في هذه الدراسه أستخدمت راشح لكلا من ثلاثة أنواع من جنس النوستوك معمليا لتقيير قدرتها على تضدد الفطريات الممرضه وكذلك تقيير التضد فيما بينها ثم تم تقيير منتجات التصد مثل المواد الفينوليه والمحتوى من السكريات وكذلك الوزن الجاف وقد أظهرت نتائج التضد المعمليه قدره عليه في مقلومة الفطريات الممرضه بينما لم يوجد أى تضدد بين سلالات النوستوك وبعضها وعد تقيير المواد المنتجه وجد أن النوع Nostoc lichenoides أظهر أعلى قيمه من ابتاج المواد الفينوليه والمحتوى من السكريات وكذلك الوزن الجاف وقد أظهرت التضد المعمليه قدره عليه في مقلومة الفطريات الممرضه بينما لم يوجد أى تضد بين سلالات النوستوك وبعضها وعد تقيير المواد المنتجه وجد أن النوع Nostoc lichenoides أظهر أعلى قيمه من ابتاج المواد الفينوليه والسكريه والوزن الجاف وعنما أختبر راشح السلالات الثلاث ومخلوطها تحت ظروف الصوبه في تربه ملوثه بعز لات الفطرين كلت كلها فعاله في زيادة النسبه المؤيه البلارات البقال ولي إلا أن جميع السلالات الم يكن لها تأثير على طول البلارات وقد أظهرت العاميه عند استعمالها على مثكل مخلوط ولكن أيس المعلات التوسمي 2002 إلى زياده مئويه في نسبة الإنبات ومصول القطن الز هر حيث كلت أعلى دول المؤيه العلم في شكن مخلوط ولكن أسريات المواض . المتخدام العوامل الحيويه مثل السيانوبيكيزيا كمو أمل العارات وقد أظهرت السلالات أعلى درجات الفاعيه عند استعمالها على شكل مخلوط ولكن أسي المعاملات تحت ظروف المقل في موسمي 2001/ 2002 إلى زياده مئويه في نسبة الإنبات ومصول القطن الز هر حيث كلت أعلى درجات الفاعيه عد استعمال السلالات في شكل مخلوط . من هذه النتائج بيكن الموام الحيويه مثل السيانوبيكنزيا كمو ألم فياله في في ماله مار القطن الز هر حيث كلت أعلى درجات الفاعليه عد استعمال السلالات في شكل مخلوط . من هذه النتائج يمكن الموام الحوامل الحيويه مثل السيانوبيكينيا علي فعاليه في ونلك بوقف نموهم الفطريات المرضه.