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NUMERICAL SOLUTION OF ONE–DIMENSIONAL

ADVECTION–DIFFUSION EQUATION WITH VARIABLE

COEFFICIENTS VIA LEGENDRE–GAUSS–LOBATTO

TIME–SPACE PSEUDO–SPECTRAL METHOD

G. I. EL–BAGHDADY, M. S. EL–AZAB

Abstract. In this paper, we present a Legendre pseudo–spectral method
based on Legendre–Gauss–Lobatto zeros with the aid of the Kronecker product

formulation for solving one–dimensional parabolic advection–diffusion equa-
tion with variable coefficient subject to a given initial condition and boundary

conditions. First, we introduce an approximation to the unknown function

by using Legendre differentiation matrices and its derivatives with respect to
space x and time t. Secondly , we convert our problem to a linear system of

equations to unknowns at the collocation points, and then solve it. Finally,

two examples are given to illustrate the validity and applicability of the pro-
posed technique with the aid of L∞-norm error and L2-norm error to the exact

solution.

1. Introduction

The combination of advection and diffusion is important for mass transport in
fluids. It is well known that the volumetric concentration of a pollutant, u(x, t), at
a point x(a ≤ x ≤ b) in a one-dimensional moving fluid with a constant speed β and
diffusion coefficient α in x direction at time t(t ≥ 0) is given by the one–dimensional
time–dependent advection–diffusion equation of the form

∂u

∂t
+ β

∂u

∂x
= α

∂2u

∂x2
, a ≤ x ≤ b, t ≥ 0, (1)

with initial condition

u(x, 0) = u0(x), x ∈ [a, b],

and the boundary conditions

u(a, t) = g1(t),

u(b, t) = g2(t), t ∈ [0, T ].
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Many authors deal with the equation (1) numerically. For example, in [1] the au-
thors used cubic B-spline collocation method to find numerical solution to problem
(1). The method of the fourth-order compact finite difference scheme was presented
in [2].

In this paper we deal with the form

∂u

∂t
+ q(x)

∂u

∂x
− p(x)

∂2u

∂x2
= f(x, t), (2)

in which q(x) represent a variable speed and diffusion coefficient p(x) in x direction
at time t (t ≥ 0), with u(x, t) ∈ [a, b]× [0, T ], subject to the initial condition

u(x, 0) = u0(x), x ∈ [a, b], (3)

and the boundary conditions represented by

u(a, t) = g1(t),

u(b, t) = g2(t), t ∈ [0, T ], (4)

where f(x, t), u0(x), g1(t) and g2(t) are known functions and assumed to be smooth
functions. Whereas u is the unknown function. Note that p(x) and q(x) are consid-
ered to be positive and smooth functions quantifying the diffusion and advection
processes, respectively.

One–dimensional version of the partial differential equations which describe
advection–diffusion of quantities such as mass, heat, energy, vorticist, etc [3, 4].
Equation (2) has been used to describe heat transfer in a draining film [5], wa-
ter transfer in soils [6], dispersion of tracers in porous media [7], the intrusion of
salt water into fresh water aquifers, the spread of pollutants in rivers and streams
[8], the dispersion of dissolved material in estuaries and coastal seas [9], contam-
inant dispersion in shallow lakes [10], the absorption of chemicals into beds [11],
the spread of solute in a liquid flowing through a tube, long–range transport of
pollutants in the atmosphere [12], forced cooling by fluids of solid material such as
windings in turbo generators [13], thermal pollution in river systems [14], flow in
porous media [15] and dispersion of dissolved salts in groundwater [16].

In recent years there has been a high level of interest of employing spectral
methods for numerically solving many types of integral and differential equations,
due to their ease of applying them for finite and infinite domains [17, 18, 19, 20, 21].
The speed of convergence is one of the great advantages of spectral method. Besides,
spectral methods have exponential rates of convergence; they also have high level
of accuracy. From the overview of spectral approximation to differential equations,
the spectral methods have been divided to four types, namely, collocation [22, 23],
tau [24, 25], Galerkin [26, 27], and Petrov Galerkin [28, 29] methods.

In the present contribution, we construct the solution using the pseudo–spectral
techniques [30, 31] with Legendre basis. Pseudo–spectral methods are powerful ap-
proach for numerical solution of partial differential equations [32, 33, 34], which can
be traced back to 1970s [35]. In pseudo–spectral methods [36], there are basically
two steps to obtaining a numerical approximation to a solution of differential equa-
tion. First, an appropriate finite or discrete representation of the solution must
be chosen. This may be done by polynomial interpolation of the solution based
on some suitable nodes. In fact, as the number of collocation points increases,
interplant polynomials typically diverge. This poor behavior of the polynomial in-
terpolation can be avoided for smoothly differentiable functions by removing the



EJMAA-2015/3(2) ADVECTION–DIFFUSION EQUATION WITH VARIABLE COEFFICIENTS 3

restriction to equally spaced collocation points. Good results are obtained by relat-
ing the collocation points to the structure of classical orthogonal polynomials, such
as the well-known Legendre-Gauss-Lobatto points. The second step is to obtain a
system of algebraic equations from discretization of the original equation. In the
case of differential equations, this second step involves finding an approximation
for the differential operator (see [35]).

Many authors have considered this technique to solve many problems. In [37, 38],
pseudo–spectral scheme to approximate the optimal control problems. Also, a Le-
gendre pseudo–spectral Penalty scheme used for solving time–domain Maxwells
equations [39]. The method of Hermite pseudo–spectral scheme is used for Dirac
equation [40], and nonlinear partial differential equations [41], respectively. In [42],
multidomain pseudo–spectral method for nonlinear convection diffusion equations
was presented. Nonlinear Schrödinger equation was discussed in [43] by Time Space
pseudo–spectral method with Chebyshev basis. Finally, [44] pseudo–spectral meth-
ods used in Quantum and Statistical Mechanics.

The organization of this article is as follows. In Section 2, we present some
preliminaries about Legendre polynomials and drive some tools for discretizing
the introduced problem. In section 3, we summarize the application of Legendre
pseudo–spectral method to the solution of the problem (2)–(4). As a result a set
of algebraic linear equations are formed and a solution of the considered problem
is discussed. In Section 4, we present some numerical examples to demonstrate the
effectiveness of the proposed method.

2. Preliminaries and Notations

In this section, we give some notations about most commonly used set of orthog-
onal polynomials, Legendre polynomials [45, 46] which are defined on the interval
[-1,1] and can be determined with the aid of the following.

The Legendre polynomials Ln(z), n = 0, 1, ..., are the Eigenfunctions of the
singular Sturm–Liouville problem

d

dz

(
(1− z2)

dLn(z)

dz

)
+ n(n+ 1)Ln(z) = 0,

they are mutually orthogonal with respect to L2
ω inner product on the interval

[−1, 1] with the weight function ω(x) = 1, this imply to∫ 1

−1
Ln(z)Lm(z)dz =

2

2n+ 1
δnm,

where δnm is the Kronecker delta. The Legendre polynomials satisfy the following
three–term recurrence relations

L0(z) = 1, L1(z) = z,

Li+1(z) =
2i+ 1

i+ 1
zLi(z)−

i

i+ 1
Li−1(z), i ≥ 1, (5)

and

Ln(z) =
1

2(n+ 1)

(
L′n+1(z)− L′n−1(z)

)
, n ≥ 1.

The Rodrigues’ formula for Legendre polynomials is obtained directly by;

Ln(z) =
(−1)n

2n(n!)

dn

dzn
{

(1− z2)n
}
.
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Let LN (z) denote the Legendre polynomial of order N , then the Legendre–

Gauss–Lobatto nodes (LGL) nodes will be z
(N)
0 , ..., z

(N)
N , where these nodes defined

by z
(N)
0 = −1, z

(N)
N = 1 and for {z(N)

i }N−1i=1 are the zeros of L′N (z). Unfortunately,
there are no explicit formulas for the LGL nodes is known. However, they can be
computed numerically [47].

Let {φ(N)
i (z)}Ni=0 be the Lagrange polynomials based on LGL nodes, that are

expressed as [48, 49]:

φ
(N)
j (z) =

N∏
i=0,i6=j

z − z(N)
i

z
(N)
j − z(N)

i

, j = 0, ..., N, (6)

with the Kronecker property

φ
(N)
j (zNk ) = δjk =

{
0, j 6= k,
1, j = k.

It is more convenient to consider an alternative expression [48, 49], for j = 0, ..., N,

φ
(N)
j (zNk ) =

1

N(N + 1)LN (z
(N)
j )

(1− z2)L′N (z)

z − z(N)
j

(7)

Any function f defined on the interval [−1, 1] may be approximated by Lagrange
polynomials as

f(z) '
N∑
i=0

ciφ
(N)
i (z), (8)

where ci = {f(z
(N)
i )}Ni=0. Equation (8) will be exact when f is a polynomial of

degree at most N . Equation (8) can be expressed in the following matrix form

f(z) ' Φ(N)F,

where Φ(N) =
[
φ
(N)
0 (z), ..., φ

(N)
N (z)

]
and F = [f(z

(N)
0 ), ..., f(z

(N)
N )]T . The first

derivative to equation (8) can be expressed as

f ′(z) '
N∑
i=0

ciφ
′(N)
i (z), (9)

where φ
′(N)
i (z) is a polynomial of degree N − 1, which can be written as

φ
′(N)
i (z) =

N∑
k=0

φ
′(N)
i (z

(N)
k )φ

(N)
k (z), i = 0, ..., N. (10)

Equation (10) can be expressed in the following matrix form:

d

dz
Φ(N)(z) = Φ(N)(z)DN+1, (11)

where DN+1 is the so–called differentiation matrix with dimension N + 1. From

the last two equations (10,11) we get [DN+1]i,k = φ
′(N)
i (z

(N)
k ). The entries of the
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differentiation matrix can be defined for LGL points (cf. [49]) as the following

[DN+1]i,k =



LN (z
(N)
i )

LN (z
(N)
k )

1

z
(N)
i − z(N)

k

, i 6= k,

−N(N + 1)

4
, i = k = 0,

N(N + 1)

4
, i = k = N,

0, otherwise.

(12)

Now, we introduce the second order differentiation matrix as D2
N+1 which is the

derivative to differentiation matrix DN+1. The entries to the second order differ-
entiation matrix can be defined for LGL points (cf. [50]) as the following

[D2
N+1]i,j =


2[DN+1]i,k

(
[DN+1]i,i −

1

z
(N)
i − z(N)

k

)
, i 6= k

−
N∑

i=0,i6=k

[D2
N+1]i,k, i = k.

(13)

Also, any defined function h(x) on an arbitrary interval [a, b] may be approxi-
mated by making transformation from z ∈ [−1, 1] to x ∈ [a, b] as:

h(x) '
N∑
i=0

h(x
(N)
i )φ

(N)
i (

2

b− a
(x− a)− 1), (14)

where x
(N)
i = { b−a2 (z

(N)
i + 1) + a}Ni=0 are the shifted LGL nodes associated with

interval [a, b]. Equation (14) can be expressed in the following matrix form:

h(x) ' Φ
(N)
[a,b](x)H. (15)

In view of equations (11) and (14), we conclude that

di

dxi
Φ

(N)
[a,b](x) = (

2

b− a
)iΦ

(N)
[a,b](x)Di

N+1, (16)

For an arbitrary N and M , any function of two variables u : [a, b] × [c, d] → R
may be approximated by

u(x, y) '
N∑
i=0

M∑
j=0

Ui,jφ
(N)
i (

2

b− a
(x− a)− 1)φ

(M)
j (

2

d− c
(y − c)− 1), (17)

where

Ui,j = u
(b− a

2
(z

(N)
i + 1) + a,

d− c
2

(z
(M)
j + 1) + c

)
. (18)

Equation (17) can be expressed based on Kronecker product in the following matrix
form:

u(x, y) '
(

Φ
(N)
[a,b](x)⊗ Φ

(M)
[c,d](y)

)
U, (19)

where U is the (N + 1)(M + 1) vector as the following form:

U = [U0,0, ..., U0,M | U1,0, ..., U1,M | ... | UN,0, ..., UN,M ]T (20)

The previous representations that are based on Kronecker product, provide some
simplification in calculations when we deal with our original problem. Also by using
first and second differentiation matrices we can approximate relative derivatives
of any function from its expansion as we can see next. For example let u be
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approximated as in (19), now we can write the first derivative to u with respect to
x as the following:

ux(x, y) '
( d
dx

Φ
(N)
[a,b](x)⊗ Φ

(M)
[c,d](y)

)
U

=
2

b− a

(
Φ

(N)
[a,b](x)DN+1 ⊗ Φ

(M)
[c,d](y)

)
U

=
2

b− a

(
Φ

(N)
[a,b](x)⊗ Φ

(M)
[c,d](y)

)(
DN+1 ⊗ IM+1

)
U. (21)

In a similar way, we can conclude that the first derivative to u with respect to y as
the following:

uy(x, y) ' 2

d− c

(
Φ

(N)
[a,b](x)⊗ Φ

(M)
[c,d](y)

)(
IN+1 ⊗DM+1

)
U. (22)

3. Legendre Pseudo–spectral Approximation

In order to solve problem (2)–(4), we approximate u(x, t) as:

u(x, t) '
(

Φ
(N)
[a,b](x)⊗ Φ

(M)
[0,T ](t)

)
U, (23)

where the positive and integer numbers N and M are discretization parameters
corresponding to space and time dimensions, respectively. Also we will consider
{xi}Ni=0 and {tj}Mj=0 as the LGL nodes corresponding to the intervals [a, b] and
[0, T ], respectively.

By using (23) and differentiation matrices, we can write the derivatives to u(x, t)
as the following

ux(x, t) ' 2

b− a

(
Φ

(N)
[a,b](x)DN+1 ⊗ Φ

(M)
[0,T ](t)

)
U, (24)

uxx(x, t) ' 4

(b− a)2

(
Φ

(N)
[a,b](x)D2

N+1 ⊗ Φ
(M)
[0,T ](t)

)
U, (25)

ut(x, t) ' 2

T

(
Φ

(N)
[a,b](x)⊗ Φ

(M)
[0,T ](t)DM+1

)
U. (26)

Now, by substituting from the previous equations in equation (2), we obtain[ 2

T

(
Φ

(N)
[a,b](x)⊗ Φ

(M)
[0,T ](t)DM+1

)
+ q(x)

2

b− a

(
Φ

(N)
[a,b](x)DN+1 ⊗ Φ

(M)
[0,T ](t)

)
−p(x)

4

(b− a)2

(
Φ

(N)
[a,b](x)D2

N+1 ⊗ Φ
(M)
[0,T ](t)

)]
U = f(x, t). (27)

Now, for 1 < i < N − 1 and 1 < j < M , we collocate the above equation at the
collocation points {(xi, tj)}i,j . Note that these collocation points are the interior
points not lie in initial or boundary conditions. After collocating, equation (27)
becomes: [ 2

T

(
eN+1
i+1 ⊗ e

M+1
j+1 DM+1

)
+ q(xi)

2

b− a

(
eN+1
i+1 DN+1 ⊗ eM+1

j+1

)
−p(xi)

4

(b− a)2

(
eN+1
i+1 D2

N+1 ⊗ eM+1
j+1

)]
U1 = f(xi, tj),

i = 1, · · · , N − 1, j = 1, · · · ,M, (28)



EJMAA-2015/3(2) ADVECTION–DIFFUSION EQUATION WITH VARIABLE COEFFICIENTS 7

where epk is the kth row of p× p identity matrix. Equation (28) can be represented
in the following matrix form using identity matrix:[ 2

T

(
[I]N2 ⊗ [I]M+1

2 DM+1

)
+ q(xi)

2

b− a

(
[I]N2 DN+1 ⊗ [I]M+2

2

)
−p(xi)

4

(b− a)2

(
[I]N2 D2

N+1 ⊗ [I]M+1
2

)]
U1 = F1, (29)

which can be formed as
A1U1 = F1, (30)

where F1 and U1 are the (N − 1)(M) vectors they take the following forms:

F1 = [f1,1, ..., f1,M | · · · | fN−1,1, ..., fN−1,M ]T ,

U1 = [U1,1, ..., U1,M | · · · | UN−1,1, ..., UN−1,M ]T ,

and A1 is a matrix of dimension N(N − 1)× (M + 1)2, that can be defined as

A1 =
[ 2

T

(
[I]N2 ⊗ [I]M+1

2 DM+1

)
+ q(xi)

2

b− a

(
[I]N2 DN+1 ⊗ [I]M+2

2

)
−p(xi)

4

(b− a)2

(
[I]N2 D2

N+1 ⊗ [I]M+1
2

)]
.

For discretization the initial condition, we substitute (27) in (3) getting the following(
Φ

(N)
[a,b](x)⊗ Φ

(M)
[0,T ](0)

)
U = u0(x), a ≤ x ≤ b,

Now, for 0 < i < N , we collocate the above equation at the collocation points
{(xi, 0)}. After collocating, the previous equation becomes:(

eN+1
i+1 ⊗ e

M+1
1

)
U2 = u0(xi), (31)

then in matrix form using identity matrix(
[I]N+1

1 ⊗ eM+1
1

)
U2 = U0, (32)

which can be formed as
A2U2 = U0, (33)

where U0 and U2 are the (N + 1) vectors, they can be described as the following
forms:

U0 = [u0(x0), ..., u0(xN )]T ,

U2 = [U0,0, ..., UN,0]T ,

and A2 is a matrix of dimension (N + 1)× (N + 1)2, that has the following form

A2 =
(

[I]N+1
1 ⊗ eM+1

1

)
.

Finally, to discrete the boundary conditions, we substitute (27) in (4). First, we
deal with the left boundary to find the reduced form, then doing the same with the
right boundary. Equation (4) will be(

Φ
(N)
[a,b](a)⊗ Φ

(M)
[0,T ](t)

)
U = g1(t), (34)

Now, for 1 < j < M , we collocate the above equation at the collocation points
{(a, tj)} for the first boundary condition. After collocating, the previous equation
becomes: (

eN+1
1 ⊗ eM+1

j+1

)
U3 = g1(tj), (35)
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then in matrix form using identity matrix(
eN+1
1 ⊗ [I]M+1

2

)
U3 = G1, (36)

which can be formed as
A3U3 = G1, (37)

where G1 and U3 are the (M) vectors, they can be described as the following forms:

G1 = [g1(t1), ..., g1(tM )]T ,

U3 = [U0,1, ..., U0,M ]T ,

and A3 is a matrix of dimension (M)× (M + 1)2, that has the following form

A3 =
(
eN+1
1 ⊗ [I]M+1

2

)
.

Similarly, we can write the equation of the second boundary condition as the fol-
lowing form (

eN+1
N+1 ⊗ [I]M+1

2

)
U4 = G2, (38)

which can be formed as
A4U4 = G2, (39)

where G2 and U4 are the (M) vectors, they can be described as the following forms:

G2 = [g2(t1), ..., g2(tM )]T ,

U4 = [UN,1, ..., UN,M ]T ,

and A4 is a matrix of dimension (M)× (M + 1)2, that has the following form

A4 =
(
eN+1
N+1 ⊗ [I]M+1

2

)
.

The resulting system of equations can be described, from collecting equations
(30), (33), (37) and (39), as the following

AU = F, (40)

where A is a matrix of dimension (N + 1)2 × (M + 1)2, that has the form A =
[A1 | A2 | A3 | A4]. For U and F, each one is a vector with dimension (M + 1)2,
and take the following form

U = [U1 | U2 | U3 | U4]T ,

F = [F1 | U0 | G1 | G2]T .

After solving the linear system described in (40), we can find the approximated
solution to our problem (2).

4. Numerical Examples

In order to test the utility of the proposed method, we apply the new scheme to
the following examples whose exact solutions are provided in each case. For both
examples, we take N = M and to show the efficiency of the presented method for
our problems in comparison with the exact solution. Also, to study the convergence
behavior of the presented method, we applied the following laws for different values
of N and for t = T :

• The ‖E‖∞ error norm of the solution which is defined by

‖E‖∞ = ‖U(x, t)− u(x, t)‖∞ = max
1≤i≤N−1

|Ui,M − u(xi, tM )| ,
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• The ‖E‖2 error norm of the solution which is defined by

‖E‖2 = ‖U(x, t)− u(x, t)‖2 =

[
N−1∑
i=1

(
Ui,M − u(xi, tM )

)2]1/2
,

• The condition number Kg(A) of the coefficient matrix A is given by

Kg(A) = ‖A‖g‖A−1‖g, g = 2,∞.
Finally, we compare our presented method with B-spline finite difference method
presented in [51].

All the computations are carried out in double precision arithmetic using Mat-
lab 7.9.0 (R2009b). To obtain sufficient accurate calculations, variable arithmetic
precision (vpa) is employed with digit being assigned to be 32. The code was ex-
ecuted on a second generation Intel Core i52410M, 2.3 Ghz Laptop. Finally, the
CPU time indicates the time for all calculations of operations in the solution of the
entire problem is presented.

Example 4.1. [1] Consider the problem (2)–(4) with the initial condition u(x, 0) =
sin(πx), 0 ≤ x ≤ 1, and the boundary conditions are given as{

u(0, t) = 0,
u(1, t) = 0,

0 ≤ t ≤ 1,

and the exact solution u(x, t) = sin(πx)e−π
2t, with p(x) = x/(1+x2) and q(x) = ex,

in this case the forcing function will be

f(x, t) = e−π
2t
[
π2 sin(πx)

(
p(x)− 1

)
+ q(x)π cos(πx)

]
.

In Comparing with B-Spline finite difference method [?], the maximum error was

Table 1. ‖E‖∞ error, ‖E‖2 error, condition number of g =
∞, g = 2 with different values of N for Example 4.1.

N ‖E‖∞ K∞(A) ‖E‖2 K2(A) CPU(s)
6 2.58855E-04 8.277e+2 3.6454E-04 3.181e+2 1.9054
8 1.08734E-05 2.335e+3 1.7818E-05 9.208e+2 1.9290
10 4.64040E-07 5.497e+3 3.8690E-07 2.209e+3 2.0593
12 1.72755E-08 1.134e+4 3.6828E-08 4.635e+3 2.9796
14 5.06475E-10 2.145e+4 1.1478E-09 8.794e+3 4.0006
16 1.17347E-11 3.806e+4 2.7774E-11 1.544e+4 6.5005
18 2.17164E-13 6.350e+4 5.3401E-13 2.550e+4 13.592
20 1.38658E-14 1.007e+5 2.0433E-14 4.009e+4 40.912

4.44E − 05 at T = 1 for 4x = 0.01 and 4t = 0.001, making CPU-time equal to
12.3226459 sec.

Example 4.2. [1, 2] Consider the problem (2)–(4) with the initial condition

u(x, 0) = e5x
(

cos(
π

2
x) + 0.25 sin(

π

2
x)
)
, 0 ≤ x ≤ 1,

and the boundary conditions given by{
u(0, t) = e−C0t,

u(1, t) = 0.25e5−C0t,
0 ≤ t ≤ 2,
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(a) Exact solution

(b) Numerical solution

Figure 1. Exact and Numerical solutions for introduced
p(x), q(x) with x ∈ [0, 1] and t ∈ [0, 1] at N = 20 for Example
4.1

and the exact solution

u(x, t) = e5x−C0t
(

cos(
π

2
x) + 0.25 sin(

π

2
x)
)
,

we take p(x) = xe−x/(1 + x2) and q(x) = ex/(1 + x2), in this case the forcing
function will be

f(x, t) =
{

cos(
π

2
x)
[
− C0 + C1q(x)− p(x)(5C1 +

π

2
C1)
]

+ sin(
π

2
x)
[−C0

4
+ C2q(x)− p(x)(5C2 −

π

2
C1)
]}
.e5x−C0t,

where

C0 =
π2

2
+

5

2
, C1 = 5 +

π

8
, C2 =

5

4
− π

2
.

In Comparing with B-Spline finite difference method [?], the maximum error was
1.451977E − 03 at T = 2 for 4x = 0.01 and 4t = 0.001, making CPU-time equal
to 25.721 sec.

In Tables “ 1 and 2”, shows the absolute (Error) between the exact and numerical
solutions, ‖E‖∞-error, K∞(A), ‖E‖2-error, K2(A) and CPU-time in some points
of the interval (0, 1) and T = 1 for 6 ≤ N ≤ 20. These tables indicates that as
N increases, the Error decreases more rapidly (exponentially). From Tables “ 1
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Table 2. ‖E‖∞ error, ‖E‖2 error, condition number of g =
∞, g = 2 with different values of N for Example 4.2.

N ‖E‖∞ K∞(A) ‖E‖2 K2(A) CPU(s)
6 1.77173E-03 4.210e+2 2.0244E-03 1.476e+2 2.288
8 4.51964E-05 1.120e+3 5.6853E-05 3.992e+2 2.540
10 7.02708E-07 2.472e+3 9.0166E-07 9.264e+2 3.091
12 7.59213E-09 4.959e+3 1.0370E-08 1.906e+3 4.273
14 6.93690E-11 9.167e+3 9.8183E-11 3.573e+3 6.013
16 4.93855E-13 1.583e+4 1.1083E-12 6.223e+3 8.476

(a) Exact solution

(b) Numerical solution

Figure 2. Exact and Numerical solutions for introduced
p(x), q(x) with x ∈ [0, 1] and t ∈ [0, 2] at N = 16 for Example
4.2

and 2”, it can be observed that the accuracy increases with the increase of number
of collocation points.

5. Conclusion

In this work, we applied Legendre Pseudo-spectral method for one-dimensional
advection-diffusion equation with variable coefficients on Legendre-Gauss-Lobatto
nodes. The differentiation matrices are used to represent the unknown functions.
Two examples are introduced in this article to show that the proposed numerical
procedure is efficient and provides very accurate results even with using a small
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number of collocation points. The stability of the resulting system was proved
by utility of the condition number Kg(A). Finally, The Pseudo-spectral scheme
is a powerful approach for the numerical solution of parabolic advection-diffusion
equation.
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