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EXISTENCE OF PERIODIC SOLUTIONS OF 2α-ORDER

NONLINEAR FUNCTIONAL DIFFERENCE EQUATIONS WITH

p−LAPLACIAN

YUJI LIU

Abstract. The existence of periodic solutions of a higher order nonlinear

functional difference equation with p-Laplacian is studied. Sufficient condi-
tions for the existence of periodic solutions of such equation are established.
The result is based on Mawhin′s continuation theorem. The methods used to
estimate the priori bound on periodic solutions are very technical.

1. Introduction

In recent years, there has been a large amount of attention paid to the study
on the dynamic properties of solutions of the difference equations that arise from
various applied problems [4, 5, 6, 7, 11, 12, 27, 16, 17, 20, 30, 31, 32, 33, 34] and
[8, 9, 10, 36].

Consider the difference equation of the form

yn+1 − yn + f(n, yn, yn−1, · · · , yn−k) = 0, n ∈ Z. (1)

Many authors discussed the properties, such as permanence, existence of periodic
solutions, stability and oscillatory properties, of equation (1) or its special cases,
see the text books [14, 18, 19, 21, 22, 23, 24, 26, 25].

In [27], Furumochi and Naito considered the following first order difference equa-
tion

xn+1 = f(n, xn), n ∈ Z, (2)

by using Schauder’s fixed point theorem, sufficient conditions are obtained for (2)
to have periodic solutions

In [11, 12], the authors studied the existence of periodic solutions for the (k+1)-
th order difference equation

xn+1 = F (xn, xn−1, ..., xn−k), n ∈ Z (3)

and established the necessary and sufficient conditions that make all solutions of
(3) are periodic.
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In [34], using Schaefer′s fixed-point theorem, Raffoul showed that if there is
a priori bound on all possible T -periodic solutions of a Volterra-type difference
equation

∆x(n) = λ

Dx(n) +
n∑

j=−∞
(n− j)x(j) + g(n)

 with
∞∑
j=0

|C(j)| < ∞,

then there is a T -periodic solution of the difference equations

∆x(n) = Dx(n) +
n∑

j=−∞
(n− j)x(j) + g(n) with

∞∑
j=0

|C(j)| < ∞.

The priori bound of solutions of the first equation is established by means of a
Lyapunov functional on which no bound is required.

It is well known that the bending of elastic beam can be described with some
fourth-order p-Laplacian differential equations. Recently, in [5], The authors con-
sidered the functional difference equation

∆2(rn−2∆
2xn−2) + f(n, xn) = 0, n ∈ Z, (4)

where f : Z ×R → R is a continuous function in the second variable, f(n+T, z) =
f(n, z), rn+T = rn, for all (n, z) ∈ Z ×R, and T is a positive integer. equation (4)
is a discrete form of the nonlinear elastic beam equation

[r(t)x′′(t)]′′ + f(t, xt) = 0, t ∈ R.

By using linking theorem, the authors obtained some new criteria for the existence
and multiplicity of periodic solutions of equation (4).

Then in [6], the authors obtained some new sufficient conditions for the existence
of nontrivial m-periodic solutions of the following nonlinear difference equation

∆(pn∆
δxn−1) + f(n, xn) = 0, n ∈ Z, (5)

by using the critical point method, where f : Z × R → R is continuous in the
second variable, m ≥ 2 is a given positive integer, pn+m = pn for any n ∈ Z and
f(t+m, z) = f(t, z) for any (t, z) ∈ Z ×R, (−1)δ = −1 and δ > 0.

For more general higher order functional difference equation

∆n(rn−t∆
nxn−t) + f(t, xt) = 0, n ∈ Z(3), t ∈ Z, (6)

where f : Z ×R → R is a continuous function in the second variable, f(t+ T, z) =
f(t, z) for all (t, z) ∈ Z ×R, rt+T = rt for all t ∈ Z, and T a given positive integer.
By the Linking Theorem, in [7], some new criteria were obtained for the existence
and multiplicity of periodic solutions of equation (6).

The motivation of this paper also comes from papers [4, 33, 20, 16, 29]. In paper
[4], Atici and Guseinov investigated the problem{

−∆(p(n− 1)∆y(n− 1)) + q(n)y(n) = f(n, y(n)), n ∈ [1, N ],
y(0) = y(N), p(0)∆y(0) = p(N)∆y(N),

(7)

by using a fixed point theorem in cones in Banach space, the existence results for
positive solutions of BVP(7) were established.

In [16], by using the dual least action principle, the authors proved some existence
theorems for periodic solutions of second order discrete convex systems involving
the p-Laplacian

∆[ϕp(∆x(t− 1))] +∇F (t, x(t)) = 0, t ∈ Z,
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where ϕp is p-Laplacian operator, i.e.,

ϕp(x) = |x|p−2x =


√√√√ N∑

i=1

x2
i

p−2

(x1, , x2, · · · , xN )τ ,

x ∈ RN , p > 1, τ stands for the transpose of a vector or a matrix, F : Z×RN → R,
F (t, x)) is continuously differentiable and convex in x ∈ RN for every t ∈ Z and
T -periodic in t for all x ∈ RN , ∇F (t, x(t)) denotes the gradient of F (t, x) in x.

In [20], the author concerned with the existence of at least one T -periodic solution
of nonlinear functional difference equation

∆x(n) + a(n)x(n) = f(n, x(n), x(τ1(n)), · · · , x(τm(n))), n ∈ Z

with
∏T−1

j=0 (1 − a(j)) ̸= 1. Sufficient conditions for the existence of T -periodic
solution of above equation was established.

Motivated by [1, 2, 3, 15, 28, 35], in what follows we seek to enrich the discussion
found in the above cited literature by exploring the existence of periodic soltions
of the discrete functional difference equations heretofore not considered. We study
the higher order nonlinear functional difference equations with p-Laplacian

∆α[p(n)ϕ(∆αx(n))] = (−1)αf(n, x(n+ α), x(τ1(n)), · · · , x(τm(n))), n ∈ Z, (8)

where α ∈ Z(1) = {1, 2, 3, · · · }, Z is the integers set, p(n) is a positive T -periodic
sequence, ϕ : R → R with ϕ(x) = |x|r−2x for x ̸= 0 and ϕ(0) = 0, its inverse defined
by ϕ−1 with ϕ−1(x) = |x|t−2x for x ̸= 0 and ϕ−1(0) = 0, where r > 1, t > 1 with
1/r+1/t = 1, τi(i = 1, · · · ,m) are T -periodic sequences, f(n, u) is T -periodic in n
and continuous in u = (x0, · · · , xm).

The purpose of this paper is to establish sufficient conditions for the existence
of at least one T−periodic solution of equation (8) by using coincidence degree
theory of Mawhin. Equation (8) is more general than equations (4), (5), (6) and
(7), respectively. The methods in this paper are motivated by paper [34] and are
different from those used in papers [4, 5, 6, 7], the priori bound of solutions of
(8) is established by means of a new way that is extensively different from the
Lyapunov functional methods used in [34]. It is interesting that we allow that f to
be sublinear, at most linear or superlinear.

This paper is organized as follows. In Section 2, we give the main results, and
in Section 3, examples to illustrate the main results will be presented.

2. Main Results

To get existence results for solutions of equation (8), we need the following fixed
point theorem.

Let X and Y be Banach spaces, L : D(L) ⊂ X → Y be a Fredholm operator of
index zero, P : X → X, Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L, X = Ker L⊕Ker P, Y = Im L⊕ Im Q.

It follows that

L|D(L)∩Ker P : D(L) ∩Ker P → Im L

is invertible, we denote the inverse of that map by Kp.
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If Ω is an open bounded subset of X, D(L)∩Ω ̸= ∅, the map N : X → Y will be
called L-compact on Ω if QN(Ω) is bounded and Kp(I−Q)N : Ω → X is compact.

Theorem 2.1 [13]. Let L be a Fredholm operator of index zero and let N be
L-compact on nonempty open bounded subset Ω of X centered at zero. Assume
that the following conditions are satisfied:

(i) Lx ̸= λNx for every (x, λ) ∈ [(D(L) \KerL) ∩ ∂Ω]× (0, 1);
(ii) Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω;
(iii) deg(∧QN

∣∣
KerL , Ω ∩ KerL, 0) ̸= 0, where ∧ : Y/ImL → KerL is the

isomorphism.
Then the equation Lx = Nx has at least one solution in D(L) ∩ Ω.

LetX1 be the set of all T -periodic sequences. ChooseX = X1×X1 = Y endowed
with the norm

||(x, y)|| = max

{
||x|| =: max

n∈Z
|x(n)|, ||y|| =: max

n∈Z
|y(n)|

}
for all (x, y) ∈ X.

It is easy to see that X is a Banach space. Let L : X → Y, be defined by

L

(
x(n)
y(n)

)
=

(
∆αx(n)
∆αy(n)

)
,

and N : X → Y by

N

(
x(n)
y(n)

)
=

(
ϕ−1

(
y(n)
p(n)

)
(−1)αf(n, x(n+ α), x(τ1(n)), · · · , x(τm(n)))

)

for all (x, y) ∈ X.

Theorem 2.2. It holds that
(i) KerL = {(x, y) ∈ X with x(n) = c, y(n) = d for all n ∈ Z}.
(ii) ImL =

{
(u, v) ∈ Y :

∑T−1
n=0 u(n) =

∑T−1
n=0 v(n) = 0

}
.

(iii) L is a Fredholm operator of index zero.
(iv) Let Ω ⊂ X be an open bounded subset with Ω ∩ D(L) ̸= ∅, then N is

L-compact on Ω.
(v) There exist projectors P : X → X and Q : Y → Y such that KerL = ImP ,

KerQ = ImL.
(vi) If (x, y) ∈ X is a solution of the operator equation L(x, y) = N(x, y), then

x is a solution of problem (8).
Proof. In fact, it is easy to show (i), (ii), (iii) and (v). Define the projectors

Q : Y → Y and P : X → X by

P

(
x(k)
y(k)

)
=

(
1
T

∑T−1
k=0 x(k)

1
T

∑T−1
k=0 y(k)

)
, for (x, y) ∈ X,

and

Q

(
u(k)
v(k)

)
=

(
1
T

∑T−1
k=0 u(k)

1
T

∑T−1
k=0 v(k)

)
for (u, v) ∈ Y,
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respectively. it is easy to prove that KerL = ImP and Im L = KerQ. For a

T -periodic sequence u ∈ X1 with
∑T−1

n=0 y(n) = 0, let

cα−1(y) = − 1
T−1

∑T−1
s=0 (T − s)y(s),

cα−2(y) = − 1
T−1

(∑T−1
s=0

(T+1−s)(T−s)
2! y(s) + (T+1)(T+2)

2! cα−1(y)− 3·2
2! cα−1(y)

)
,

cα−3(y) = − 1
T−1

(∑T−1
s=0

(T+2−s)(T+1−s)(T−s)
3! y(s) + (T+1)(T+2)(T+3)

3! cα−1(y)

−4·3·2
3! cα−1(y) +

(T+1)(T+2)
2! cα−2(y)− 3·2

2! cα−2(y)
)
,

· · · · · · ,

c1(y) = − 1
T−1

(∑T−1
s=0

∏α−3
i=0 (T+i−s)

(α−3)! y(s) +
∑α−1

j=2

∏j
s=1(T+s)

j! cj(y)

−
∑α−1

j=2

∏j+1
s=2 s
j! cj(y)

)
,

c0(y) = − 1
T−1

(∑T−1
s=0

∏α−2
i=0 (T+i−s)

(α−1)! y(s) +
∑α−1

j=1

∏j+1
s=1(T+s)
(j+1)! cj(y)

−
∑α−1

j=1

∏j+2
s=2 s

(j+1)! cj(y)
)
.

Then the inverse Kp : ImL → D(L) ∩KerP of the map L : D(L) ∩KerP → ImL
can be written by

Kp

(
u(k)
v(k)

)
=

(
x(k)
y(k)

)
x(k) =

k−α∑
s=0

(k − 1− s)(k − 2− s) · · · (k − (α− 1)− s)

(α− 1)!
x(s)

+
α−1∑
i=1

∏i
s=1(k + s− 1)

i!
ci(x)−

1

T

T−1∑
k=0

(
α−1∑
i=1

∏i
s=1(k + s− 1)

i!
ci(x)

+

k−α∑
s=0

(k − 1− s)(k − 2− s) · · · (k − (α− 1)− s)

(α− 1)!
x(s)

)
,

y(k) =

k−α∑
s=0

(k − 1− s)(k − 2− s) · · · (k − (α− 1)− s)

(α− 1)!
y(s)

+

α−1∑
i=1

∏i
s=1(k + s− 1)

i!
ci(y)−

1

T

T−1∑
k=0

(
α−1∑
i=1

∏i
s=1(k + s− 1)

i!
ci(y)

+
k−α∑
s=0

(k − 1− s)(k − 2− s) · · · (k − (α− 1)− s)

(α− 1)!
y(s)

)
.
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In fact, for (u, v) ∈ Im L, we have (LKp)

(
u(k)
v(k)

)
=

(
u(k)
v(k)

)
. On the other

hand, for x ∈ KerP ∩D(L), it follows that (KpL)

(
x(k)
y(k)

)
=

(
x(k)
y(k)

)
. Further-

more, let ∧ : KerL → R2 be the isomophism with ∧(a, b) = (b, a). Set

fx(n) = f(n, x(n+ α), x(τ1(n)), · · · , x(τm(n))

for x ∈ X1. One has

QN

(
x(k)
y(k)

)
= Q

(
ϕ−1

(
y(n)
p(n)

)
(−1)αf(n, x(n+ α), x(τ1(n)), · · · , x(τm(n)))

)

=
1

T

( ∑T−1
n=0 ϕ

−1
(

y(n)
p(n)

)
(−1)α

∑T−1
n=0 f(n, x(n+ α), x(τ1(n)), · · · , x(τm(n)))

)
,

and

Kp(I −Q)N

(
x(k)
y(k)

)
= Kp(I −Q)

(
ϕ−1

(
y(n)
p(n)

)
(−1)αf(n, x(n+ α), x(τ1(n)), · · · , x(τm(n)))

)

= Kp(I −Q)

(
ϕ−1

(
y(n)
p(n)

)
(−1)αfx(n)

)
=

(
x0(k)
y0(k)

)
,

x0(k) =

k−2m∑
s=0

(k − 1− s)(k − 2− s) · · · (k − (α− 1)− s)

(α− 1)!
fx(k)

+

α−1∑
i=1

∏i
s=1(k + s− 1)

i!
ci(fx)−

1

T

T−1∑
k=0

(
α−1∑
i=1

∏i
s=1(k + s− 1)

i!
ci(fx)

+
k−α∑
s=0

(k − 1− s)(k − 2− s) · · · (k − (α− 1)− s)

(α− 1)!
fx(s)

)

+
1

T

(
T−1∑
k=0

fx(k)

)
k−α∑
s=0

(k − 1− s)(k − 2− s) · · · (k − (α− 1)− s)

(α− 1)!

+
α−1∑
i=1

∏i
s=1(k + s− 1)

i!
ci(fx)−

1

T

T−1∑
k=0

(
α−1∑
i=1

∏i
s=1(k + s− 1)

i!
ci(fx)

+
1

T

(
T−1∑
k=0

fx(k)

)
k−α∑
s=0

(k − 1− s)(k − 2− s) · · · (k − (α− 1)− s)

(α− 1)!

)
,

y0(k) =
k−2m∑
s=0

(k − 1− s)(k − 2− s) · · · (k − (α− 1)− s)

(α− 1)!
fy(k)

+
α−1∑
i=1

∏i
s=1(k + s− 1)

i!
ci(fy)−

1

T

T−1∑
k=0

(
α−1∑
i=1

∏i
s=1(k + s− 1)

i!
ci(fy)
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+
k−α∑
s=0

(k − 1− s)(k − 2− s) · · · (k − (α− 1)− s)

(α− 1)!
fy(s)

)

+
1

T

(
T−1∑
k=0

fy(k)

)
k−α∑
s=0

(k − 1− s)(k − 2− s) · · · (k − (α− 1)− s)

(α− 1)!

+
α−1∑
i=1

∏i
s=1(k + s− 1)

i!
ci(fy)−

1

T

T−1∑
k=0

(
α−1∑
i=1

∏i
s=1(k + s− 1)

i!
ci(fy)

+
1

T

(
T−1∑
k=0

fy(k)

)
k−α∑
s=0

(k − 1− s)(k − 2− s) · · · (k − (α− 1)− s)

(α− 1)!

)
.

Since f is continuous, using the Ascoli-Arzela theorem, we can prove that QN(Ω)
is bounded and Kp(I − Q)N : Ω → X is compact, thus N is L−compact on Ω.
Then (iv) holds.

Theorem 2.3. Suppose that
(A) there exist numbers β > 0, θ > 1, nonnegative sequences pi(n), r(n)(i =

0, · · · ,m), functions g(n, x0, · · · , xm), h(n, x0, · · · , xm) such that

f(n, x0, · · · , xm) = g(n, x0, · · · , xm) + h(n, x0, · · · , xm) (9)

g(n, x0, x1, · · · , xm)x0 ≤ −β|x0|θ+1, (10)

and

|h(n, x0, · · · , xm)| ≤
m∑
s=0

pi(n)|xi|θ + r(n), (11)

for all n ∈ {1, · · · , T}, (x0, x1, · · · , xm) ∈ Rm+1.
(B) there exists a constant M > 0 such that

(−1)αc

[
T−1∑
n=0

f(n, c, c, · · · , c)

]
> 0 (12)

for all |c| > M or

(−1)αc

[
T−1∑
n=0

f(n, c, c, · · · , c)

]
< 0 (13)

for all |c| > M .
Then equation (8) has at least one solution if

||p0||+ T
θ

θ+1

m∑
i=1

||pi|| < β. (14)

Proof. To obtain a solution x of equation (8), it suffices to get a solution (x, y)
of the operator equation L(x, y) = N(x, y) in X. It follows from Theorem 2.2 that
L is a Fredholm operator of index zero and N is L-compact on each nonempty
open bounded subset Ω of X centered at zero. We need to get a nonempty open
bounded subset Ω of X centered at zero such that (i), (ii) and (iii) in Theorem 2.1
hold. This is done by dividing into three steps.

Step 1. Let Ω1 = {(x, y) : L(x, y) = λN(x, y), ((x, y), λ) ∈ [(D(L) \ KerL)] ×
(0, 1)}, we prove that Ω1 is bounded.
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For (x, y) ∈ Ω1, we have L(x, y) = λN(x, y), λ ∈ (0, 1), so
∆αx(n) = λϕ−1

(
y(n)
p(n)

)
∆αy(n) = (−1)αλf(n, x(n+ α), x(τ1(n)), · · · , x(τm(n))),
x(n+ T ) = x(n),
y(n+ T ) = y(n)

(15)

hold for all n ∈ Z. It follows from the first and second equation in (13) that

∆α

[
p(n)ϕ

(
∆αx(n)

λ

)]
= (−1)αλf(n, x(n+ α), x(τ1(n)), · · · , x(τm(n)).

Then

∆α
[
p(n)ϕ

(
∆αx(n)

)]
= (−1)αλϕ(λ)f(n, x(n+ α), x(τ1(n)), · · · , x(τm(n)).

It is easy to see that

(−1)α
n+T−1∑
s=n

∆α
[
p(s)ϕ

(
∆αx(s)

)]
x(s+ α)

=

n+T−1∑
s=n

{
∆α−1

[
p(s+ 1)ϕ

(
∆αx(s+ 1)

)]
−∆α−1

[
p(s)ϕ

(
∆αx(s)

)]}
×

[x(s+ α+ 1)−∆x(s+ α)]

= (−1)α
n+T−1∑
s=n

{
∆α−1

[
p(s+ 1)ϕ

(
∆αx(s+ 1)

)]
x(s+ α+ 1)

−∆α−1
[
p(s)ϕ

(
∆αx(s)

)]
x(s+ α)

}
−

n+T−1∑
s=n

∆α−1
[
p(s+ 1)ϕ

(
∆αx(s+ 1)

)]
∆x(s+ α)

= −(−1)α
n+T−1∑
s=n

∆α−1
[
p(s+ 1)ϕ

(
∆αx(s+ 1)

)]
∆x(s+ α)

= −
n+T−1∑
s=n

{
∆α−2

[
p(s+ 2)ϕ

(
∆αx(s+ 2)

)]
−∆α−2

[
p(s+ 1)ϕ

(
∆βx(s+ 1)

)]}
×

[∆x(s+ α+ 1)−∆2x(s+ α)]

= −(−1)α
n+T−1∑
s=n

{
∆α−2

[
p(s+ 2)ϕ

(
∆αx(s+ 2)

)]
∆x(s+ α+ 1)

−∆α−2
[
p(s+ 1)ϕ

(
∆αx(s+ 1)

)]
∆x(s+ α)

}
+

n+T−1∑
s=n

∆α−2
[
p(s+ 2)ϕ

(
∆βx(s+ 2)

)]
∆2x(s+ α)
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= (−1)α−2
n+T−1∑
s=n

∆α−2
[
p(s+ 2)ϕ

(
∆αx(s+ 2)

)]
∆2x(s+ α)

= · · · · · ·

=
n+T−1∑
s=n

p(s+ α)ϕ
(
∆αx(s+ α)

)
∆αx(s+ α).

Since xϕ(x) ≥ 0 for all x ∈ R and p(n) > 0 for all n ∈ Z, we get

(−1)α
n+T−1∑
s=n

∆α
[
p(s)ϕ

(
∆αx(s)

)]
x(s+ α)

=
n+T−1∑
s=n

p(s+ α)ϕ
(
∆αx(s+ α)

)
∆αx(s+ α) ≥ 0.

(16)

Then

n+T−1∑
s=n

f(s, x(s+ α), x(s− τ1(s)), · · · , x(s− τm(s))x(s+ α) ≥ 0.

It follows from (9), (10) and (11) that

β
T−1∑
n=0

|x(n+ α)|θ+1 = β
n+T−1∑
s=n

|x(s+ α)|θ+1

≤ −
n+T−1∑
s=n

g(s, x(s+ α), x(τ1(s)), · · · , x(τm(s))x(s+ α)

≤
n+T−1∑
s=n

h(s, x(s+ α), x(τ1(s)), · · · , x(τm(s))x(s+ α)

≤
n+T−1∑
s=n

|h(s, x(s+ α), x(τ1(s)), · · · , x(τm(s))| |x(s+ α)|

≤
n+T−1∑
s=n

p0(s)|x(s+ α)|θ+1 +

m∑
i=1

n+T−1∑
s=n

pi(s)|x(τi(s))|θ|x(s+ α)|

+

n+T−1∑
s=n

r(s)|x(s+ α)|

≤ ||p0||
T−1∑
n=0

|x(n+ α)|θ+1 +
m∑
i=1

||pi||
T−1∑
n=0

|x(τi(n))|θ|x(n+ α)|

+||r||
T−1∑
n=0

|x(n+ α)|.

For xi ≥ 0, yi ≥ 0, Holder′s inequality implies

s∑
i=1

xiyi ≤

(
s∑

i=1

xp
i

)1/p( s∑
i=1

yqi

)1/q

, 1/p+ 1/q = 1, q > 0, p > 0.
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It follows that

β
T−1∑
n=0

|x(n+ α)|θ+1

≤ ||p0||
T−1∑
n=0

|x(n+ α)|θ+1 + ||r||T
θ

θ+1

[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

+
m∑
i=1

||pi||

[
T−1∑
n=0

|x(τi(n))|θ+1

] θ
θ+1
[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

= ||p0||
T−1∑
n=0

|x(n+ α)|θ+1 + ||r||T θ/(θ+1)

[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

+

m∑
i=1

||pi||

[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)
 ∑
u∈{τi(n)−α: n=0,··· ,T−1}

|x(u+ α)|θ+1

θ/(θ+1)

≤ ||p0||
T−1∑
n=0

|x(n+ α)|θ+1 + ||r||T
θ

θ+1

[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

+
m∑
i=1

||pi||

[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)
T ∑

u∈[0,T−1]

|x(u+ α)|θ+1

θ/(θ+1)

= ||p0||
T−1∑
n=0

|x(n+ α)|θ+1 + ||r||T
θ

θ+1

[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

+T
θ

θ+1

m∑
i=1

||pi||

[
T−1∑
n=0

|x(n+ α)|θ+1

]θ/(θ+1) [T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

= ||p0||
T−1∑
n=0

|x(n+ α)|θ+1 + ||r||T
θ

θ+1

[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

+T
θ

θ+1

m∑
i=1

||pi||
T−1∑
n=0

|x(n+ α)|θ+1.

One gets that(
β − ||p0|| − T

θ
θ+1

m∑
i=1

||pi||

)
T−1∑
n=0

|x(n+α)|θ+1 ≤ ||r||T
θ

θ+1

(
T−1∑
n=0

|x(n+ α)|θ+1

)1/(θ+1)

.

It follows from (12) that there is M1 > 0 such that
∑T−1

u=0 |x(u + α)|θ+1 ≤ M1.
Thus

max
{
|x(u+ α)|θ+1 : u = 0, · · · , T − 1

}
≤ M1.

Hence |x(n+α)| ≤ M
1/(θ+1)
1 for all n ∈ {0, · · · , T−1}. Then ||x|| = maxn∈Z |x(n)| ≤

M
1/(θ+1)
1 .
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Now, we consider maxn∈Z |y(n)|. Since (16) implies that

λϕ(λ)

n+T−1∑
s=n

y(s+ α)ϕ−1

(
y(s+ α)

p(s+ α)

)

= λϕ(λ)
n+T−1∑
s=n

p(s+ α)
y(s+ α)

p(s+ α)
ϕ−1

(
y(s+ α)

p(s+ α)

)

=
n+T−1∑
s=n

p(s+ α)ϕ

(
λϕ−1

(
y(s+ α)

p(s+ α)

))
λϕ−1

(
y(s+ α)

p(s+ α)

)

=

n+T−1∑
s=n

p(s+ α)ϕ
(
∆αx(s+ α)

)
∆αx(s+ α)

= (−1)α
n+T−1∑
s=n

∆α
[
p(s)ϕ

(
∆αx(s)

)]
x(s+ α)

= λϕ(λ)
n+T−1∑
s=n

f(s, x(s+ α), x(τ1(s)), · · · , x(τm(s))x(s+ α).

We get

n+T−1∑
s=n

y(s+α)ϕ−1

(
y(s+ α)

p(s+ α)

)
=

n+T−1∑
s=n

f(s, x(s+α), x(τ1(s)), · · · , x(τm(s))x(s+α).

Then ϕ−1(x) = |x|t−2x implies ϕ−1(ab)ϕ−1(a)ϕ−1(b), and xϕ−1(x) ≥ 0. (9),(10)
and (11) imply that

ϕ−1

(
1

||p||

) n+T−1∑
s=n

y(s+ α)ϕ−1(y(s+ α))

≤
n+T−1∑
s=n

ϕ−1

(
1

p(s+ α)

)
y(s+ α)ϕ−1(y(s+ α))

=

n+T−1∑
s=n

[
g(s, x(s+ α), x(τ1(s)), · · · , x(τm(s))x(s+ α)

+ h(s, x(s+ α), x(τ1(s)), · · · , x(τm(s))x(s+ α)
]

≤
n+T−1∑
s=n

[
− β|x(s+ α)|θ+1 + h(s, x(s+ α), x(τ1(s)), · · · , x(τm(s))x(s+ α))

]
≤

n+T−1∑
s=n

∣∣∣ h(s, x(s+ α), x(τ1(s)), · · · , x(τm(s))x(s+ α)
∣∣∣

≤
n+T−1∑
s=n

p0(s)|x(s+ α)|θ+1 +
m∑
i=1

n+T−1∑
s=n

pi(s)|x(τi(s))|θ|x(s+ α)|+
n+T−1∑
s=n

r(s)|x(s+ α)|
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≤ ||p0||
T−1∑
n=0

|x(n+ α)|θ+1 +
m∑
i=1

||pi||
T−1∑
n=0

|x(τi(n))|θ|x(n+ α)|

+||r||
T−1∑
n=0

|x(n+ α)|

≤ ||p0||
T−1∑
n=0

|x(n+ α)|θ+1 + ||r||T θ/(θ+1)

[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

+

m∑
i=1

||pi||

[
T−1∑
n=0

|x(τi(n))|θ+1

] θ
θ+1
[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

= ||p0||
T−1∑
n=0

|x(n+ α)|θ+1 + ||r||T
θ

θ+1

[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

+
m∑
i=1

||pi||

 ∑
u∈{τi(n)−α: n=0,··· ,T−1}

|x(u+ α)|θ+1

θ/(θ+1) [
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

≤ ||p0||
T−1∑
n=0

|x(n+ α)|θ+1 + ||r||T
θ

θ+1

[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

+
m∑
i=1

||pi||

[
T

T−1∑
n=0

|x(n+ α)|θ+1

]θ/(θ+1) [T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

≤ ||p0||
T−1∑
n=0

|x(n+ α)|θ+1 + ||r||T
θ

θ+1

[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

+T
θ

θ+1

m∑
i=1

||pi||

[
T−1∑
n=0

|x(n+ α)|θ+1

]θ/(θ+1) [T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

= ||p0||
T−1∑
n=0

|x(n+ α)|θ+1 + ||r||T
θ

θ+1

[
T−1∑
n=0

|x(n+ α)|θ+1

]1/(θ+1)

+T
θ

θ+1

m∑
i=1

||pi||
T−1∑
n=0

|x(n+ α)|θ+1

≤ ||p0||M1 + ||r||T
θ

θ+1M
1

θ+1

1 + T
θ

θ+1

m∑
i=1

||pi||M1

=: M2.

Hence

T−1∑
s=0

|y(s+α)|t =
n+T−1∑
s=n

|y(s+α)|t =
n+T−1∑
s=n

y(s+α)ϕ−1(y(s+α)) ≤ M2ϕ
−1 (||p||) .

(17)

It follows from y ∈ X1 that ||y|| = maxn∈Z |y(n+ α)| ≤
(
M2ϕ

−1 (||p||)
)1/t

. Hence



EJMAA-2015/3(2) PERIODIC SOLUTION OF DIFFERENCE EQUATIONS 27

||(x, y)|| ≤ max

{
M

1/(θ+1)
1 ,

(
M2ϕ

−1 (||p||)
)1/t}

for (x, y) ∈ X.

So Ω1 is bounded.
Step 2. Prove that Ω2 = {(a, b) ∈ KerL : N(a, b) ∈ ImL} is bounded.
For (a, b) ∈ KerL, we have N(a, b) = (ϕ−1(b/p(n)), f(n, a, · · · , a)). Nx ∈ ImL

implies that

T−1∑
n=0

ϕ−1(b/p(n)) = 0,
T−1∑
n=0

f(n, a, · · · , a) = 0.

It follows from condition (B) that |a| ≤ M and b = 0. Thus Ω2 is bounded.
Step 3. Prove that Ω3 = {(a, b) ∈ KerL : λ∧ (a, b) + (1− λ)QN(a, b) = 0, λ ∈

[0, 1]} or Ω3 = {(a, b) ∈ KerL : −λ ∧ (a, b) + (1 − λ)QN(a, b) = 0, λ ∈ [0, 1]} is
bounded.

If (12) holds, consider

Ω3 = {(a, b) ∈ KerL : λ ∧ (a, b) + (1− λ)QN(a, b) = 0, λ ∈ [0, 1]}.

We will prove that Ω3 is bounded. For (a, b) ∈ Ω3, and λ ∈ [0, 1], we have

−(1− λ)

T−1∑
n=0

ϕ−1(b/p(n)) = λb, −(−1)α(1− λ)

T−1∑
n=0

f(n, a, · · · , a) = λaT.

If λ = 1, then a = b = 0. If λ ̸= 1, and |a| > M , it follows from (B) that

0 ≥ −(−1)α(1− λ)a
T−1∑
n=0

f(n, a, · · · , a) = λa2T > 0,

a contradiction. So |a| ≤ M . Similarly, we get |b| ≤ M . Hence Ω3 is bounded.
If (13) holds, consider

Ω3 = {(a, b) ∈ KerL : −λ ∧ (a, b) + (1− λ)QN(a, b) = 0, λ ∈ [0, 1]},

Similarly, we can get a contradiction. So Ω3 is bounded.
Set Ω be a open bounded subset of X such that Ω ⊃ ∪3

i=1Ωi. By the definition
of Ω, we have Ω ⊃ Ω1 and Ω ⊃ Ω2, thus, from Step 1, Step 2 and Step 3, that
Lx ̸= λNx for x ∈ D(L)\KerL)∩∂Ω and λ ∈ (0, 1); Nx /∈ ImL for x ∈ KerL∩∂Ω.

In fact, let H(x, λ) = ±λ ∧ x + (1 − λ)QNx. According the definition of Ω, we
know Ω ⊃ Ω3, thus H(x, λ) ̸= 0 for x ∈ ∂Ω ∩KerL, thus by homotopy property of
degree,

deg(QN |D(L),Ω ∩KerL, 0) = deg(H(·, 0),Ω ∩KerL, 0)

= deg(H(·, 1),Ω ∩KerL, 0) = deg(±∧,Ω ∩KerL, 0) ̸= 0 since 0 ∈ Ω.

Thus by Theorem 2.1 (Theorem IV.13[5]), L(x, y) = N(x, y) has at least one solu-
tion (x, y) ∈ Ω, then x is a solution of equation (8). The proof is completed.

3. Examples

In this section, we present two examples, which have applications see the text
book [7], to illustrate the main results in section 2. These examples can not be
solved by applying theorems in the papers [1-4,8-10]
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Example 3.1. Consider the problem

∆2(p(n)ϕ(∆2x(n))) = −β[x(n+ 1)]2k+1 +
m∑
i=0

pi(n)[x(n− i)]2k+1

+
l∑

j=0

qj(n)[x(n+ j)]2k+1 + r(n),

(18)

where ϕ is defined in Section 1, β > 0, l,m, k are positive integers, r, pi, qj are
T−periodic sequences. Corresponding to equation (1), let

g(n, x0, · · · , xm+l) = βx2k+1
0 ,

and

g(n, x0, · · · , xm+l) =

m∑
i=0

pi(n)x
2k+1
i +

l∑
j=0

qj(n)x
2k+1
m+j + r(n).

Choose θ = 2k+1. One sees that (A) holds. On the other hand, it is easy to show
that there exists a constant M > 0 such that

c
T−1∑
n=0

−β +
m∑
i=0

pi(n) +
l∑

j=0

qj(n)

 c2k+1 + r(n)

 > 0

for all |c| > M if −β +
∑m

i=0 pi(n) +
∑l

j=0 qj(n) > 0 for all n ∈ [0, T − 1] or

c

T−1∑
n=0

−β +

m∑
i=0

pi(n) +

l∑
j=0

qj(n)

 c2k+1 + r(n)

 < 0

for all |c| > M if −β +
∑m

i=0 pi(n) +
∑l

j=0 qj(n) < 0 for all n ∈ [0, T − 1].

It follows from Theorem 2.3 that problem (18) has at least one solution if

||p0||+ ||q0||+ T
2k+1
2k+2

 m∑
i=0

||pi||+
l∑

j=0

||qj ||

 < β

and −β +
∑m

i=0 pi(n) +
∑l

j=0 qj(n) > 0 for all n ∈ [0, T − 1] or −β +
∑m

i=0 pi(n) +∑l
j=0 qj(n) < 0 for all n ∈ [0, T − 1].

Example 3.2. Consider the problem

∆3(p(n)ϕ(∆3x(n))) = β[x(n+ 1)]2k+1 −
m∑
i=0

pi(n)[x(n− i)]2k+1

−
l∑

j=0

qj(n)[x(n+ j)]2k+1 − r(n),

(19)

where ϕ is defined in Section 1, β > 0, l,m, k are positive integers, r, pi, qj are
T−periodic sequences. Corresponding to equation (2), let

g(n, x0, · · · , xm+l) = βx2k+1
0 ,

and

g(n, x0, · · · , xm+l) =

m∑
i=0

pi(n)x
2k+1
i +

l∑
j=0

qj(n)x
2k+1
m+j + r(n).
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Choose θ = 2k+1. One sees that (A) holds. On the other hand, it is easy to show
that there exists a constant M > 0 such that

c
T−1∑
n=0

β −
m∑
i=0

pi(n)−
l∑

j=0

qj(n)

 c2k+1 − r(n)

 > 0

for all |c| > M if β −
∑m

i=0 pi(n)−
∑l

j=0 qj(n) > 0 for all n ∈ [0, T − 1] or

c
T−1∑
n=0

β −
m∑
i=0

pi(n)−
l∑

j=0

qj(n)

 c2k+1 + r(n)

 < 0

for all |c| > M if β −
∑m

i=0 pi(n)−
∑l

j=0 qj(n) < 0 for all n ∈ [0, T − 1].

It follows from Theorem 2.3 that problem (19) has at least one solution if

||p0||+ ||q0||+ T
2k+1
2k+2

 m∑
i=0

||pi||+
l∑

j=0

||qj ||

 < β

and β −
∑m

i=0 pi(n) −
∑l

j=0 qj(n) > 0 for all n ∈ [0, T − 1] or β −
∑m

i=0 pi(n) −∑l
j=0 qj(n) < 0 for all n ∈ [0, T − 1].
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