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DOMAIN OF THE DOUBLE BAND MATRIX DEFINED BY
FIBONACCI NUMBERS IN THE MADDOX’S SPACE /(p)*

HUSAMETTIN CAPAN AND FEYZI BASAR**

ABSTRACT. In the present paper, some algebraic and topological properties
of the domain £(F,p) of the double band matrix F' defined by a sequence of
Fibonacci numbers in the sequence space £(p) are studied, where £(p) denotes
the space of all sequences z = () such that >, [z,|P* < co and was defined
by Maddox in [Spaces of strongly summable sequences, Quart. J. Math. Oxford
(2) 18 (1967), 345-355]. Furthermore, the alpha-, beta- and gamma-duals of
the space £(F,p) are determined, and the Schauder basis is given. The classes
of matrix transformations from the space ¢(F,p) to the spaces o, ¢ and co
are characterized. Additionally, the characterizations of some other matrix
transformations from the space £(F,p) to the Euler, Riesz, difference, etc.,
sequence spaces are obtained from the main results of the paper.

1. PRELIMINARIES, BACKGROUND AND NOTATION

By w, we denote the space of all sequences with complex terms which contains
¢, the set of all finitely non-zero sequences, that is,

w: = {ax=(vg):xr €C forall keN},

where C denotes the complex field and N = {0,1,2,...}. By a sequence space, we
understand a linear subspace of the space w. We write ¢, ¢, co and £, for the clas-
sical sequence spaces of all bounded, convergent, null and absolutely p-summable
sequences which are the Banach spaces with the norms |||l = supycy |zx| and
lzll, = (3, |zk|P)!/P; respectively, where 1 < p < oo. For simplicity in notation,
here and in what follows, the summation without limits runs from 0 to co. Also by
bs and cs, we denote the spaces of all bounded and convergent series, respectively.
bu is the space consisting of all sequences (xy) such that (zy — 2g41) in £1 and by
is the intersection of the spaces bv and c.

2010 Mathematics Subject Classification. Primary: 46A45, Secondary: 46B45, 46A35.

Key words and phrases. Paranormed sequence space, double sequential band matrix, alpha-,
beta- and gamma-duals, matrix transformations in sequence spaces.

*The main results of this paper were presented in part at the conference Algerian-Turkish
International Days on Mathematics (ATIM 2013) to be held September 12-14, 20183 in istanbul,
Turkey, at the Fatih University.

**Corresponding author.

31



32 HUSAMETTIN GAPAN AND FEYZI BASAR EJMAA-2015/3(2)

A linear topological space X over the real field R is said to be a paranormed
space if there is a function g : X — R satisfying the following conditions for all
z,y € X:

(i) g(x) = 0 if z = 0, (i) g(x) = g(—=), (i) g(z +y) < g(z) + g(y), (iv)
Scalar multiplication is continuous, i.e., |a, — o] — 0 and g(z, — ) — 0 imply
g(anz, —ax) — 0 for all @’s in R and all z’s in X, where 6 is the zero vector in
the linear space X.

Assume here and after that (pg) be a bounded sequence of strictly positive real
numbers with suppy = H and M = max{1, H}. Then, the linear space £(p) was
defined by Maddox [1] (see also Simons [2] and Nakano [3]) as follows:

f(p)z{x:(xk)Ew:Z|xk|pk<oo}, (0 < pr < H < o0)

k

which is the complete space paranormed by g(z) = (3, |xk|p’“)1/M. We assume
throughout that p; ' + (p}) ™' = 1 and denote the collection of all finite subsets of
N by F and use the convention that any term with negative subscript is equal to
naught.

The alpha-, beta- and gamma-duals of a sequence space A, which are respectively
denoted by A, A and \7, are defined by

A = {z=(zp) €Ew:ay = (zpyr) € ¢ for all y= (yi) € A},
Moo= o= (vg) €Ew:ay = (vpyr) € cs for all y = (yx) € A},
A= {x=(ap) €w:zy = (zryx) € bs forall y=(yx) € A}.

Let A, p be any two sequence spaces and A = (apx) be an infinite matrix of
complex numbers a,j, where k,n € N. Then, we say that A defines a matriz
transformation from X into p and we denote it by writing A : A — p, if for every
sequence x = (xy) € A the sequence Ax = {(Ax),}, the A-transform of x, is in p;
where

(Az), = Zankxk (1.1)
k

provided the series on the right side of (1.1) converges for each n € N. By (A : p),
we denote the class of all matrices A such that A : A — u. Thus, A € (A : p) if
and only if Az exists, i.e. A, € A\ for all n € N and is in p for all € \, where
A,, denotes the sequence in the n-th row of A. This shows the importance of the
beta-dual for the existence of matrix transformations on any given sequence space.

The matrix domain A4 of an infinite matrix A in a sequence space \ is defined
as the set of all sequences x = (x) € w such that Az exists and is in the space A,
that is Mg = {o& = (x) € w: Az € A\}. It is immediate that A4 is a sequence space
whenever ) is a sequence space and the spaces A4 and A are linearly isomorphic if
A is triangle.

2. THE SEQUENCE SPACE {(F,p)

Consider the sequence ( f,,) of Fibonacci numbers defined by the linear recurrence

relations
o= 1 , n=0,1,
" fn71+fn72 ) ’I’LZQ
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Let us define the double band matrix F' = (f,x) by the sequence (f,), as follows:

ff'n. ’
fnk_ fn:»l ’ k:n’
0 , 0<k<n—lork>n

for all k,n € N. The usual inverse F~! = (c¢,x) of the matrix F is calculated as

faa
Cnk 1= Fefors 0<k<n,
0 , k>n

for all k,n € N. It is easy to show that the matrix F' is neither regular nor coercive
while it is conservative.
The domain ¢(F,p) of the double band matrix F' in the sequence space £(p) is
introduced, that is to say that
Pk
< oo} R

U(F,p) = {w— Tp) Ew: Z’ Jir1 Tpo1 +

where 0 < pr < H < oo. In the case pr = p for all k € N, the space ((F,p) is
reduced to the space £,(F), i.e.,

Lp(F) = {xz(xk)Ew:Z -

k

E g
et

frt+1

f
Ix Jr41

Furthermore, the alpha-, beta- and gamma-duals of the space ¢(F,p) are deter-
mined, and the Schauder basis is constructed. The classes of matrix transformations
from the space ¢(F,p) to the spaces ¢, ¢ and ¢y are characterized.

Now, we define the sequence y = (yx) by the F-transform of a sequence = = (zy,),
ie.,

Tp—1+

T

p<oo}, (p>1).

Jrt1 fr
Jr he lJrfk+1

for all £ € N. At this situation we can express x in terms of y that

R
Tk = Z f]f]+1 ] (22)

yp = (Fa)p = —

k (2.1)

for all £ € N.

Theorem 2.1. {(F,p) is a linear, complete metric space paranormed by h defined

by
Pr l/M
)" s

_ e e
a (zk:‘ Ik Ik_lJrfkﬂxk

where 0 < pp, < H < oo for all k € N.

Proof. To show the linearity of the space ¢(F, p) with respect to the coordinatewise
addition and scalar multiplication is trivial. Firstly, we show that ¢(F,p) is a
paranormed space with the paranorm h defined by (2.3).

It is clear that h(6) = 0, where 8 = (0,0,...) and h(z) = h(—x) for all x € ¢(F, p).
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Let © = (zx),y = (yx) € ¢(F,p). Then, by Minkowski’s inequality and the
inequality |a + b|P < |a|? + |b|"; where 0 < p <1 and a,b € C, we have

Mot = |3~ o+ o) + Lo )| o
% Ir Jr+1
_ 1M
_ e e fea A
a ; (’ o et forr T TR * frp1 "
- 1M
Jet1 fu  pEM ‘ Trt1 £ e\
< — =T _ ST
< ; <’ e Tp—1+ For T Yk—1+ kayk
1M 1M
Trt1 fe |P* fret1 fe |P*
< — . — _ -
= <¥ o T R ) *(2,; ] T e >
= h(z) + h(y).

Also, since the inequality |a|P* < max{1,|a|*} holds for a € R, we get

Jet1 k p] M
e [2; gm0 e ]
1/M
:<;Mmi$“ﬁiﬁﬁ>
< max{l, |a|}h(z).
Let (ay,) be a sequence of scalars with a,, — «, as n — oo, and {x(")}zozo be

a sequence of elements (™) € {(F, p) with h [z(™) —z] — 0, as n — co. Then, we
observe that

0<h [anx(m _ ax] — [anx(m =~ o™ 4™ ax} (2.4)
= h(an—a)z™ +a (o™ - 2)]
< f(an = a)®] 40 fa (a0 - 2)]
= Jan — alh [+] + max{1, |af}h [+ — ]

If we combine the facts o, — a — 0, as n — oo, and h [:c(”) — :c] — 0, as n — o0,

with (2.4) we obtain that h [a, 2™ — az] — 0, as n — co. That is to say that the

scalar multiplication is continuous. This shows that h is a paranorm on ¢(F, p).
Moreover, if we assume h(z) = 0, then we get

=0

Tk fra1
for each k € N. If we put k£ = 0, since x_; = 0 and fy/f1 # 0, we have zy = 0.
For k =1, since o = 0 and f;/f2 # 0, we have 1 = 0. Continuing in this way, we
obtain z; = 0 for all K € N. Namely, we obtain x = § = (0,0, ...). This shows that

h is a total paranorm.
Now, we show that ¢(F,p) is complete. Let (z") be any Cauchy sequence in

L(F,p); where o™ = {xén), a:(ln), xé”), .. } Then, for a given € > 0, there exists a

‘—fkﬂ Tp—-1+ e Tk
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positive integer ng(e) such that [h (z — 2™)]™ < &M for all n,m > ng(e). Since
for each fixed k € N

[(Fa™) — (Fa™)plPk - < Y [(Fa™)e — (Fa™ )P
k

- 3|

Pk
Frt1 (n)l+ fr O { i1 (m)lJr fr x(m):|

- fr frp ® Ik frr F
fret1 T (n) (m) S Ly e |P*
= —_— | :L‘ — T
; fk [ k—1 ] f o1 [ k k ]

— [h (xn _an)]J\/I < E

for every n,m > ng(e), {(Fz)x, (Fa')y, (Fa?)y,...} is a Cauchy sequence of real

numbers for every fixed £ € N. Since R is complete, it converges, say (Fz"), —
(Fx)r as n — oo. Using these infinitely many limits (Fx)o, (F2)1, (F2)2,... we
define the sequence {(Fx)q, (Fx)1, (Fx)2,...}. For each k € N and n > ng(g)

e = = S [ ]+ [ e

Tkt
Jr1 2™ fo_ ) _ {_ frt1 i }
; fk 1 + fk+1 z, Lh— T

S I(Fa") — (Fa)™ < eM
k

This shows that ™ — x € ¢(F,p). Since £(F,p) is a linear space, we conclude that
x € U(F,p). Tt follows that 2™ — x, as n — oo, in (F,p) which means that ¢(F,p)
is complete.

Now, one can easily check that the absolute property does not hold on the space
L(F,p), that is

o = (S 2o 2 M) " 2 (2 S ) 2,
. fr fr41 T fr fr+1

where |z| = (Jag|). This says that ¢(F,p) is the sequence space of non-absolute

type. (I

Theorem 2.2. Convergence in £(F,p) is strictly stronger than coordinatewise con-
vergence, but the converse is not true, in general.

Proof. First we show that h(z™ — ) — 0, as n — oo implies :L‘,(C") — T, a8 N —> 00
for all £ € N. If we fix k, then we have

karl (n) fk (n) i <_fk+1 f > b
0= ‘ fr 1+f1c+1 F Tx 71+fk+1xk
fet1 2 fo ) (_ frt1 fx ) P
< DT nh fo S g
_ Jrer () e (m o
- zk: e (xk* B xk*l) " e (x’“ - xk)

= (@ —o)".
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Hence, we have for k =0

: fi Jo Q) < bil Jo >’
lim ——at_ — |-z 1+ >z =0,
n—oo | fo 1 i o VTR
that is, ;—‘1) [x(()n) — xOH — 0, as m — oo, and fo/f1 =1 # 0, then ‘xé") — xo‘ — 0,
as n — oo. Likewise, for each k € N, we have ‘x,(ﬂn) — xk‘ — 0, as n — oo.

Now, we show that the converse is not true in general. We assume a:,(c") — T,

as n — oo. Then, there exists an N € N such that ‘x,(cn) — xk‘ < 1 for each fixed k
and for all n > N. Therefore, we see that

0 < h(a"-—2z)= [Z ‘fl}zl (:c,(:_)l — xk_1> + L (mlgn) _ :Ek>
k

Srs1

[ (2= v+ (4 =)

Pk/M]M

IN

Pk

fk+1
/M o /M
fk ( (n) ) ]
Ty — Th_1 — (z, — g

Jr41
1M
p)
o\ /M
%

for all k and n > N. Since |—frx4+1/fx] — 1.6 and |fi/fe+1] — 0.6, as k — oo,
h(z™ — ) in (2.5) does not converge for each fixed k¥ € N and for all n > N. This
implies that the converse is not true. Let us consider the elements of the sequence
™ be equal, then we observe h(z" — x) = 0, that is to say that coordinatewise
convergence requires convergence. Hence, we can say that the converse is not true
in general. O

,@( (n) )

?

Jr

‘ (n) _

fk+1

[ fera WM e por M
SRR P
k L

Jr

fr+1

™

Definition 2.3. A sequence space A\ with a linear topology is called a K -space,
provided each of the maps q; : A — C defined by q;(x) = x; is continuous for all i €
N. If a sequence space A is complete and convergence in A requires coordinatewise
convergence, then X is called FK-space. An F K -space whose topology is normable
is called a BK -space.

Now, we give the followings:

Theorem 2.4. ((F,p) is a K-space.

Proof. Firstly, we show that ¢;(z) = x; is linear for all i € N. Let z = (z;),y =
(y;) € £(F,p) and o € C. Then, we get

glz+y)=(@+y)i=z+y =qx)+q¢(y) and ¢(azr) = (az); = az; = ag;(z)
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for all 7 € N. Hence, g; is linear.

Now, we prove that g; is continuous. For this, it is sufficient to show that ¢; is
bounded.

Let = (z;) € {(F,p) be any vector. Then, since |¢;(x)| = |z;| for all i € N, one
can see that

] i x
gl = supJB@L il el
220 |@llerp)  wzo [2lerp) — 20 2llerp)

i.e. g; is bounded. Hence, ¢; is a linear and continuous operator. That is to say
that £(F,p) is a K-space. O

Theorem 2.5. ((F,p) is an FK-space.

Proof. 1t is easy to see by Theorems 2.1 and 2.2 that ¢(F,p) is complete sequence
space and convergence requires coordinatewise convergence. Hence, {(F,p) is an
F K -space. (]

Theorem 2.6. (,(F') is the linear space under the coordinatewise addition and
scalar multiplication which is a BK -space with the norm
p> 1/p

Proof. Since the first part of the theorem is a routine verification, we omit the detail.
Since /,, is a BK-space with respect to its usual norm and F' is a triangle matrix,
Theorem 4.3.2 of Wilansky [4, p. 61] gives the fact that £,(F) is a BK-space, where
1 < p < oo. This completes the proof. (I

_ et Tk
lell = (Z\ L,

where x = (xx) € £p(F') and 1 < p < oco.

Definition 2.7. Let d be a metric on a linear space X. If algebraic operations are
continuous, namely (x,) and (y,) are two sequences in X, and () is a sequence
of scalars such that

limn—oo d(Zn,x) =0 and limpeo d(yn,y) =0  implies limp— oo d(Tn + yn,x +y) =0,
limp 00 Otp = and limp—yoo d(Tn,x) =0 implies limp— oo d(ann,ax) =0

then, (X,d) is called linear metric space; (see Malkowsky and Rakocevié [5]). If
X is a complete linear metric space then it is called Frechet sequence space (see
Wilansky [6]). Now, we may give the following:

Theorem 2.8. (,(F) is a Frechet space.

Proof. To avoid the repetition of the similar statements, we only show that the
algebraic operations are continuous on the space ¢,(F'). Let (z,) and (y,) be two
sequences in ¢,(F), and (a,) be a sequence of scalars such that d(z,,z) — 0,
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d(yn,y) — 0 and «,, — @, as n — oo. Then, we get that
0 < lim d(zp+yn,z+Yy) (2.6)
n—oo

T (e + 0 — (2 + )]

< lim (flen —2f + lya —ylD)
= Jim d@n, @)+ lim dlyn,y) =0,
0 < li_>rn d(apxy,, ax) (2.7)

lim |lapz, — oz
n—oo

lim ||(an — @)xn + a(z, — )|
n—oo
< lim (o — alllzall + |af[2n — )
—00
= lim |y — af||zn|| + o] lim d(z,,z) =0.
n— 00 n—oo

It is easy to see from (2.6) and (2.7) that the algebraic operations are continuous
on the linear metric space ¢,(F). Hence, ¢,(F') is a Frechet space. O

With the notation of (2.1), the transformation T' defined from £(F, p) to £(p) by
x +— y = Tz is linear bijection, so we have the following:

Corollary 2.1. The sequence space {(F,p) of the non-absolute type is linearly
paranorm isomorphic to the space ¢(p), where 0 < p, < H < oo for all k € N.

It is known from Theorem 2.3 of Jarrah and Malkowsky [7] that the domain Ap
of an infinite matrix T = (¢,x) in a normed sequence space A has a basis if and only
if A has a basis, if T is a triangle. As a direct consequence of this fact, we have:

Corollary 2.2. Let 0 < pp < H < 00 and Ay = (Fx)i for all k € N. Define the

sequence bF) = {b%k)} . of the elements of the spaces {(F,p) by

ne
(k) i g<n<k,
bn = fnféwrl n ; k - (28)

for every fixred k € N. Then, the sequence {b(k)}keN is a basis for the space ((F, p)
and any x € L(F,p) has a unique representation of the form x =3, Apb).

3. THE ALPHA-, BETA- AND GAMMA-DUALS OF THE SPACE {(F p)

Prior to giving the alpha-, beta- and gamma-duals of the space £(F,p), we quote
some required lemmas for proving our theorems.

Lemma 3.1. [8, Theorem 5.1.0] Let A = (ank) be an infinite matriz over the
complex field. The following statements hold:
(i) Let 0 < pp < 1 for all k € N. Then, A € ((p) : 41) if and only if

SUDNe F SUPgeny [ D ey Gnk|” < 00.
(i) Let 1 < py, < H < o0 for all k € N. Then, A € ({(p) : ¢1) if and only if

there exists an integer B > 1 such that

sup Z Z anp B!

Py
< 0. (3.1)
NeF k [neN




EJMAA-2015/3(2) DOMAIN OF THE DOUBLE BAND MATRIX 39

Lemma 3.2. [9, (i) and (ii) of Theorem 1] Let A = (ank) be an infinite matrix
over the complex field. The following statements hold:

(i) Let 0 < pr, <1 for all k € N. Then, A € (£(p) : L) if and only if

sup |ank|"* < oo. (3.2)

n,keN

(ii) Let 1 < pxy < H < o0 for all k € N. Then, A € (U(p) : ls) if and only if
there exists an integer B > 1 such that

kB~ P 3.3
sup 2 fon B < oo o

Lemma 3.3. [9, Corollary for Theorem 1] Let A = (ank) be an infinite matriz over
the complex field and 0 < pp, < H < oo for all k € N. Then, A € (L(p) : ¢) if and
only if (3.2), (3.3) hold, and

lim an, = Bx for each k € N (3.4)
n—oo
also holds.

Let us define the sets E1(p), E2(p), E3(p), E4(p) and E5(p), as follows:

2 Pk
Ei(p) = <a=(ag) € w: sup sup Z @an <00,
NeF keN | 5 Frfrn
P
Ex(p) = U a=(ay) Ew: SIS <00,
B>1
n Pk
Es(p a= ) Ew: sup jH | < oo
(?) (4 k,neN kafk+1 ’
E4(p a=(ay) Ew: a; is convergent p
(®) Z fkfk+1 !
p;
Es(p a = (ay) € w:sup JH i < 00
(?) Bgl nENZ Z fkkarl

Because of Part (i) can be established in a similar way to the proof of Part (ii),
we give the proof only for Part (ii) in Theorems 3.4 and 3.5, below.

Theorem 3.4. The following statements hold:

(i) Let 0 < px <1 for all k € N. Then, {{(F,p)}* = E1(p).
(ii) Let 1 < pr, < H < oo for all k € N. Then, {{(F,p)}* = Ex(p).

Proof. Let us take any a = (a,) € w. By using (2.2), we obtain that

n+1
ATy = apyr = (By), for alln € N, 3.5
E  Fifonn yr = (By) (3.5)
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f721,+1
where E = (e,) is defined by e, = Ffiprdn o O<k=<n,
0 , kE>n

Thus, we observe by combining (3.5) with the condition (3.1) of Part (ii) of Lemma
3.1 that ax = (anx,) € ¢1 whenever x = (z) € £(F,p) if and only if Ey € ¢;
whenever y = (yi) € ¢(p). This leads to the fact that {{(F,p)}* = Ea(p), as
asserted. d

for all k,n € N.

Theorem 3.5. The following statements hold:

(i) Let 0 < px <1 for all k € N. Then, {{(F,p)}* = E3(p) N E4(p).
(i) Let 1 < pp < H < 00 for all k € N. Then, {£(F,p)}? = E4(p) N E5(p).

Proof. Take any a = (a;) € w. Then, one can obtain by (2.2) that

n o J ]+1 n N
jgoaj ! Z <Z fkfk+1 > Z kafk+1 J = (Dy)n (3.6)

k=0 \j=k

for all n € N, where D = (d,,x;) is defined by

n f2 1
dpk = { 2=k fk}:ﬂ aj , O<k<mn, (3.7

0 , k>n

for all n, k € N. Thus, we deduce from Lemma 3.3 with (3.6) that az = (a,z;) € cs
whenever x = (z;) € ¢(F,p) if and only if Dy € ¢ whenever y = (yx) € 4(p).
Therefore, we derive from (3.3) and (3.4) that

’
Pk
00 2

J+1 - Jj+1
sup a;B < 00, a; < o0.
nENZ kafk-H ! = Tefis !
This shows that {¢(F,p)}* = E4(p) N E5(p). O

Theorem 3.6. The following statements hold:

(i) Let 0 <py <1 for all k € N. Then, {{(F,p)}" = Es(p).
(ii) Let 1 < pp < H < oo for all k € N. Then, {{(F,p)}" = Es(p).

Proof. From Lemma 3.2 and (3.6), we obtain that az = (a;z;) € bs whenever
x = (z;) € L(F,p) if and only if Dy € {, whenever y = (yx) € {(p), where
D = (dni) is defined by (3.7). Therefore we obtain from (3.2) and (3.3) that

{e(F,p)}7 = { 5%29; : g:i}’ , as desired. 0

4. MATRIX TRANSFORMATIONS ON THE SPACE {(F, p)

In this section, we characterize some matrix transformations on the space ¢(F, p).
Since the cases 0 < pr <1 and 1 < pr < H < oo are combined, Theorem 4.1 gives
the exact conditions of the general case 0 < pi, < H < co. We consider only the
case 1 < pr < H < oo and omit the proof of the case 0 < p, < 1, since it can be
proved in a similar way.

Theorem 4.1. The following statements hold:



EJMAA-2015/3(2) DOMAIN OF THE DOUBLE BAND MATRIX 41

(i) Let 0 <pg <1 for all k € N. Then, A = (an) € (U(F,p) : L) if and only

if
Pk
2
sup L < 00, (4.1)
ke | = fufwr
Z e Anj < 00. (4.2)

< Jefrr

(i) Let 1 <pp < H <0 for all k € N. Then A = (ank) € (U(F,p) : ) if and
only if (4.2) holds and there exists an integer B > 1 such that

’
Py

J+1 -1
supz Z fkfk+1 < o0. (4.3)

neN

Proof. Let A € (U(F,p) : ) and 1 < pp, < H < oo for all k € N. Then, Ax exists
for every x € ¢(F,p) and this implies that A, € {¢(F,p)}? for each fixed n € N.
Therefore, the necessities of (4.2) and (4.3) are immediate.

Conversely, suppose that the conditions (4.2) and (4.3) hold, and take any z €
{(F,p). Since A, € {{(F,p)}® for every n € N, the A-transform of z exists. By
using (2.2), we obtain that

Zanjxj ZZ fk]Jrl Yrlnj szkj+1 AnjYk (44)

=0 k=0 k=0 j=k

for all m, n € N. Taking into account the hypothesis, we drive from (4.4), as m — oo
that

Zanj:cj ZZ fkf amyk for all n € N. (4.5)

k j=k

By combining (4.5) and the inequality which holds for any complex numbers a,b
and any B > 0

lab| < B (|aB’1|p/ +107).

where p > 1 and p~! + p'~! = 1, we obtain that

sup Zamxj sup ZZ QY| < supz Z kaH Yk

neN |4 neN fkfk
Pi
8
= ilégzk:B ka}k+1 RIRLCE
[e'e} p;c
- Sl e e | <

This shows that Ax € /. ([l
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Theorem 4.2. The following statements hold:

(i) Let 0 < pp <1 for all k € N. Then, A = (ank) € (U(F,p) : ¢) if and only if
(4.1) and (4.2) hold, and there is a sequence o = (o) of scalars such that

lim JH =« or all ke N. 4.6
"*Ooszfkﬂ kS (46)

(ii) Let 1 <pp < H < oo for all k € N. Then, A = (ank) € (U(F,p) : ¢) if and
only if (4.2), (4.3) and (4.6) hold.

Proof. Let A € ((F,p):c¢)and 1 < pp < H < oo for all &k € N. Then, since the
inclusion ¢ C £ holds, the necessities of (4.2) and (4.3) are immediately obtained
from Theorem 4.1.

To prove the necessity of (4.6), consider the sequence b*) defined by (2.8), which
belongs to the space ¢(F,p) for every fixed k € N. Since the A-transform of every
x € L(F,p) exists and is in ¢ by the hypothesis, we have

(k) _ (k) J+1 .
Ab jgo aij bj Z fk aij Ec

frt+1
i=0 =0

for every fixed k € N, which shows the necessity (4.6).

Conversely, suppose that the conditions (4.2), (4.3) and (4.6) hold, and take any
x = (x1) in the space £(F,p). Then, Az exists.

We observe for all m,n € N that

’
p

k P
n
J+1 B! J+1 -1
< sup <0
kzo Jzk frfor ™ neNXk: Z RLIL ans
which gives the fact by letting m,n — oo with (4.3) and (4.6)
P P
m n
j+1 B! J+1 -1
< sup ; < 0.
m "*00,;) ]Zk JeSrt1 @i neN; Z < frfrrr ans B

This shows that ), |0¢;€B’1|p’c < oo and (ag) € {¢(F,p)}? which implies that the
series ), agx) converges for all x € ((F,p).
Now, let us consider the equality obtained from (4.5) with a,; — a; instead of

Anj

D (an —aj)z; =" fkjf:j— anj = )Yk = ;anyka (4.7)

J k j=k

where C' = (c,y) defined by ¢ = Z;o k ffj‘:il (an; — ;) for all k,n € N. From
Lemma 3.3, ¢, — 0, as n — oo, for all k¥ € N. Therefore, we see by (4.7) that
> plnk — ax)zr, — 0, as n — oo. This means that Az € ¢ whenever x € ((F,p)

and this step completes the proof. (I

Corollary 4.3. The following statements hold:
(i) Let 0 < pr, <1 for all k € N. Then, A = (ank) € (L(F,p) : co) if and only
if (4.1) and (4.2) hold, and (4.6) also holds with oy, =0 for all k € N.
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(ii) Let 1 < px, < H < oo for all k € N. Then, A = (ank) € (U(F,p) : co) if and
only if (4.2) and (4.3) hold, and (4.6) also holds with ay, = 0 for all k € N.

Now, we can give the following lemma which is useful for deriving the character-
ization of the classes of matrix transformations from the space ¢(F,p) to the space
Aa, where X € {ls,c,c0} and A € {A,E",Cy, R, F}.

Lemma 4.1. [10, Lemma 5.3] Let A\, u be any two sequence spaces, A be an infinite
matriz and B be a triangle matriz. Then, A € (A : up) if and only if BA € (A : u).

Lemma 4.1 has several consequences depending on the choice of the space pu.
Indeed, combining Lemma 4.1 with Theorems 4.1, 4.2 and Corollary 4.3, one can
obtain the following results:

Corollary 4.2. Let A = (ank) be an infinite matriz of complex terms. Then, the
following statements hold:

(i) E = (enr) € (U(F,p) : bvso) if and only if (4.1)-(4.3) hold with dy, instead
of ank; where dpg, = ek —en—_1k for all k,n € N and bus, denotes the space
of all sequences x = (xy) such that (x — xp—_1) € oo, and was introduced
by Basar and Altay [10].

(il) E = (enk) € (L(F,p) : eL) if and only if (4.1)-(4.3) hold with d,y, instead of
Ak, where dpj, = Z;L 0 ( )(1 —r)"Iriey for all k,n € N and €7, denotes
the space of all sequences x = (xy) such that E"x € L, and was introduced
by Altay, Basar and Mursaleen [11].

(i) E = (enr) € (U(F,p) : Xoo) if and only if (4.1)-(4.3) hold with dyy instead
of nk; where dy), = Z;‘l:o ejr/(n+1) for all k,n € N and X, denotes the
space of all sequences x = (x) such that Cix € Ly, and was introduced by
Ng and Lee [12].

(iv) E = (enr) € (U(F,p) : L) if and only if (4.1)-(4.3) hold with d,. instead
of ani; where dp, = Z?:O tiejx/ Ty for all k,n € N and rt, denotes the
space of all sequences x = (xy) such that Rtz € lw, and was introduced by
Altay and Basar [13].

(v) E = (enr) € (U(F,p) : bs) if and only if (4.1)-(4.3) hold with d,j. instead of
Qnk, where dyy, = Z?:o ek for all k,n € N.

(Vi) E = (enk) € (U(F,p) : loo(F)) if and only if (4.1)-(4.3) hold with dy,

instead of ank, where dy,, = — f}“en 1k + ff enk for all k,m € N and

foo(ﬁ) denotes the space of all sequences © = () such that Fx € o, and
was introduced by Kara [14].

Corollary 4.3. Let A = (ank) be an infinite matriz of complex terms. Then, the
following statements hold:

(i) E = (enr) € (U(F,p) : c¢(A)) if and only if (4.1)-(4.3) and (4.6) hold with
dni, instead of ank; where dpy, = enk — eny1,k for all k,n € N and c¢(A)
denotes the space of all sequences x = (xy) such that (z) — xp4+1) € ¢, and
was introduced by Kizmaz [15].

(i) E = (enr) € (U(F,p) = €g) if and only if (4.1)-(4.5) and (4.6) hold with dyy
instead of any, where dpp = Zj 0 ( )(1 — )" Jrje]k for all k,n € N and
el denotes the space of all sequences x = (x1) such that E"x € ¢, and was
introduced by Altay and Basar [16].
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(iii)

(iv)

(vi)
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E = (enr) € (U(F,p) : ¢) if and only if (4.1)-(4.3) and (4.6) hold with d
instead of ayy; where dy), = Z?:o ejr/(n+1) for allk,n € N and ¢ denotes
the space of all sequences x = (xy) such that Cyz € ¢, and was introduced
by Sengonil and Basar [17].

E = (enx) € (L(F,p) : L) if and only if (4.1)-(4.3) and (4.6) hold with d,y
instead of any; where dpj, = Z?:O tiejx/Tn for all k,n € N and rt denotes
the space of all sequences v = (x1,) such that Rtz € ¢, and was introduced
by Altay and Basar [18].

E = (enr) € (U(F,p) : c(ﬁ)) if and only if (4.1)-(4.3) and (4.6) hold with

dnr instead of ani; where dy, = —%en_lk + ffﬁenk for all k,n € N

and c(ﬁ) denotes the space of all sequences x = (xy,) such that Fx € ¢, and
was introduced by Bagarwr et al. [19].

E = (enx) € (U(F,p) : cs) if and only if (4.1)-(4.3) and (4.6) hold with d
instead of ani; where dpy, = Z?:o e;i for all k,n € N.

Corollary 4.4. Let A = (anx) be an infinite matriz of complex terms. Then, the
following statements hold:

(i)

(i)

(i)

E = (enr) € (U(F,p) : co(A)) if and only if (4.1)-(4.3) hold and (4.6) also
holds with a, = 0 for all k € N and dyj instead of ani; where dy, =
enk — ent1.k for all k,n € N and co(A) denotes the space of all sequences
x = (xy) such that (xy — Tp11) € co, and was introduced by Kizmaz [15].
E = (enr) € (U(F,p) : €]) if and only if (4.1)-(4.3) hold and (4.6) also
holds with a, = 0 for all k € N and d,i instead of ani, where dy, =
Z;'Z:o (’;)(1 —r)"Irie;, for all k,n € N and €, denotes the space of all
sequences © = (xy) such that E"x € ¢y, and was introduced by Altay and
Bagsar [16].

E = (enr) € (U(F,p) : o) if and only if (4.1)-(4.3) hold and (4.6) also
holds with a, = 0 for all k € N and d,j instead of ani; where dn, =
Z?:o ejr/(n+1) for all k,n € N and ¢, denotes the space of all sequences
x = (xx) such that Cix € co, and was introduced by Sengonil and Basar
[17].

E = (enr) € (U(F,p) : 7}) if and only if (4.1)-(4.3) hold and (4.6) also
holds with o, = 0 for all k € N and d,j instead of anr; where d,, =
Z?:O tiejx/Tn for all k,n € N and rf denotes the space of all sequences
x = (z) such that R'z € cy, and was introduced by Altay and Basar [18].
E = (en) € (U(F,p) : co(l:"\)) if and only if (4.1)-(4.3) hold and (4.6) also
holds with a, = 0 for all k € N and dyj instead of ani; where dy,, =
—%en,l’k + ff—:lenk for all k,n € N and co(ﬁ) denotes the space of all
sequences x = (x) such that Fx € ¢g, and was introduced by Basarir et al.
[19].

E = (enr) € (U(F,p) : cos) if and only if (4.1)-(4.3) hold and (4.6) also
holds with a, = 0 for all k € N and d,j instead of ani; where dy, =
Z?:o ejk for allk,n € N and cos denotes the space of all sequences x = (zy,)
such that ), x = 0.
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