Electronic Journal of Mathematical Analysis and Applications Vol. 3(2) July 2015, pp. 31-45. ISSN: 2090-792X (online) http://ejmaa.6te.net/

DOMAIN OF THE DOUBLE BAND MATRIX DEFINED BY FIBONACCI NUMBERS IN THE MADDOX'S SPACE $\ell(p)^*$

HÜSAMETTİN ÇAPAN AND FEYZİ BAŞAR**

ABSTRACT. In the present paper, some algebraic and topological properties of the domain $\ell(F,p)$ of the double band matrix F defined by a sequence of Fibonacci numbers in the sequence space $\ell(p)$ are studied, where $\ell(p)$ denotes the space of all sequences $x = (x_k)$ such that $\sum_k |x_k|^{p_k} < \infty$ and was defined by Maddox in [Spaces of strongly summable sequences, Quart. J. Math. Oxford (2) **18** (1967), 345–355]. Furthermore, the alpha-, beta- and gamma-duals of the space $\ell(F,p)$ are determined, and the Schauder basis is given. The classes of matrix transformations from the space $\ell(F,p)$ to the spaces ℓ_{∞} , c and c_0 are characterized. Additionally, the characterizations of some other matrix transformations from the space $\ell(F,p)$ to the Euler, Riesz, difference, etc., sequence spaces are obtained from the main results of the paper.

1. PRELIMINARIES, BACKGROUND AND NOTATION

By ω , we denote the space of all sequences with complex terms which contains ϕ , the set of all finitely non-zero sequences, that is,

 $\omega: = \{x = (x_k) : x_k \in \mathbb{C} \text{ for all } k \in \mathbb{N}\},\$

where \mathbb{C} denotes the complex field and $\mathbb{N} = \{0, 1, 2, ...\}$. By a sequence space, we understand a linear subspace of the space ω . We write ℓ_{∞} , c, c_0 and ℓ_p for the classical sequence spaces of all bounded, convergent, null and absolutely *p*-summable sequences which are the Banach spaces with the norms $||x||_{\infty} = \sup_{k \in \mathbb{N}} |x_k|$ and $||x||_p = (\sum_k |x_k|^p)^{1/p}$; respectively, where $1 \leq p < \infty$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞ . Also by *bs* and *cs*, we denote the spaces of all bounded and convergent series, respectively. *bv* is the space consisting of all sequences (x_k) such that $(x_k - x_{k+1})$ in ℓ_1 and bv_0 is the intersection of the spaces *bv* and c_0 .

²⁰¹⁰ Mathematics Subject Classification. Primary: 46A45, Secondary: 46B45, 46A35.

Key words and phrases. Paranormed sequence space, double sequential band matrix, alpha-, beta- and gamma-duals, matrix transformations in sequence spaces.

^{*}The main results of this paper were presented in part at the conference Algerian-Turkish International Days on Mathematics (ATIM 2013) to be held September 12–14, 2013 in İstanbul, Turkey, at the Fatih University.

^{**}Corresponding author.

A linear topological space X over the real field \mathbb{R} is said to be a *paranormed* space if there is a function $g: X \to \mathbb{R}$ satisfying the following conditions for all $x, y \in X$:

(i) g(x) = 0 if $x = \theta$, (ii) g(x) = g(-x), (iii) $g(x + y) \leq g(x) + g(y)$, (iv) Scalar multiplication is continuous, i.e., $|\alpha_n - \alpha| \to 0$ and $g(x_n - x) \to 0$ imply $g(\alpha_n x_n - \alpha x) \to 0$ for all α 's in \mathbb{R} and all x's in X, where θ is the zero vector in the linear space X.

Assume here and after that (p_k) be a bounded sequence of strictly positive real numbers with $\sup p_k = H$ and $M = \max\{1, H\}$. Then, the linear space $\ell(p)$ was defined by Maddox [1] (see also Simons [2] and Nakano [3]) as follows:

$$\ell(p) = \left\{ x = (x_k) \in w : \sum_k |x_k|^{p_k} < \infty \right\}, \ (0 < p_k \le H < \infty)$$

which is the complete space paranormed by $g(x) = (\sum_k |x_k|^{p_k})^{1/M}$. We assume throughout that $p_k^{-1} + (p'_k)^{-1} = 1$ and denote the collection of all finite subsets of \mathbb{N} by \mathcal{F} and use the convention that any term with negative subscript is equal to naught.

The alpha-, beta- and gamma-duals of a sequence space λ , which are respectively denoted by λ^{α} , λ^{β} and λ^{γ} , are defined by

$$\begin{aligned} \lambda^{\alpha} &:= \left\{ x = (x_k) \in \omega : xy = (x_k y_k) \in \ell_1 \text{ for all } y = (y_k) \in \lambda \right\}, \\ \lambda^{\beta} &:= \left\{ x = (x_k) \in \omega : xy = (x_k y_k) \in cs \text{ for all } y = (y_k) \in \lambda \right\}, \\ \lambda^{\gamma} &:= \left\{ x = (x_k) \in \omega : xy = (x_k y_k) \in bs \text{ for all } y = (y_k) \in \lambda \right\}. \end{aligned}$$

Let λ , μ be any two sequence spaces and $A = (a_{nk})$ be an infinite matrix of complex numbers a_{nk} , where $k, n \in \mathbb{N}$. Then, we say that A defines a *matrix* transformation from λ into μ and we denote it by writing $A : \lambda \to \mu$, if for every sequence $x = (x_k) \in \lambda$ the sequence $Ax = \{(Ax)_n\}$, the A-transform of x, is in μ ; where

$$(Ax)_n = \sum_k a_{nk} x_k \tag{1.1}$$

provided the series on the right side of (1.1) converges for each $n \in \mathbb{N}$. By $(\lambda : \mu)$, we denote the class of all matrices A such that $A : \lambda \to \mu$. Thus, $A \in (\lambda : \mu)$ if and only if Ax exists, i.e. $A_n \in \lambda^\beta$ for all $n \in \mathbb{N}$ and is in μ for all $x \in \lambda$, where A_n denotes the sequence in the *n*-th row of A. This shows the importance of the beta-dual for the existence of matrix transformations on any given sequence space.

The matrix domain λ_A of an infinite matrix A in a sequence space λ is defined as the set of all sequences $x = (x_k) \in \omega$ such that Ax exists and is in the space λ , that is $\lambda_A := \{x = (x_k) \in w : Ax \in \lambda\}$. It is immediate that λ_A is a sequence space whenever λ is a sequence space and the spaces λ_A and λ are linearly isomorphic if A is triangle.

2. The Sequence Space $\ell(F, p)$

Consider the sequence (f_n) of Fibonacci numbers defined by the linear recurrence relations

$$f_n := \begin{cases} 1 & , \quad n = 0, 1, \\ f_{n-1} + f_{n-2} & , \quad n \ge 2. \end{cases}$$

Let us define the double band matrix $F = (f_{nk})$ by the sequence (f_n) , as follows:

$$f_{nk} := \begin{cases} -\frac{f_{n+1}}{f_n} &, \quad k = n - 1, \\ \frac{f_n}{f_{n+1}} &, \quad k = n, \\ 0 &, \quad 0 \le k < n - 1 \text{ or } k > n \end{cases}$$

for all $k, n \in \mathbb{N}$. The usual inverse $F^{-1} = (c_{nk})$ of the matrix F is calculated as

$$c_{nk} := \begin{cases} \frac{f_{n+1}^2}{f_k f_{k+1}} & , & 0 \le k \le n, \\ 0 & , & k > n \end{cases}$$

for all $k, n \in \mathbb{N}$. It is easy to show that the matrix F is neither regular nor coercive while it is conservative.

The domain $\ell(F, p)$ of the double band matrix F in the sequence space $\ell(p)$ is introduced, that is to say that

$$\ell(F,p) := \left\{ x = (x_k) \in \omega : \sum_k \left| -\frac{f_{k+1}}{f_k} x_{k-1} + \frac{f_k}{f_{k+1}} x_k \right|^{p_k} < \infty \right\},\$$

where $0 < p_k \leq H < \infty$. In the case $p_k = p$ for all $k \in \mathbb{N}$, the space $\ell(F, p)$ is reduced to the space $\ell_p(F)$, i.e.,

$$\ell_p(F) := \left\{ x = (x_k) \in \omega : \sum_k \left| -\frac{f_{k+1}}{f_k} x_{k-1} + \frac{f_k}{f_{k+1}} x_k \right|^p < \infty \right\}, \ (p \ge 1).$$

Furthermore, the alpha-, beta- and gamma-duals of the space $\ell(F, p)$ are determined, and the Schauder basis is constructed. The classes of matrix transformations from the space $\ell(F, p)$ to the spaces ℓ_{∞} , c and c_0 are characterized.

Now, we define the sequence $y = (y_k)$ by the *F*-transform of a sequence $x = (x_k)$, i.e.,

$$y_k = (Fx)_k = -\frac{f_{k+1}}{f_k} x_{k-1} + \frac{f_k}{f_{k+1}} x_k$$
(2.1)

for all $k \in \mathbb{N}$. At this situation we can express x in terms of y that

$$x_k = \left(F^{-1}y\right)_k = \sum_{j=0}^k \frac{f_{k+1}^2}{f_j f_{j+1}} y_j \tag{2.2}$$

for all $k \in \mathbb{N}$.

Theorem 2.1. $\ell(F,p)$ is a linear, complete metric space paranormed by h defined by

$$h(x) = \left(\sum_{k} \left| -\frac{f_{k+1}}{f_k} x_{k-1} + \frac{f_k}{f_{k+1}} x_k \right|^{p_k} \right)^{1/M},$$
(2.3)

where $0 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$.

Proof. To show the linearity of the space $\ell(F, p)$ with respect to the coordinatewise addition and scalar multiplication is trivial. Firstly, we show that $\ell(F, p)$ is a paranormed space with the paranorm h defined by (2.3).

It is clear that $h(\theta) = 0$, where $\theta = (0, 0, ...)$ and h(x) = h(-x) for all $x \in \ell(F, p)$.

Let $x = (x_k), y = (y_k) \in \ell(F, p)$. Then, by Minkowski's inequality and the inequality $|a + b|^p \le |a|^p + |b|^p$; where $0 and <math>a, b \in \mathbb{C}$, we have

$$h(x+y) = \left[\sum_{k} \left| -\frac{f_{k+1}}{f_{k}} (x_{k-1} + y_{k-1}) + \frac{f_{k}}{f_{k+1}} (x_{k} + y_{k}) \right|^{p_{k}} \right]^{1/M}$$

$$= \left[\sum_{k} \left(\left| -\frac{f_{k+1}}{f_{k}} x_{k-1} + \frac{f_{k}}{f_{k+1}} x_{k} - \frac{f_{k+1}}{f_{k}} y_{k-1} + \frac{f_{k}}{f_{k+1}} y_{k} \right|^{p_{k}/M} \right)^{M} \right]^{1/M}$$

$$\leq \left[\sum_{k} \left(\left| -\frac{f_{k+1}}{f_{k}} x_{k-1} + \frac{f_{k}}{f_{k+1}} x_{k} \right|^{p_{k}/M} + \left| -\frac{f_{k+1}}{f_{k}} y_{k-1} + \frac{f_{k}}{f_{k+1}} y_{k} \right|^{p_{k}/M} \right)^{M} \right]^{1/M}$$

$$\leq \left(\sum_{k} \left| -\frac{f_{k+1}}{f_{k}} x_{k-1} + \frac{f_{k}}{f_{k+1}} x_{k} \right|^{p_{k}} \right)^{1/M} + \left(\sum_{k} \left| -\frac{f_{k+1}}{f_{k}} y_{k-1} + \frac{f_{k}}{f_{k+1}} y_{k} \right|^{p_{k}} \right)^{1/M}$$

$$= h(x) + h(y).$$

Also, since the inequality $|\alpha|^{p_k} \leq \max\{1, |\alpha|^M\}$ holds for $\alpha \in \mathbb{R}$, we get

$$h(\alpha x) = \left[\sum_{k} \left| -\frac{f_{k+1}}{f_{k}}(\alpha x_{k-1}) + \frac{f_{k}}{f_{k+1}}(\alpha x_{k}) \right|^{p_{k}} \right]^{1/M} \\ = \left(\sum_{k} |\alpha|^{p_{k}} \left| -\frac{f_{k+1}}{f_{k}}x_{k-1} + \frac{f_{k}}{f_{k+1}}x_{k} \right|^{p_{k}} \right)^{1/M} \\ \leq \max\{1, |\alpha|\}h(x).$$

Let (α_n) be a sequence of scalars with $\alpha_n \to \alpha$, as $n \to \infty$, and $\{x^{(n)}\}_{n=0}^{\infty}$ be a sequence of elements $x^{(n)} \in \ell(F, p)$ with $h[x^{(n)} - x] \to 0$, as $n \to \infty$. Then, we observe that

$$0 \le h \left[\alpha_n x^{(n)} - \alpha x \right] = h \left[\alpha_n x^{(n)} - \alpha x^{(n)} + \alpha x^{(n)} - \alpha x \right]$$
(2.4)
$$= h \left[(\alpha_n - \alpha) x^{(n)} + \alpha \left(x^{(n)} - x \right) \right]$$
$$\le h \left[(\alpha_n - \alpha) x^{(n)} \right] + h \left[\alpha \left(x^{(n)} - x \right) \right]$$
$$= |\alpha_n - \alpha| h \left[x^{(n)} \right] + \max\{1, |\alpha|\} h \left[x^{(n)} - x \right].$$

If we combine the facts $\alpha_n - \alpha \to 0$, as $n \to \infty$, and $h[x^{(n)} - x] \to 0$, as $n \to \infty$, with (2.4) we obtain that $h[\alpha_n x^{(n)} - \alpha x] \to 0$, as $n \to \infty$. That is to say that the scalar multiplication is continuous. This shows that h is a paranorm on $\ell(F, p)$.

Moreover, if we assume h(x) = 0, then we get

$$\left| -\frac{f_{k+1}}{f_k} x_{k-1} + \frac{f_k}{f_{k+1}} x_k \right| = 0$$

for each $k \in \mathbb{N}$. If we put k = 0, since $x_{-1} = 0$ and $f_0/f_1 \neq 0$, we have $x_0 = 0$. For k = 1, since $x_0 = 0$ and $f_1/f_2 \neq 0$, we have $x_1 = 0$. Continuing in this way, we obtain $x_k = 0$ for all $k \in \mathbb{N}$. Namely, we obtain $x = \theta = (0, 0, ...)$. This shows that h is a total paranorm.

Now, we show that $\ell(F,p)$ is complete. Let (x^n) be any Cauchy sequence in $\ell(F,p)$; where $x^n = \left\{ x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, \ldots \right\}$. Then, for a given $\varepsilon > 0$, there exists a

positive integer $n_0(\varepsilon)$ such that $[h(x^n - x^m)]^M < \varepsilon^M$ for all $n, m > n_0(\varepsilon)$. Since for each fixed $k \in \mathbb{N}$

$$\begin{split} |(Fx^{n})_{k} - (Fx^{m})_{k}|^{p_{k}} &\leq \sum_{k} |(Fx^{n})_{k} - (Fx^{m})_{k}|^{p_{k}} \\ &= \sum_{k} \left| -\frac{f_{k+1}}{f_{k}} x_{k-1}^{(n)} + \frac{f_{k}}{f_{k+1}} x_{k}^{(n)} - \left[-\frac{f_{k+1}}{f_{k}} x_{k-1}^{(m)} + \frac{f_{k}}{f_{k+1}} x_{k}^{(m)} \right] \right|^{p_{k}} \\ &= \sum_{k} \left| -\frac{f_{k+1}}{f_{k}} \left[x_{k-1}^{(n)} - x_{k-1}^{(m)} \right] + \frac{f_{k}}{f_{k+1}} \left[x_{k}^{(n)} - x_{k}^{(m)} \right] \right|^{p_{k}} \\ &= \left[h \left(x^{n} - x^{m} \right) \right]^{M} < \varepsilon^{M} \end{split}$$

for every $n, m > n_0(\varepsilon)$, $\{(Fx^0)_k, (Fx^1)_k, (Fx^2)_k, \ldots\}$ is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges, say $(Fx^n)_k \to (Fx)_k$ as $n \to \infty$. Using these infinitely many limits $(Fx)_0, (Fx)_1, (Fx)_2, \ldots$ we define the sequence $\{(Fx)_0, (Fx)_1, (Fx)_2, \ldots\}$. For each $k \in \mathbb{N}$ and $n > n_0(\varepsilon)$

$$[h(x^{n} - x)]^{M} = \sum_{k} \left| -\frac{f_{k+1}}{f_{k}} \left[x_{k-1}^{(n)} - x_{k-1} \right] + \frac{f_{k}}{f_{k+1}} \left[x_{k}^{(n)} - x_{k} \right] \right|^{p_{k}}$$

$$= \sum_{k} \left| -\frac{f_{k+1}}{f_{k}} x_{k-1}^{(n)} + \frac{f_{k}}{f_{k+1}} x_{k}^{(n)} - \left[-\frac{f_{k+1}}{f_{k}} x_{k-1} + \frac{f_{k}}{f_{k+1}} x_{k} \right] \right|^{p_{k}}$$

$$= \sum_{k} |(Fx^{n})_{k} - (Fx)_{k}|^{p_{k}} < \varepsilon^{M}.$$

This shows that $x^n - x \in \ell(F, p)$. Since $\ell(F, p)$ is a linear space, we conclude that $x \in \ell(F, p)$. It follows that $x^n \to x$, as $n \to \infty$, in $\ell(F, p)$ which means that $\ell(F, p)$ is complete.

Now, one can easily check that the absolute property does not hold on the space $\ell(F,p),$ that is

$$h(x) = \left(\sum_{k} \left| -\frac{f_{k+1}}{f_k} x_{k-1} + \frac{f_k}{f_{k+1}} x_k \right|^{p_k} \right)^{1/M} \neq \left(\sum_{k} \left| -\frac{f_{k+1}}{f_k} |x_{k-1}| + \frac{f_k}{f_{k+1}} |x_k| \right|^{p_k} \right)^{1/M} = h(|x|)$$

where $|x| = (|x_k|)$. This says that $\ell(F, p)$ is the sequence space of non-absolute type.

Theorem 2.2. Convergence in $\ell(F, p)$ is strictly stronger than coordinatewise convergence, but the converse is not true, in general.

Proof. First we show that $h(x^n - x) \to 0$, as $n \to \infty$ implies $x_k^{(n)} \to x_k$, as $n \to \infty$ for all $k \in \mathbb{N}$. If we fix k, then we have

$$0 \leq \left| -\frac{f_{k+1}}{f_k} x_{k-1}^{(n)} + \frac{f_k}{f_{k+1}} x_k^{(n)} - \left(-\frac{f_{k+1}}{f_k} x_{k-1} + \frac{f_k}{f_{k+1}} x_k \right) \right|^{p_k}$$

$$\leq \sum_k \left| -\frac{f_{k+1}}{f_k} x_{k-1}^{(n)} + \frac{f_k}{f_{k+1}} x_k^{(n)} - \left(-\frac{f_{k+1}}{f_k} x_{k-1} + \frac{f_k}{f_{k+1}} x_k \right) \right|^{p_k}$$

$$= \sum_k \left| -\frac{f_{k+1}}{f_k} \left(x_{k-1}^{(n)} - x_{k-1} \right) + \frac{f_k}{f_{k+1}} \left(x_k^{(n)} - x_k \right) \right|^{p_k}$$

$$= \left[h \left(x^n - x \right) \right]^M.$$

Hence, we have for k = 0

$$\lim_{n \to \infty} \left| -\frac{f_1}{f_0} x_{-1}^{(n)} + \frac{f_0}{f_1} x_0^{(n)} - \left(-\frac{f_1}{f_0} x_{-1} + \frac{f_0}{f_1} x_0 \right) \right| = 0,$$

that is, $\left|\frac{f_0}{f_1}\left[x_0^{(n)}-x_0\right]\right| \to 0$, as $n \to \infty$, and $f_0/f_1 = 1 \neq 0$, then $\left|x_0^{(n)}-x_0\right| \to 0$, as $n \to \infty$. Likewise, for each $k \in \mathbb{N}$, we have $\left|x_k^{(n)}-x_k\right| \to 0$, as $n \to \infty$.

Now, we show that the converse is not true in general. We assume $x_k^{(n)} \to x_k$, as $n \to \infty$. Then, there exists an $N \in \mathbb{N}$ such that $\left|x_k^{(n)} - x_k\right| < 1$ for each fixed k and for all $n \geq N$. Therefore, we see that

$$0 \leq h(x^{n} - x) = \left[\sum_{k} \left| -\frac{f_{k+1}}{f_{k}} \left(x_{k-1}^{(n)} - x_{k-1} \right) + \frac{f_{k}}{f_{k+1}} \left(x_{k}^{(n)} - x_{k} \right) \right|^{p_{k}} \right]^{1/M} (2.5)$$

$$= \left\{ \sum_{k} \left[\left| -\frac{f_{k+1}}{f_{k}} \left(x_{k-1}^{(n)} - x_{k-1} \right) + \frac{f_{k}}{f_{k+1}} \left(x_{k}^{(n)} - x_{k} \right) \right|^{p_{k}/M} \right]^{M} \right\}^{1/M}$$

$$\leq \left\{ \sum_{k} \left[\left| -\frac{f_{k+1}}{f_{k}} \left(x_{k-1}^{(n)} - x_{k-1} \right) \right|^{p_{k}/M} + \left| \frac{f_{k}}{f_{k+1}} \left(x_{k}^{(n)} - x_{k} \right) \right|^{p_{k}/M} \right]^{M} \right\}^{1/M}$$

$$\leq \left[\sum_{k} \left| -\frac{f_{k+1}}{f_{k}} \left(x_{k-1}^{(n)} - x_{k-1} \right) \right|^{p_{k}} \right]^{1/M} + \left[\sum_{k} \left| \frac{f_{k}}{f_{k+1}} \left(x_{k}^{(n)} - x_{k} \right) \right|^{p_{k}} \right]^{1/M}$$

$$\leq \left(\sum_{k} \left| -\frac{f_{k+1}}{f_{k}} \right|^{p_{k}} \left| x_{k-1}^{(n)} - x_{k-1} \right|^{p_{k}} \right)^{1/M} + \left(\sum_{k} \left| \frac{f_{k}}{f_{k+1}} \right|^{p_{k}} \left| x_{k}^{(n)} - x_{k} \right|^{p_{k}} \right)^{1/M}$$

$$\leq \left(\sum_{k} \left| -\frac{f_{k+1}}{f_{k}} \right|^{p_{k}} \right)^{1/M} + \left(\sum_{k} \left| \frac{f_{k}}{f_{k+1}} \right|^{p_{k}} \right)^{1/M}$$

for all k and $n \ge N$. Since $|-f_{k+1}/f_k| \to 1.6$ and $|f_k/f_{k+1}| \to 0.6$, as $k \to \infty$, $h(x^n - x)$ in (2.5) does not converge for each fixed $k \in \mathbb{N}$ and for all $n \ge N$. This implies that the converse is not true. Let us consider the elements of the sequence x^n be equal, then we observe $h(x^n - x) = 0$, that is to say that coordinatewise convergence requires convergence. Hence, we can say that the converse is not true in general.

Definition 2.3. A sequence space λ with a linear topology is called a K-space, provided each of the maps $q_i : \lambda \to \mathbb{C}$ defined by $q_i(x) = x_i$ is continuous for all $i \in \mathbb{N}$. If a sequence space λ is complete and convergence in λ requires coordinatewise convergence, then λ is called FK-space. An FK-space whose topology is normable is called a BK-space.

Now, we give the followings:

Theorem 2.4. $\ell(F, p)$ is a K-space.

Proof. Firstly, we show that $q_i(x) = x_i$ is linear for all $i \in \mathbb{N}$. Let $x = (x_i), y = (y_i) \in \ell(F, p)$ and $\alpha \in \mathbb{C}$. Then, we get

 $q_i(x+y) = (x+y)_i = x_i + y_i = q_i(x) + q_i(y)$ and $q_i(\alpha x) = (\alpha x)_i = \alpha x_i = \alpha q_i(x)$

for all $i \in \mathbb{N}$. Hence, q_i is linear.

Now, we prove that q_i is continuous. For this, it is sufficient to show that q_i is bounded.

Let $x = (x_i) \in \ell(F, p)$ be any vector. Then, since $|q_i(x)| = |x_i|$ for all $i \in \mathbb{N}$, one can see that

$$\|q_i\| = \sup_{x \neq \theta} \frac{|q_i(x)|}{\|x\|_{\ell(F,p)}} = \sup_{x \neq \theta} \frac{|x_i|}{\|x\|_{\ell(F,p)}} \le \sup_{x \neq \theta} \frac{\|x\|_{\ell(F,p)}}{\|x\|_{\ell(F,p)}} = 1 < \infty,$$

i.e. q_i is bounded. Hence, q_i is a linear and continuous operator. That is to say that $\ell(F, p)$ is a K-space.

Theorem 2.5. $\ell(F, p)$ is an FK-space.

Proof. It is easy to see by Theorems 2.1 and 2.2 that $\ell(F, p)$ is complete sequence space and convergence requires coordinatewise convergence. Hence, $\ell(F, p)$ is an FK-space.

Theorem 2.6. $\ell_p(F)$ is the linear space under the coordinatewise addition and scalar multiplication which is a BK-space with the norm

$$||x|| = \left(\sum_{k} \left| -\frac{f_{k+1}}{f_k} x_{k-1} + \frac{f_k}{f_{k+1}} x_k \right|^p \right)^{1/p},$$

where $x = (x_k) \in \ell_p(F)$ and $1 \le p < \infty$.

Proof. Since the first part of the theorem is a routine verification, we omit the detail. Since ℓ_p is a *BK*-space with respect to its usual norm and *F* is a triangle matrix, Theorem 4.3.2 of Wilansky [4, p. 61] gives the fact that $\ell_p(F)$ is a *BK*-space, where $1 \leq p < \infty$. This completes the proof.

Definition 2.7. Let d be a metric on a linear space X. If algebraic operations are continuous, namely (x_n) and (y_n) are two sequences in X, and (α_n) is a sequence of scalars such that

$$\begin{split} \lim_{n\to\infty} d(x_n,x) &= 0 \quad and \quad \lim_{n\to\infty} d(y_n,y) &= 0 \quad implies \quad \lim_{n\to\infty} d(x_n+y_n,x+y) &= 0, \\ \lim_{n\to\infty} \alpha_n &= \alpha \qquad and \quad \lim_{n\to\infty} d(x_n,x) &= 0 \quad implies \quad \lim_{n\to\infty} d(\alpha_n x_n,\alpha x) &= 0 \end{split}$$

then, (X, d) is called linear metric space; (see Malkowsky and Rakočević [5]). If X is a complete linear metric space then it is called Frechet sequence space (see Wilansky [6]). Now, we may give the following:

Theorem 2.8. $\ell_p(F)$ is a Frechet space.

Proof. To avoid the repetition of the similar statements, we only show that the algebraic operations are continuous on the space $\ell_p(F)$. Let (x_n) and (y_n) be two sequences in $\ell_p(F)$, and (α_n) be a sequence of scalars such that $d(x_n, x) \to 0$,

 $d(y_n, y) \to 0$ and $\alpha_n \to \alpha$, as $n \to \infty$. Then, we get that

$$0 \leq \lim_{n \to \infty} d(x_n + y_n, x + y)$$

$$= \lim_{n \to \infty} [\|x_n + y_n - (x + y)\|]$$

$$\leq \lim_{n \to \infty} (\|x_n - x\| + \|y_n - y\|)$$

$$= \lim_{n \to \infty} d(x_n, x) + \lim_{n \to \infty} d(y_n, y) = 0,$$

$$0 \leq \lim_{n \to \infty} d(\alpha_n x_n, \alpha x)$$

$$= \lim_{n \to \infty} \|\alpha_n x_n - \alpha x\|$$

$$= \lim_{n \to \infty} \|(\alpha_n - \alpha)x_n + \alpha(x_n - x)\|$$

$$\leq \lim_{n \to \infty} (|\alpha_n - \alpha| \|x_n\| + |\alpha| \|x_n - x\|)$$

$$= \lim_{n \to \infty} |\alpha_n - \alpha| \|x_n\| + |\alpha| \lim_{n \to \infty} d(x_n, x) = 0.$$
(2.6)

It is easy to see from (2.6) and (2.7) that the algebraic operations are continuous on the linear metric space $\ell_p(F)$. Hence, $\ell_p(F)$ is a Frechet space. \square

With the notation of (2.1), the transformation T defined from $\ell(F, p)$ to $\ell(p)$ by $x \mapsto y = Tx$ is linear bijection, so we have the following:

Corollary 2.1. The sequence space $\ell(F,p)$ of the non-absolute type is linearly paranorm isomorphic to the space $\ell(p)$, where $0 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$.

It is known from Theorem 2.3 of Jarrah and Malkowsky [7] that the domain λ_T of an infinite matrix $T = (t_{nk})$ in a normed sequence space λ has a basis if and only if λ has a basis, if T is a triangle. As a direct consequence of this fact, we have:

Corollary 2.2. Let $0 < p_k \leq H < \infty$ and $\lambda_k = (Fx)_k$ for all $k \in \mathbb{N}$. Define the sequence $b^{(k)} = \left\{ b_n^{(k)} \right\}_{n \in \mathbb{N}}$ of the elements of the spaces $\ell(F, p)$ by

$$b_n^{(k)} = \begin{cases} \frac{f_{k+1}^2}{f_n f_{n+1}} & , & 0 \le n \le k, \\ 0 & , & n > k \end{cases}$$
(2.8)

for every fixed $k \in \mathbb{N}$. Then, the sequence $\{b^{(k)}\}_{k \in \mathbb{N}}$ is a basis for the space $\ell(F, p)$ and any $x \in \ell(F, p)$ has a unique representation of the form $x = \sum_k \lambda_k b^{(k)}$.

3. The Alpha-, beta- and gamma-duals of the space $\ell(F, p)$

Prior to giving the alpha-, beta- and gamma-duals of the space $\ell(F, p)$, we quote some required lemmas for proving our theorems.

Lemma 3.1. [8, Theorem 5.1.0] Let $A = (a_{nk})$ be an infinite matrix over the complex field. The following statements hold:

- (i) Let $0 < p_k \leq 1$ for all $k \in \mathbb{N}$. Then, $A \in (\ell(p) : \ell_1)$ if and only if $\sup_{N \in \mathcal{F}} \sup_{k \in \mathbb{N}} \left| \sum_{n \in N} a_{nk} \right|^{p_k} < \infty.$ (ii) Let $1 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$. Then, $A \in (\ell(p) : \ell_1)$ if and only if
- there exists an integer B > 1 such that

$$\sup_{N\in\mathcal{F}}\sum_{k}\left|\sum_{n\in N}a_{nk}B^{-1}\right|^{p'_{k}}<\infty.$$
(3.1)

Lemma 3.2. [9, (i) and (ii) of Theorem 1] Let $A = (a_{nk})$ be an infinite matrix over the complex field. The following statements hold:

(i) Let $0 < p_k \leq 1$ for all $k \in \mathbb{N}$. Then, $A \in (\ell(p) : \ell_{\infty})$ if and only if

$$\sup_{n,k\in\mathbb{N}}|a_{nk}|^{p_k}<\infty.$$
(3.2)

(ii) Let $1 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$. Then, $A \in (\ell(p) : \ell_{\infty})$ if and only if there exists an integer B > 1 such that

$$\sup_{n\in\mathbb{N}}\sum_{k}\left|a_{nk}B^{-1}\right|^{p_{k}^{'}}<\infty.$$
(3.3)

Lemma 3.3. [9, Corollary for Theorem 1] Let $A = (a_{nk})$ be an infinite matrix over the complex field and $0 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$. Then, $A \in (\ell(p) : c)$ if and only if (3.2), (3.3) hold, and

$$\lim_{n \to \infty} a_{nk} = \beta_k \quad \text{for each } k \in \mathbb{N}$$
(3.4)

also holds.

Let us define the sets $E_1(p)$, $E_2(p)$, $E_3(p)$, $E_4(p)$ and $E_5(p)$, as follows:

$$\begin{split} E_{1}(p) &:= \left\{ a = (a_{k}) \in \omega : \sup_{N \in \mathcal{F}} \sup_{k \in \mathbb{N}} \left| \sum_{n \in N} \frac{f_{n+1}^{2}}{f_{k} f_{k+1}} a_{n} \right|^{p_{k}} < \infty \right\}, \\ E_{2}(p) &:= \bigcup_{B>1} \left\{ a = (a_{k}) \in \omega : \sup_{N \in \mathcal{F}} \sum_{k} \left| \sum_{n \in N} \frac{f_{n+1}^{2}}{f_{k} f_{k+1}} a_{n} B^{-1} \right|^{p_{k}'} < \infty \right\}, \\ E_{3}(p) &:= \left\{ a = (a_{k}) \in \omega : \sup_{k,n \in \mathbb{N}} \left| \sum_{j=k}^{n} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{j} \right|^{p_{k}} < \infty \right\}, \\ E_{4}(p) &:= \left\{ a = (a_{k}) \in \omega : \sum_{j=k}^{\infty} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{j} \text{ is convergent} \right\}, \\ E_{5}(p) &:= \bigcup_{B>1} \left\{ a = (a_{k}) \in \omega : \sup_{n \in \mathbb{N}} \sum_{k} \left| \sum_{j=k}^{n} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{j} B^{-1} \right|^{p_{k}'} < \infty \right\}. \end{split}$$

Because of Part (i) can be established in a similar way to the proof of Part (ii), we give the proof only for Part (ii) in Theorems 3.4 and 3.5, below.

Theorem 3.4. The following statements hold:

- (i) Let $0 < p_k \le 1$ for all $k \in \mathbb{N}$. Then, $\{\ell(F, p)\}^{\alpha} = E_1(p)$.
- (ii) Let $1 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$. Then, $\{\ell(F, p)\}^{\alpha} = E_2(p)$.

Proof. Let us take any $a = (a_n) \in \omega$. By using (2.2), we obtain that

$$a_n x_n = \sum_{k=0}^n \frac{f_{n+1}^2}{f_k f_{k+1}} a_n y_k = (Ey)_n \text{ for all } n \in \mathbb{N},$$
(3.5)

where $E = (e_{nk})$ is defined by $e_{nk} = \begin{cases} \frac{f_{n+1}^2}{f_k f_{k+1}} a_n & , & 0 \le k \le n, \\ 0 & , & k > n \end{cases}$ for all $k, n \in \mathbb{N}$.

Thus, we observe by combining (3.5) with the condition (3.1) of Part (ii) of Lemma 3.1 that $ax = (a_n x_n) \in \ell_1$ whenever $x = (x_k) \in \ell(F, p)$ if and only if $Ey \in \ell_1$ whenever $y = (y_k) \in \ell(p)$. This leads to the fact that $\{\ell(F, p)\}^{\alpha} = E_2(p)$, as asserted. \square

Theorem 3.5. The following statements hold:

- (i) Let $0 < p_k \le 1$ for all $k \in \mathbb{N}$. Then, $\{\ell(F, p)\}^{\beta} = E_3(p) \cap E_4(p)$. (ii) Let $1 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$. Then, $\{\ell(F, p)\}^{\beta} = E_4(p) \cap E_5(p)$.
- *Proof.* Take any $a = (a_i) \in \omega$. Then, one can obtain by (2.2) that

$$\sum_{j=0}^{n} a_j x_j = \sum_{j=0}^{n} \left(\sum_{k=0}^{j} \frac{f_{j+1}^2}{f_k f_{k+1}} y_k \right) a_j = \sum_{k=0}^{n} \left(\sum_{j=k}^{n} \frac{f_{j+1}^2}{f_k f_{k+1}} a_j \right) y_k = (Dy)_n \quad (3.6)$$

for all $n \in \mathbb{N}$, where $D = (d_{nk})$ is defined by

$$d_{nk} = \begin{cases} \sum_{j=k}^{n} \frac{f_{j+1}^2}{f_k f_{k+1}} a_j & , \quad 0 \le k \le n, \\ 0 & , \quad k > n \end{cases}$$
(3.7)

for all $n, k \in \mathbb{N}$. Thus, we deduce from Lemma 3.3 with (3.6) that $ax = (a_i x_i) \in cs$ whenever $x = (x_j) \in \ell(F, p)$ if and only if $Dy \in c$ whenever $y = (y_k) \in \ell(p)$. Therefore, we derive from (3.3) and (3.4) that

$$\sup_{n \in \mathbb{N}} \sum_{k} \left| \sum_{j=k}^{n} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{j} B^{-1} \right|^{p_{k}} < \infty, \quad \sum_{j=k}^{\infty} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{j} < \infty.$$

This shows that $\{\ell(F,p)\}^{\alpha} = E_4(p) \cap E_5(p)$.

Theorem 3.6. The following statements hold:

- (i) Let 0 < p_k ≤ 1 for all k ∈ N. Then, {ℓ(F,p)}^γ = E₃(p).
 (ii) Let 1 < p_k ≤ H < ∞ for all k ∈ N. Then, {ℓ(F,p)}^γ = E₅(p).

Proof. From Lemma 3.2 and (3.6), we obtain that $ax = (a_i x_i) \in bs$ whenever $x = (x_i) \in \ell(F, p)$ if and only if $Dy \in \ell_\infty$ whenever $y = (y_k) \in \ell(p)$, where $D = (d_{nk})$ is defined by (3.7). Therefore we obtain from (3.2) and (3.3) that $\{\ell(F,p)\}^{\gamma} = \begin{cases} E_3(p) &, p_k \leq 1, \\ E_5(p) &, p_k > 1 \end{cases}, \text{ as desired.}$

4. MATRIX TRANSFORMATIONS ON THE SPACE $\ell(F, p)$

In this section, we characterize some matrix transformations on the space $\ell(F, p)$. Since the cases $0 < p_k \le 1$ and $1 < p_k \le H < \infty$ are combined, Theorem 4.1 gives the exact conditions of the general case $0 < p_k \leq H < \infty$. We consider only the case $1 < p_k \leq H < \infty$ and omit the proof of the case $0 < p_k \leq 1$, since it can be proved in a similar way.

Theorem 4.1. The following statements hold:

(i) Let $0 < p_k \leq 1$ for all $k \in \mathbb{N}$. Then, $A = (a_{nk}) \in (\ell(F, p) : \ell_{\infty})$ if and only if

$$\sup_{k,n\in\mathbb{N}}\left|\sum_{j=k}^{\infty}\frac{f_{j+1}^2}{f_kf_{k+1}}a_{nj}\right|^{p_k}<\infty,$$
(4.1)

$$\sum_{j=k}^{\infty} \frac{f_{j+1}^2}{f_k f_{k+1}} a_{nj} < \infty.$$
(4.2)

(ii) Let $1 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$. Then $A = (a_{nk}) \in (\ell(F, p) : \ell_{\infty})$ if and only if (4.2) holds and there exists an integer B > 1 such that

$$\sup_{n \in \mathbb{N}} \sum_{k} \left| \sum_{j=k}^{\infty} \frac{f_{j+1}^2}{f_k f_{k+1}} a_{nj} B^{-1} \right|^{p'_k} < \infty.$$
(4.3)

Proof. Let $A \in (\ell(F, p) : \ell_{\infty})$ and $1 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$. Then, Ax exists for every $x \in \ell(F, p)$ and this implies that $A_n \in \{\ell(F, p)\}^{\beta}$ for each fixed $n \in \mathbb{N}$. Therefore, the necessities of (4.2) and (4.3) are immediate.

Conversely, suppose that the conditions (4.2) and (4.3) hold, and take any $x \in$ $\ell(F,p)$. Since $A_n \in {\ell(F,p)}^{\beta}$ for every $n \in \mathbb{N}$, the A-transform of x exists. By using (2.2), we obtain that

$$\sum_{j=0}^{m} a_{nj} x_j = \sum_{j=0}^{m} \sum_{k=0}^{j} \frac{f_{j+1}^2}{f_k f_{k+1}} y_k a_{nj} = \sum_{k=0}^{m} \sum_{j=k}^{m} \frac{f_{j+1}^2}{f_k f_{k+1}} a_{nj} y_k$$
(4.4)

for all $m, n \in \mathbb{N}$. Taking into account the hypothesis, we drive from (4.4), as $m \to \infty$ that

$$\sum_{j} a_{nj} x_j = \sum_k \sum_{j=k}^{\infty} \frac{f_{j+1}^2}{f_k f_{k+1}} a_{nj} y_k \quad \text{for all} \quad n \in \mathbb{N}.$$

$$(4.5)$$

By combining (4.5) and the inequality which holds for any complex numbers a, band any B > 0

$$|ab| \le B\left(\left|aB^{-1}\right|^{p'} + |b|^p\right),$$

where p > 1 and $p^{-1} + p'^{-1} = 1$, we obtain that

$$\begin{split} \sup_{n\in\mathbb{N}} \left| \sum_{j} a_{nj} x_{j} \right| &= \sup_{n\in\mathbb{N}} \left| \sum_{k} \sum_{j=k}^{\infty} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{nj} y_{k} \right| \leq \sup_{n\in\mathbb{N}} \sum_{k} \left| \sum_{j=k}^{\infty} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{nj} y_{k} \right| \\ &\leq \sup_{n\in\mathbb{N}} \sum_{k} B\left(\left| \sum_{j=k}^{\infty} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{nj} B^{-1} \right|^{p_{k}'} + |y_{k}|^{p_{k}} \right) \\ &= B\left(\sup_{n\in\mathbb{N}} \sum_{k} \left| \sum_{j=k}^{\infty} \frac{f_{j+1}^{2}}{f_{k} f_{k+1}} a_{nj} B^{-1} \right|^{p_{k}'} + \sup_{n\in\mathbb{N}} \sum_{k} |y_{k}|^{p_{k}} \right) < \infty. \end{split}$$

This shows that $Ax \in \ell_{\infty}$.

This shows that $Ax \in \ell_{\infty}$.

Theorem 4.2. The following statements hold:

(i) Let $0 < p_k \leq 1$ for all $k \in \mathbb{N}$. Then, $A = (a_{nk}) \in (\ell(F, p) : c)$ if and only if (4.1) and (4.2) hold, and there is a sequence $\alpha = (\alpha_k)$ of scalars such that

$$\lim_{n \to \infty} \sum_{j=k}^{\infty} \frac{f_{j+1}^2}{f_k f_{k+1}} a_{nj} = \alpha_k \quad \text{for all} \quad k \in \mathbb{N}.$$

$$(4.6)$$

(ii) Let $1 < p_k \le H < \infty$ for all $k \in \mathbb{N}$. Then, $A = (a_{nk}) \in (\ell(F, p) : c)$ if and only if (4.2), (4.3) and (4.6) hold.

Proof. Let $A \in (\ell(F, p) : c)$ and $1 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$. Then, since the inclusion $c \subset \ell_{\infty}$ holds, the necessities of (4.2) and (4.3) are immediately obtained from Theorem 4.1.

To prove the necessity of (4.6), consider the sequence $b^{(k)}$ defined by (2.8), which belongs to the space $\ell(F, p)$ for every fixed $k \in \mathbb{N}$. Since the A-transform of every $x \in \ell(F, p)$ exists and is in c by the hypothesis, we have

$$Ab^{(k)} = \left(\sum_{j=0}^{\infty} a_{ij} b_j^{(k)}\right)_{i=0}^{\infty} = \left(\sum_{j=k}^{\infty} \frac{f_{j+1}^2}{f_k f_{k+1}} a_{ij}\right)_{i=0}^{\infty} \in c$$

for every fixed $k \in \mathbb{N}$, which shows the necessity (4.6).

Conversely, suppose that the conditions (4.2), (4.3) and (4.6) hold, and take any $x = (x_k)$ in the space $\ell(F, p)$. Then, Ax exists.

We observe for all $m, n \in \mathbb{N}$ that

$$\sum_{k=0}^{m} \left| \sum_{j=k}^{n} \frac{f_{j+1}^2}{f_k f_{k+1}} a_{nj} B^{-1} \right|^{p_k} \le \sup_{n \in \mathbb{N}} \sum_k \left| \sum_{j=k}^{\infty} \frac{f_{j+1}^2}{f_k f_{k+1}} a_{nj} B^{-1} \right|^{p_k} < \infty$$

which gives the fact by letting $m, n \to \infty$ with (4.3) and (4.6)

$$\lim_{m,n\to\infty}\sum_{k=0}^{m}\left|\sum_{j=k}^{n}\frac{f_{j+1}^{2}}{f_{k}f_{k+1}}a_{nj}B^{-1}\right|^{p_{k}} \leq \sup_{n\in\mathbb{N}}\sum_{k}\left|\sum_{j=k}^{\infty}\frac{f_{j+1}^{2}}{f_{k}f_{k+1}}a_{nj}B^{-1}\right|^{p_{k}} < \infty.$$

This shows that $\sum_{k} |\alpha_k B^{-1}|^{p'_k} < \infty$ and $(\alpha_k) \in {\ell(F, p)}^{\beta}$ which implies that the series $\sum_k \alpha_k x_k$ converges for all $x \in \ell(F, p)$.

Now, let us consider the equality obtained from (4.5) with $a_{nj} - \alpha_j$ instead of a_{nj}

$$\sum_{j} (a_{nj} - \alpha_j) x_j = \sum_k \sum_{j=k}^{\infty} \frac{f_{j+1}^2}{f_k f_{k+1}} (a_{nj} - \alpha_j) y_k = \sum_k c_{nk} y_k,$$
(4.7)

where $C = (c_{nk})$ defined by $c_{nk} = \sum_{j=k}^{\infty} \frac{f_{j+1}^2}{f_k f_{k+1}} (a_{nj} - \alpha_j)$ for all $k, n \in \mathbb{N}$. From Lemma 3.3, $c_{nk} \to 0$, as $n \to \infty$, for all $k \in \mathbb{N}$. Therefore, we see by (4.7) that $\sum_k (a_{nk} - \alpha_k) x_k \to 0$, as $n \to \infty$. This means that $Ax \in c$ whenever $x \in \ell(F, p)$ and this step completes the proof.

Corollary 4.3. The following statements hold:

(i) Let $0 < p_k \leq 1$ for all $k \in \mathbb{N}$. Then, $A = (a_{nk}) \in (\ell(F, p) : c_0)$ if and only if (4.1) and (4.2) hold, and (4.6) also holds with $\alpha_k = 0$ for all $k \in \mathbb{N}$.

(ii) Let $1 < p_k \leq H < \infty$ for all $k \in \mathbb{N}$. Then, $A = (a_{nk}) \in (\ell(F, p) : c_0)$ if and only if (4.2) and (4.3) hold, and (4.6) also holds with $\alpha_k = 0$ for all $k \in \mathbb{N}$.

Now, we can give the following lemma which is useful for deriving the characterization of the classes of matrix transformations from the space $\ell(F, p)$ to the space λ_A , where $\lambda \in \{\ell_{\infty}, c, c_0\}$ and $A \in \{\Delta, E^r, C_1, R^t, \sum, F\}$.

Lemma 4.1. [10, Lemma 5.3] Let λ, μ be any two sequence spaces, A be an infinite matrix and B be a triangle matrix. Then, $A \in (\lambda : \mu_B)$ if and only if $BA \in (\lambda : \mu)$.

Lemma 4.1 has several consequences depending on the choice of the space μ . Indeed, combining Lemma 4.1 with Theorems 4.1, 4.2 and Corollary 4.3, one can obtain the following results:

Corollary 4.2. Let $A = (a_{nk})$ be an infinite matrix of complex terms. Then, the following statements hold:

- (i) $E = (e_{nk}) \in (\ell(F, p) : bv_{\infty})$ if and only if (4.1)-(4.3) hold with d_{nk} instead of a_{nk} ; where $d_{nk} = e_{nk} e_{n-1,k}$ for all $k, n \in \mathbb{N}$ and bv_{∞} denotes the space of all sequences $x = (x_k)$ such that $(x_k x_{k-1}) \in \ell_{\infty}$, and was introduced by Başar and Altay [10].
- (ii) $E = (e_{nk}) \in (\ell(F, p) : e_{\infty}^r)$ if and only if (4.1)-(4.3) hold with d_{nk} instead of a_{nk} , where $d_{nk} = \sum_{j=0}^n {n \choose j} (1-r)^{n-j} r^j e_{jk}$ for all $k, n \in \mathbb{N}$ and e_{∞}^r denotes the space of all sequences $x = (x_k)$ such that $E^r x \in \ell_{\infty}$, and was introduced by Altay, Başar and Mursaleen [11].
- (iii) $E = (e_{nk}) \in (\ell(F, p) : X_{\infty})$ if and only if (4.1)-(4.3) hold with d_{nk} instead of a_{nk} ; where $d_{nk} = \sum_{j=0}^{n} e_{jk}/(n+1)$ for all $k, n \in \mathbb{N}$ and X_{∞} denotes the space of all sequences $x = (x_k)$ such that $C_1 x \in \ell_{\infty}$, and was introduced by Ng and Lee [12].
- (iv) $E = (e_{nk}) \in (\ell(F, p) : r_{\infty}^t)$ if and only if (4.1)-(4.3) hold with d_{nk} instead of a_{nk} ; where $d_{nk} = \sum_{j=0}^n t_j e_{jk}/T_n$ for all $k, n \in \mathbb{N}$ and r_{∞}^t denotes the space of all sequences $x = (x_k)$ such that $R^t x \in \ell_{\infty}$, and was introduced by Altay and Başar [13].
- (v) $E = (e_{nk}) \in (\ell(F, p) : bs)$ if and only if (4.1)-(4.3) hold with d_{nk} instead of a_{nk} , where $d_{nk} = \sum_{j=0}^{n} e_{jk}$ for all $k, n \in \mathbb{N}$.
- (vi) $E = (e_{nk}) \in (\ell(F, p) : \ell_{\infty}(\widehat{F}))$ if and only if (4.1)-(4.3) hold with d_{nk} instead of a_{nk} , where $d_{nk} = -\frac{f_{n+1}}{f_n}e_{n-1,k} + \frac{f_n}{f_{n+1}}e_{nk}$ for all $k, n \in \mathbb{N}$ and $\ell_{\infty}(\widehat{F})$ denotes the space of all sequences $x = (x_k)$ such that $Fx \in \ell_{\infty}$, and was introduced by Kara [14].

Corollary 4.3. Let $A = (a_{nk})$ be an infinite matrix of complex terms. Then, the following statements hold:

- (i) E = (e_{nk}) ∈ (ℓ(F, p) : c(Δ)) if and only if (4.1)-(4.3) and (4.6) hold with d_{nk} instead of a_{nk}; where d_{nk} = e_{nk} e_{n+1,k} for all k, n ∈ N and c(Δ) denotes the space of all sequences x = (x_k) such that (x_k x_{k+1}) ∈ c, and was introduced by Kizmaz [15].
- (ii) $E = (e_{nk}) \in (\ell(F, p) : e_c^r)$ if and only if (4.1)-(4.3) and (4.6) hold with d_{nk} instead of a_{nk} , where $d_{nk} = \sum_{j=0}^n {n \choose j} (1-r)^{n-j} r^j e_{jk}$ for all $k, n \in \mathbb{N}$ and e_c^r denotes the space of all sequences $x = (x_k)$ such that $E^r x \in c$, and was introduced by Altay and Başar [16].

- (iii) $E = (e_{nk}) \in (\ell(F, p) : \tilde{c})$ if and only if (4.1)-(4.3) and (4.6) hold with d_{nk} instead of a_{nk} ; where $d_{nk} = \sum_{j=0}^{n} e_{jk}/(n+1)$ for all $k, n \in \mathbb{N}$ and \tilde{c} denotes the space of all sequences $x = (x_k)$ such that $C_1 x \in c$, and was introduced by Sengönül and Başar [17].
- (iv) $E = (e_{nk}) \in (\ell(F, p) : r_c^t)$ if and only if (4.1)-(4.3) and (4.6) hold with d_{nk} instead of a_{nk} ; where $d_{nk} = \sum_{j=0}^n t_j e_{jk}/T_n$ for all $k, n \in \mathbb{N}$ and r_c^t denotes the space of all sequences $x = (x_k)$ such that $R^t x \in c$, and was introduced by Altay and Başar [18].
- (v) $E = (e_{nk}) \in (\ell(F,p): c(\widehat{F}))$ if and only if (4.1)-(4.3) and (4.6) hold with d_{nk} instead of a_{nk} ; where $d_{nk} = -\frac{f_{n+1}}{f_n}e_{n-1,k} + \frac{f_n}{f_{n+1}}e_{nk}$ for all $k, n \in \mathbb{N}$ and $c(\widehat{F})$ denotes the space of all sequences $x = (x_k)$ such that $Fx \in c$, and was introduced by Başarır et al. [19].
- (vi) $E = (e_{nk}) \in (\ell(F, p) : cs)$ if and only if (4.1)-(4.3) and (4.6) hold with d_{nk} instead of a_{nk} ; where $d_{nk} = \sum_{j=0}^{n} e_{jk}$ for all $k, n \in \mathbb{N}$.

Corollary 4.4. Let $A = (a_{nk})$ be an infinite matrix of complex terms. Then, the following statements hold:

- (i) $E = (e_{nk}) \in (\ell(F, p) : c_0(\Delta))$ if and only if (4.1)-(4.3) hold and (4.6) also holds with $\alpha_k = 0$ for all $k \in \mathbb{N}$ and d_{nk} instead of a_{nk} ; where $d_{nk} = e_{nk} - e_{n+1,k}$ for all $k, n \in \mathbb{N}$ and $c_0(\Delta)$ denotes the space of all sequences $x = (x_k)$ such that $(x_k - x_{k+1}) \in c_0$, and was introduced by Kizmaz [15].
- (ii) $E = (e_{nk}) \in (\ell(F, p) : e_0^r)$ if and only if (4.1)-(4.3) hold and (4.6) also holds with $\alpha_k = 0$ for all $k \in \mathbb{N}$ and d_{nk} instead of a_{nk} , where $d_{nk} = \sum_{j=0}^n {n \choose j} (1-r)^{n-j} r^j e_{jk}$ for all $k, n \in \mathbb{N}$ and e_0^r denotes the space of all sequences $x = (x_k)$ such that $E^r x \in c_0$, and was introduced by Altay and Başar [16].
- (iii) $E = (e_{nk}) \in (\ell(F, p) : \tilde{c}_0)$ if and only if (4.1)-(4.3) hold and (4.6) also holds with $\alpha_k = 0$ for all $k \in \mathbb{N}$ and d_{nk} instead of a_{nk} ; where $d_{nk} = \sum_{j=0}^n e_{jk}/(n+1)$ for all $k, n \in \mathbb{N}$ and \tilde{c}_0 denotes the space of all sequences $x = (x_k)$ such that $C_1 x \in c_0$, and was introduced by Sengönül and Başar [17].
- (iv) $E = (e_{nk}) \in (\ell(F, p) : r_0^t)$ if and only if (4.1)-(4.3) hold and (4.6) also holds with $\alpha_k = 0$ for all $k \in \mathbb{N}$ and d_{nk} instead of a_{nk} ; where $d_{nk} = \sum_{j=0}^n t_j e_{jk}/T_n$ for all $k, n \in \mathbb{N}$ and r_0^t denotes the space of all sequences $x = (x_k)$ such that $R^t x \in c_0$, and was introduced by Altay and Başar [18].
- (v) $E = (e_{nk}) \in (\ell(F, p) : c_0(\widehat{F}))$ if and only if (4.1)-(4.3) hold and (4.6) also holds with $\alpha_k = 0$ for all $k \in \mathbb{N}$ and d_{nk} instead of a_{nk} ; where $d_{nk} = -\frac{f_{n+1}}{f_n}e_{n-1,k} + \frac{f_n}{f_{n+1}}e_{nk}$ for all $k, n \in \mathbb{N}$ and $c_0(\widehat{F})$ denotes the space of all sequences $x = (x_k)$ such that $Fx \in c_0$, and was introduced by Başarır et al. [19].
- (vi) $E = (e_{nk}) \in (\ell(F, p) : c_0 s)$ if and only if (4.1)-(4.3) hold and (4.6) also holds with $\alpha_k = 0$ for all $k \in \mathbb{N}$ and d_{nk} instead of a_{nk} ; where $d_{nk} = \sum_{j=0}^{n} e_{jk}$ for all $k, n \in \mathbb{N}$ and $c_0 s$ denotes the space of all sequences $x = (x_k)$ such that $\sum_k x_k = 0$.

44

References

- I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford (2) 18 (1967), 345–355.
- [2] S. Simons, The sequence spaces $\ell(p_v)$ and $m(p_v)$, Proc. London Math. Soc. (3), 15 (1965), 422–436.
- [3] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (2) (1951), 508–512.
- [4] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, Amsterdam-New York-Oxford, 1984.
- [5] E. Malkowsky, V. Rakočević, An Introduction into the Theory of Sequence Spaces and Measures of Noncompactness, Zbornik Radova, Matematički Institut SANU, Belgrade, 9 (17) (2000), 143–234.
- [6] A. Wilansky, Functional Analysis, Blaisdell Publishing Company, New York-Toronto-London, 1964.
- [7] A. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rendiconti Circ. Mat. Palermo II 52 (1990), 177–191.
- [8] K. -G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180 (1993), 223–238.
- C.G. Lascarides, I.J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68 (1970), 99–104.
- [10] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55 (1) (2003), 136–147.
- [11] B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_p and ℓ_∞ I, Inform. Sci. **176** (10) (2006), 1450–1462.
- [12] P.-N. Ng, P.-Y. Lee, Cesàro sequence spaces of non-absolute type, Comment. Math. Prace Mat. 20 (2) (1978), 429–433.
- [13] B. Altay, F. Başar, On the Paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26(5)(2002), 701–715.
- [14] E.E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl. 2013, 15 pages, 2013. doi:10.1186/1029-242X-2013-38.
- [15] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24 (2) (1981), 169–176.
- B. Altay, F. Başar, Some Euler sequence spaces of non-absolute type, Ukrainian Math. J. 57 (1) (2005), 1–17.
- [17] M. Şengönül, F. Başar, Some new Cesàro sequence spaces of non-absolute type which include the spaces c₀ and c, Soochow J. Math. **31** (1) (2005), 107–119.
- [18] B. Altay, F. Başar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 30 (5) (2006), 591–608.
- [19] M. Başarır, F. Başar, E.E. Kara, On the spaces of Fibonacci difference null and convergent sequences, arXiv:1309.0150v1 [math.FA], (2013).

(H. Çapan) THE GRADUATE SCHOOL OF SCIENCES AND ENGINEERING, FATIH UNIVERSITY, THE HADIMKÖY CAMPUS, BÜYÜKÇEKMECE, 34500-İSTANBUL, TURKEY *E-mail address:* husamettincapan@gmail.com

(F. Başar) DEPARTMENT OF MATHEMATICS, FACULTY OF ARTS AND SCIENCES, FATIH UNIVER-SITY, THE HADIMKÖY CAMPUS, BÜYÜKÇEKMECE, 34500–İSTANBUL, TURKEY

E-mail address: fbasar@fatih.edu.tr, feyzibasar@gmail.com