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OSCILLATION THEOREMS OF SECOND ORDER NONLINEAR

DELAY DYNAMIC EQUATIONS ON TIME SCALES

H. A. AGWA, AHMED M. M. KHODIER, HEBA A. HASSAN

Abstract. In this paper, we study the oscillation of solutions of the second
order delay dynamic equation

(r(t)g(x(t), x∆(t)))∆ + p(t)f(x(τ(t))) = 0,

on a time scale T. Oscillation behavior of this equation is not studied before.
Several new oscillation criteria are established for such a dynamic differential
equations under quite general assumptions. Some examples are also given to
illustrate our main results. These examples are not discussed before.

1. Introduction

In this paper, we discuss the oscillation of second-order nonlinear delay dynamic
equation

(r(t)g(x(t), x∆(t)))∆ + p(t)f(x(τ(t))) = 0, t ∈ T, t ≥ t0, (1)

subject to the hypotheses

(H1) T is a time scale which is unbounded above and t0 ∈ T with t0 > 0. The time
scale interval [t0,∞)T is defined by [t0,∞)T = [t0,∞)

∩
T.

(H2) r(t) and p(t) are positive right dense continuous functions on T such that

∞∫
t0

∆t

r(t)
= ∞, (2)

or,
∞∫

t0

∆t

r(t)
< ∞. (3)

(H3) f ∈ C(R,R), xf(x) > 0 for all x ̸= 0 and there exists a positive constant L

such that f(x)
x ≥ L.
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(H4) g ∈ C1(R2,R), vg(u, v) > 0 for all v ̸= 0 and there exist positive constants
K1,K2 such that

K1 ≤ g(u, v)

v
≤ K2.

(H5) τ : T → T is a strictly increasing and differentiable function such that

τ(t) ≤ t, lim
t→∞

τ(t) = ∞.

By a solution of (1), we mean a nontrivial real valued function x satisfies (1) for
t ∈ T. A solution x of (1) is called oscillatory if it is neither eventually positive
nor eventually negative. Otherwise, it is called nonoscillatory. Eq. (1) is said to be
oscillatory if all of its solutions are oscillatory. In this work, we study the solutions
of (1) which are not identically vanishing eventually.

Recent attention has been given to dynamic equations on time scales. We refer
the reader to Hilger [14] for a comprehensive treatment of the subject. Several au-
thors have expounded on various aspects of this new theory (see Agarwal et al. [1]
and the references cited therein). The book by Bohner and Peterson [6] summarizes
and organizes much of time scale calculus. We refer also to Bohner and Peterson
[7] for advances in dynamic equations on time scales.

In recent years, many results have been obtained on the oscillation and nonoscil-
lation of dynamic equations on time scales (see for example the papers [2, 3, 4],
[8, 9], [11, 12, 13], [15] and [17, 18]).

In this work, we give some new oscillation criteria of Eq. (1) by using the gener-
alized Riccati transformation. Our results not only unify the oscillation of second
order nonlinear delay differential and difference equations but also can be applied
on different types of time scales.

This paper is organized as follows: In section 2, we present some preliminaries
on time scales. In section 3, we give basic Lammas. In section 4, we establish some
new sufficient conditions for oscillation of (1). Finally, in section 5, we present some
examples to illustrate our results.

2. Some Preliminaries on time scales

A time scale T is an arbitrary nonempty closed subset of the real numbers R.
On any time scale T, we define the forward and backward jump operators by

σ(t) = inf{s ∈ T, s > t} and ρ(t) = sup{s ∈ T, s < t}.
A point t ∈ T, t > infT is said to be left-dense if ρ(t) = t, right-dense if t < supT
and σ(t) = t, left-scattered if ρ(t) < t, and right-scattered if σ(t) > t. The graininess
function µ for a time scale T is defined by µ(t) = σ(t) − t. The set Tk is derived
from the time scale T as follows:
If T has a left-scattered maximum m, then Tk = T−m. Otherwise, Tk = T.
A function f : T → R is called rd-continuous provided that it is continuous at
right-dense points of T and its left-sided limits exist (finite) at left-dense points of
T. The set of rd-continuous functions is denoted by Crd(T,R). By C1

rd(T,R), we
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mean the set of functions whose delta derivative belong to Crd(T,R).
For a function f : T → R (the range R of f may be actually replaced by any Banach
space), the delta derivative f∆ is defined by

f∆(t) = f(σ(t))−f(t)
σ(t)−t ,

provided f is continuous at t and t is right-scattered. If t is not right-scattered,
then the derivative is defined by

f∆(t) = lim
s→t+

f(σ(t))− f(t)

t− s
= lim

s→t+

f(t)− f(s)

t− s

provided this limit exists.
A function f : [a, b] → R is said to be differentiable if its derivative exists. The
derivative f∆ and the shift fσ of a function f are related by the equation

fσ = f(σ(t)) = f(t) + µ(t)f∆(t).

The derivative rules of the product fg and the quotient f/g (where ggσ ̸= 0 ) of
two differentiable functions f and g are given by

(f.g)∆(t) = f∆(t)g(t) + fσ(t)g∆(t) = f(t)g∆(t) + f∆(t)gσ(t)

( fg )
∆(t) = f∆(t)g(t)−f(t)g∆(t)

g(t)gσ(t) .

An integration by parts formula reads
b∫
a

f(t)g∆(t)∆t = [f(t)g(t)]ba −
b∫
a

f∆(t)gσ(t)∆t

or,
b∫
a

fσ(t)g∆(t)∆t = [f(t)g(t)]ba −
b∫
a

f∆(t)g(t)∆t

and the infinite integral is defined by

∞∫
b

f(s)∆s = lim
t→∞

t∫
b

f(s)∆s.

Throughout this paper, we use

d−(t) := max{0,−d(t)} and α(t) := R(t)
R(t)+µ(t) where R(t) = kr(t)

t∫
t0

∆s
r(s) , for k > 0,

t ≥ t0.

3. Basic lemmas

In this section, we present some lemmas that we need in the proofs of our results
in section 4.
Lemma 1 (Hardy et al. [[12], Theorem 41]). If A and B are nonnegative real
numbers, then

λABλ−1 −Aλ ≤ (λ− 1)Bλ, λ > 1,

where the equality holds if and only if A = B.
Lemma 2 If (H1)-(H5), (2) hold and (1) has a positive solution x on [t0,∞)T, then
(r(t)g(x, x∆))∆ < 0, x∆(t) > 0, and x(t) > α(t)x(σ(t)) for t ∈ [t0,∞)T.

Proof. Since x is a positive solution of (1) on [t0,∞)T, then we have
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(r(t)g(x(t), x∆(t)))∆ = −p(t)f(x(τ(t))) < 0, for t ∈ [t0,∞)T.

Therefore r(t)g(x(t), x∆(t)) is strictly decreasing on [t0,∞)T. We claim that x∆(t) >
0 on [t0,∞)T. If not, then there is t ≥ t1 such that

r(t)g(x(t), x∆(t)) ≤ r(t1)g(x(t1), x
∆(t1)) = c1 < 0.

Then,

g(x(t), x∆(t)) ≤ c1
r(t) .

Using (H4), we get

K1x
∆(t) < g(x(t), x∆(t)) < c1

r(t) , K1 > 0.

Hence,

x∆(t) < c1
K1

1
r(t) .

Integrating from t1 to t, we get

x(t) < x(t1) +
c1
K1

t∫
t1

∆s
r(s) → −∞ as t → ∞,

which implies that x(t) is eventually negative. This is a contradiction. Hence
x∆(t) > 0 on [t0,∞)T. Therefore,

x(t) > x(t)− x(t1) =

t∫
t1

x∆(s)∆s

>

t∫
t1

1

K2
g(x(s), x∆(s))∆s

>
1

K2

t∫
t1

r(s)g(x(s), x∆(s))

r(s)
∆s,K2 > 0.

Using the fact that r(t)g(x(t), x∆(t)) is strictly decreasing, we get

x(t) >
r(t)g(x(t), x∆(t))

K2

t∫
t1

∆s

r(s)

>
K1

K2
r(t)x∆(t)

t∫
t1

∆s

r(s)
,K1 > 0

> kr(t)x∆(t)

t∫
t1

∆s

r(s)
= R(t)x∆(t), for k > 0,

where R(t) = kr(t)
t∫

t1

∆s
r(s) .

And so,
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x(t)
xσ(t) =

x(t)
x(t)+µ(t)x∆(t)

> R(t)
R(t)+µ(t) = α(t) on [t0,∞)T.

4. Main Results

Theorem 1 Assume that (H1)-(H5), (2) and Lemma 2 hold, and let τ ∈
C1

rd([t0,∞)T,T), τ([t0,∞)T) = [t0,∞)T. If there exists a positive ∆ -differentiable
function δ(t) such that

lim sup
t→∞

t∫
t0

[Lα(τ(s))p(s)δσ(s)− r(τ(s))(δ∆(s))2

4Kδσ(s)α(τ(s))τ∆(s)
]∆s = ∞, (4)

where L,K > 0, then every solution of Eq. (1) is oscillatory on [t0,∞)T.

Proof. Assume that Eq. (1) has a nonoscillatory solution on [t0,∞)T. Also,
assume that x(t) > 0, x(τ(t)) > 0 for all t ∈ [t1,∞)T, t1 ∈ [t0,∞)T and there is
T ∈ [t0,∞)T such that x(t) satisfies the conclusion of Lemma 2 on [T,∞)T. Con-
sider the generalized Riccati substitution

w(t) = δ(t) r(t)g(x(t),x
∆(t))

x(τ(t)) .

Using the delta derivative rules of the product and quotient of two functions, we
have

w∆(t) = δ∆(t)
r(t)g(x(t), x∆(t))

x(τ(t))
+ δσ(t)(

(r(t)g(x(t), x∆(t))

x(τ(t))
)∆

=
δ∆(t)

δ(t)
w(t) + δσ(t)(

x(τ(t))(r(t)g(x(t), x∆(t)))∆ − (x(τ(t)))∆(r(t)g(x(t), x∆(t)))

(x(τ(t))xσ(τ(t))
)

≤ δ∆(t)

δ(t)
w(t) + δσ(t)(

−p(t)f(x(τ(t)))

xσ(τ(t))
− x∆(τ(t))τ∆(t)

δ(t)xσ(τ(t))
w(t)).

Using the fact f(x)
x ≥ L and x(t)

xσ(t) > α(t), we have

w∆(t) ≤ δ∆(t)

δ(t)
w(t) + δσ(t)(−Lp(t)α(τ(t))− x∆(τ(t))τ∆(t)

δ(t)xσ(τ(t))
w(t)). (5)

Since (r(t)g(x, x∆))∆ < 0, then by integrating from τ(t) to t and using the defini-
tion of w(t) we get,

x∆(τ(t)) > K
x(τ(t))

δ(t)r(τ(t))
w(t), K =

1

K2
. (6)

Now, from (6) in (5) we have

w∆(t) ≤ δ∆(t)

δ(t)
w(t)− Lp(t)α(τ(t))δσ(t)−K

δσ(t)α(τ(t))τ∆(t)

δ2(t)r(τ(t))
w2(t). (7)

If A ≥ 0 and B ≥ 0 are defined by:

A = (Kδσ(t)α(τ(t))τ∆(t))
1
2

δ(t)(r(τ(t)))
1
2

w(t) and B = δ(t)(r(τ(t)))
1
2

2(Kδσ(t)α(τ(t))τ∆(t))
1
2
,

then by using Lemma 1 for λ = 2, we get

δ∆(t)

δ(t)
w(t)−K

δσ(t)α(τ(t))τ∆(t)

δ2(t)r(τ(t))
w2(t) ≤ r(τ(t))(δ∆(t))2

4Kδσ(t)α(τ(t))τ∆(t)
. (8)
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Hence, from (7) and (8), we get

w∆(t) ≤ −Lp(t)α(τ(t))δσ(t) +
r(τ(t))(δ∆(t))2

4Kδσ(t)α(τ(t))τ∆(t)
. (9)

Integrating the above inequality from t0 to t, we obtain

t∫
t0

[Lα(τ(s))p(s)δσ(s)− r(τ(s))(δ∆(s))2

4Kδσ(s)α(τ(s))τ∆(s)
]∆s ≤ w(t0)− w(t) ≤ w(t0).

Taking the limit supremum as t → ∞, we obtain a contradiction to condition (4).
Therefore, every solution of Eq. (1) is oscillatory on [t0,∞)T.
Theorem 2Assume that (H1)-(H5), (2) and Lemma 2 hold, and let τ ∈ C1

rd([t0,∞)T,T),
τ([t0,∞)T) = [t0,∞)T. If there exist functionsH,h ∈ Crd(D,R) (where D ≡ {(t, s) :
t ≥ s ≥ t0}) such that

H(t, t) = 0, t ≥ t0,H(t, s) > 0, t > s ≥ t0 (10)

and H has a nonpositive continuous ∆- partial derivative with respect to the second
variable H∆s(t, s) which satisfies

H∆s(σ(t), s) +H(σ(t), σ(s))
δ∆(t)

δ(t)
= −h(t, s)

δ(t)
(H(σ(t), σ(s)))

1
2 (11)

and

lim sup
t→∞

1

H(σ(t), t0)

σ(t)∫
t0

θ(t, s)∆s = ∞, (12)

where δ(t) is a positive ∆- differentiable function and

θ(t, s) = LH(σ(t), σ(s))α(τ(s))p(s)δσ(s)− r(τ(s))(h−(t,s))2

4Kδσ(s)α(τ(s))τ∆(s) , for L,K > 0,

then every solution of Eq. (1) is oscillatory on [t0,∞)T.

Proof. Assume that Eq. (1) has a nonoscillatory solution on [t0,∞)T. Also,
assume that x(t) > 0, x(τ(t)) > 0 for all t ∈ [t1,∞)T, t1 ∈ [t0,∞)T and there is
T ∈ [t0,∞)T such that x(t) satisfies the conclusion of lemma 2 on [T,∞)T. We
proceed as in the proof of Theorem 1 to obtain (7).

Lp(t)α(τ(t))δσ(t) ≤ −w∆(t) +
δ∆(t)

δ(t)
w(t)−K

δσ(t)α(τ(t))τ∆(t)

δ2(t)r(τ(t))
w2(t). (13)
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Multiplying (13) by H(σ(t), σ(s)) and integrating with respect to s from t0 to σ(t),
we obtain

σ(t)∫
t0

LH(σ(t), σ(s))δσ(s)p(s)α(τ(s))∆s

≤ −
σ(t)∫
t0

H(σ(t), σ(s))w∆(s)∆s+

σ(t)∫
t0

H(σ(t), σ(s))
δ∆(s)

δ(s)
w(s)∆s

−
σ(t)∫
t0

KH(σ(t), σ(s))
δσ(s)α(τ(s))τ∆(s)

δ2(s)r(τ(s))
w2(s)∆s.

Integrating by parts and using (10) and (11), we have

σ(t)∫
t0

LH(σ(t), σ(s))δσ(s)p(s)α(τ(s))∆s ≤

H(σ(t), t0)w(t0) +

σ(t)∫
t0

[
h−(t, s)

δ(s)
(H(σ(t), σ(s)))

1
2w(s)−KH(σ(t), σ(s))

δσ(s)α(τ(s))τ∆(s)

δ2(s)r(τ(s))
w2(s)]∆s.

If A ≥ 0 and B ≥ 0 are defined by:

A = (H(σ(t), σ(s)))
1
2
(Kδσ(s)α(τ(s))τ∆(s))

1
2

δ(s)(r(τ(s)))
1
2

w(s) and B = h−(t,s)(r(τ(s)))
1
2

2(Kδσ(s)α(τ(s))τ∆(s))
1
2
,

then by using Lemma 1 for λ = 2, we obtain

h−(t,s)
δ(s) (H(σ(t), σ(s)))

1
2w(s)−KH(σ(t), σ(s)) δ

σ(s)α(τ(s))τ∆(s)
δ2(s)r(τ(s)) w2(s) ≤ r(τ(s))(h−(t,s))2

4Kδσ(s)α(τ(s))τ∆(s) .

Therefore,

σ(t)∫
t0

LH(σ(t), σ(s))δσ(s)p(s)α(τ(s))∆s ≤ H(σ(t), t0)w(t0)+
σ(t)∫
t0

r(τ(s))(h−(t,s))2

4Kδσ(s)α(τ(s))τ∆(s)
∆s.

By the definition of θ(t, s), we get

σ(t)∫
t0

θ(t, s)∆s ≤ H(σ(t), t0)w(t0).

Hence.

1
H(σ(t),t0)

σ(t)∫
t0

θ(t, s)∆s ≤ w(t0).

Which contradicts the assumption (12). This contradiction completes the proof.
Corollary 1Assume that (H1)-(H5), (2) and Lemma 2 hold, and let τ ∈ C1

rd([t0,∞)T,T),
τ([t0,∞)T) = [t0,∞)T. If there exists a positive ∆ -differentiable function δ(t) such
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that for m ≥ 1

lim sup
t→∞

1

tm

t∫
t0

(t− s)m[Lα(τ(s))p(s)δσ(s)− r(τ(s))(δ∆(s))2

4Kδσ(s)α(τ(s))τ∆(s)
]∆s = ∞, (14)

where L,K > 0, then every solution of Eq. (1) is oscillatory on [t0,∞)T.

Proof. Assume that Eq. (1) has a nonoscillatory solution on [t0,∞)T. Also,
assume that x(t) > 0, x(τ(t)) > 0 for all t ∈ [t1,∞)T, t1 ∈ [t0,∞)T and there
is T ∈ [t0,∞)T such that x(t) satisfies the conclusion of lemma 1 on [T,∞)T. we
proceed as in the proof of Theorem 1 to obtain (9), i.e.,

Lp(t)α(τ(t))δσ(t) + r(τ(t))(δ∆(t))2

4Kδσ(t)α(τ(t))τ∆(t)
≤ −w∆(t),

multiplying the above inequality by (t − s)m and integrating from t1 to t, we
obtain

t∫
t1

(t− s)m[Lp(s)α(τ(s))δσ(s) +
r(τ(s))(δ∆(s))2

4Kδσ(s)α(τ(s))τ∆(s)
]∆s

≤ −[(t− s)mw(s)]tt1 +

t∫
t1

((t− s)m)∆swσ(s)∆s

≤ (t− t1)
mw(t1) +

t∫
t1

((t− s)m)∆swσ(s)∆s.

Since ((t− s)m)∆s ≤ −m(t− σ(s))m−1 ≤ 0 for m ≥ 1, then we have

1

tm

t∫
t1

(t−s)m[Lp(s)α(τ(s))δσ(s)+
r(τ(s))(δ∆(s))2

4Kδσ(s)α(τ(s))τ∆(s)
]∆s ≤ (

t− t1
t

)mw(t1) < ∞,

which contradicts the assumption (14). This contradiction completes the proof.
Theorem 3 Assume that (H1)-(H5) and Lemma 2 hold. If

lim sup
t→∞

CR(τ(t))

r(τ(t))

∞∫
t

p(s)∆s > 1, C > 0, (15)

then every solution of Eq. (1) is oscillatory on [t0,∞)T.

Proof. Assume that Eq. (1) has a nonoscillatory solution on [t0,∞)T. Also,
assume that x(t) > 0, x(τ(t)) > 0 for all t ∈ [t1,∞)T, t1 ∈ [t0,∞)T and there is
T ∈ [t0,∞)T such that x(t) satisfies the conclusion of lemma 2 on [T,∞)T. From
(1), we have

−(r(t)g(x(t), x∆(t)))∆ = p(t)f(x(τ(t))) ≥ Lp(t)x(τ(t)), for L > 0.
Integrating the above inequality from τ(t) to u and letting u → ∞, we get
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∞∫
τ(t)

Lp(s)x(τ(s))∆s ≤ r(τ(t))g(x(τ(t)), x∆(τ(t)))− limu→∞ r(u)g(x(u), x∆(u)).

Since r(s)g(x(s), x∆(s)) is decreasing and r(s)g(x(s), x∆(s)) > 0, then we obtain

∞∫
τ(t)

Lp(s)x(τ(s))∆s ≤ r(τ(t))g(x(τ(t)), x∆(τ(t))).

Using (H4), we get

∞∫
τ(t)

Lp(s)x(τ(s))∆s ≤ K2r(τ(t))x(τ(t)).

Since x(t) > R(t)x∆(t), then x(τ(t)) > R(τ(t))x∆(τ(t)) and consequently

LR(τ(t))
K2r(τ(t))

∫∞
τ(t)

p(s)x(τ(s))∆s ≤ x(τ(t)).

Hence,

LR(τ(t))
K2r(τ(t))

∫∞
t

p(s)x(τ(s))∆s ≤ LR(τ(t))
K2r(τ(t))

∫∞
τ(t)

p(s)x(τ(s))∆s ≤ x(τ(t)).

Since x(t) and τ(t) are strictly increasing, then we get

CR(τ(t)
r(τ(t))

∞∫
t

p(s)∆s ≤ 1, where C = L
K2

,

which contradicts the assumption (15). This contradiction completes the proof.
Theorem 4Assume that (H1)-(H5), (3) hold and τ ∈ C1

rd([t0,∞)T,T), τ([t0,∞)T) =
[t0,∞)T. Also, assume that there exists a positive ∆ -differentiable function δ(t)
such that (4) holds. If ∫ ∞

t0

[
1

r(t)

∫ t

t0

p(s)∆s]∆t = ∞, (16)

then every solution of Eq. (1) is oscillatory or converges to zero on [t0,∞)T.
Proof. We proceed as in Theorem 1, we assume that (1) has a nonoscillatory

solution such that x(t) > 0, x(τ(t)) > 0 for all t ∈ [t1,∞)T, t1 ∈ [t0,∞)T. As in the
proof of Lemma 2, we see that there exist two possible cases for the sign of x∆(t).
When x∆(t) is an eventually positive, the proof is similar to the proof of Theorem
1.
Next, suppose that x∆(t) < 0 for t ∈ [t1,∞)T. Then x(t) is decreasing and
limt→∞ x(t) = b ≥ 0. We assert that b = 0. If not, then x(τ(t)) > x(t) >
x(σ(t)) > b > 0 for t ∈ [t1,∞)T. Since f(x(τ(t))) ≥ Lb, then there exists a number
t2 ∈ [t1,∞)T such that f(x(τ(t))) ≥ Lx(τ(t)) for t ≥ t2.
Defining the function u(t) = r(t)g(x(t), x∆(t)) and using (1), we get:

u∆(t) = −p(t)f(x(τ(t))) ≤ −Lp(t)x(τ(t)) ≤ −Lbp(t) for t ∈ [t2,∞)T.
Hence, for t ∈ [t2,∞)T we have

u(t) ≤ u(t2)− Lb
∫ t

t2
p(s)∆s.

Since u(t2) = r(t2)g(x(t2), x
∆(t2)) < 0, then

u(t) ≤ −Lb
∫ t

t2
p(s)∆s.

Therefore,
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g(x(t), x∆(t)) ≤ −Lb 1
r(t)

∫ t

t2
p(s)∆s.

Using (H4), we get

x∆(t) ≤ − Lb
K2

1
r(t)

∫ t

t2
p(s)∆s, for K2 > 0.

Hence,∫ t

t2
x∆(s)∆s ≤ − Lb

K2

∫ t

t2
[ 1
r(s)

∫ s

t2
p(ξ)∆ξ]∆s.

From condition (16), we get x(t) → −∞, and this is a contradiction to the fact that
x(t) > 0 for t ≥ t1. thus b = 0 and then x(t) → 0 as t → ∞. The proof is completed.

5. Examples

In this section, we give some examples to illustrate our main results. In fact
these examples are not studied before and there is no previous Theorems determine
the oscillatory behavior of such equations.
Example 1 Consider the second order nonlinear delay dynamic equation

(t
x∆(t)

x2(t) + 1
)∆ +

ν

tα(τ(t))
x(τ(t))(x2(τ(t)) + 1) = 0 for t ∈ [t0,∞)T, t0 ≥ 0, (17)

where ν is positive parameter.
This equation has the form (1) with

r(t) = t, g(x(t), x∆(t)) = x∆(t)
x2(t)+1 , p(t) =

ν
tα(τ(t)) , f(x) = x(x2 + 1).

Therefore, we take L = K = 1.

Theorem 1 can be applied for this example. In this case, we assume that

δ(t) = 1.

Therefore,

∫∞
t0

∆t
r(t) =

∫∞
t0

∆t
t = ∞ (i.e., eq. (2) holds),

and

lim sup
t→∞

t∫
t0

[Lα(τ(s))p(s)δσ(s)− r(τ(s))(δ∆(s))2

4Kδσ(s)α(τ(s))τ∆(s)
]∆s = lim sup

t→∞

t∫
t0

ν

s
∆s = ∞.

Hence by Theorem 1, every solution of (17) is oscillatory.
Example 2 Consider the second order nonlinear delay dynamic equation

(
cos2(x(t))

1 + x2(t)
x∆(t))∆ +

λ

t2
x(t)(2 + sinx(t)) = 0fort ∈ [t0,∞)T, t0 ≥ 0, (18)

where λ is positive constant.
This equation is of the form (1) with
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r(t) = 1, g(x(t), x∆(t)) = cos2(x(t))
1+x2(t) x∆(t), p(t) = λ

t2 , f(x) = x(2+sinx), τ(t) = t.

Therefore, we take L = K = 1.

It is clear that

∫∞
t0

∆t
r(t) =

∫∞
t0

∆t = ∞ (i.e., eq. (2) holds) and R(τ(t)) = τ(t)− t0 for k = 1.

Therefore, we can find 0 < b < 1 such that

α(τ(t)) = R(τ(t))
R(τ(t))+µ(τ(t)) = τ(t)−t0

τ(t)−t0+σ(τ(t))−τ(t) = τ(t)−t0
σ(τ(t))−t0

> bτ(t)
σ(τ(t)) for t ≥ tb >

t0.

Let δ(t) = t. Then by Theorem 1, we have

lim sup
t→∞

t∫
t0

[Lα(τ(s))p(s)δσ(s)− r(τ(s))(δ∆(s))2

4Kδσ(s)α(τ(s))τ∆(s)
]∆s = (λb− 1

4b
) lim sup

t→∞

t∫
t0

∆s

s
∆s = ∞,

for λ > 1
4b2 . Then by Theorem 1, every solution of (18) is oscillatory if λ > 1

4b2 .

Example 3 Consider the second order nonlinear delay dynamic equation

(t1−γ x2(t)(x∆(t))3

1 + x2(t)(x∆(t))2
)∆ +

ν

tσ(t)
x(x2γ + 3) = 0for t ∈ [t0,∞)T, t0 ≥ 0, (19)

where ν is a positive constant and γ ≥ 1 is the quotient of odd positive integers.
Here,

r(t) = t1−γ , g(x(t), x∆(t)) = x2(t)(x∆(t))3

1+x2(t)(x∆(t))2 , p(t) =
ν

tσ(t) , f(x) = x(x2γ + 3) and

τ(t) = t
1
γ .

It is clear that∫∞
t0

∆t
r(t) =

∫∞
t0

∆t
t1−γ = ∞ for γ ≥ 1 (i.e., eq. (2) holds) and R(τ(t)) > τ(t) − t0 >

nτ(t) for k = 1, 0 < n < 1.

Let C = 1. Then by Theorem 3, we have

lim sup
t→∞

CR(τ(t))

r(τ(t))

∞∫
t

p(s)∆s > lim sup
t→∞

nτ(t)

τ1−γ(t)

∞∫
t

ν

sσ(s)
∆s > nν > 1 for ν >

1

n
.

Then by Theorem 3 every solution of Eq. (19) is oscillatory if ν > 1
n .

Remark 1

(1) The important point to note here is that the current work is a generalization
of the recent results which were established in [5].

(2) The results are obtained in the given examples can not be obtained by using
either Theorem 1 in [10] or the results in [16].
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