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REVIEW: OPTION PRICING MODELS

AASIYA LATEEF, C.K. VERMA

Abstract. Options are the important financial derivatives that control the
investment risks of investors in financial market. To estimate the theoretical

price of an option, or option pricing, is one of the most important issue in

financial research. The objective of option pricing is to find the current fair
price, for decision making, in contrast with future option price. The most

effective methods for option pricing are the Black-Scholes (BS) method,the

binomial Tree (BT) method, Monte Carlo (MC) simulation method, Finite
difference methods and so many other approaches are used for option pricing.

This article will review the important aspects of option pricing and the working

of different approaches used for option pricing.

1. Introduction

An option is a security in which its owner gets the right to trade in a fixed
number of shares of a specified common stock at a fixed price at any time on or
before a given date. The act of making this transaction is known as exercising of
the option. The fixed price is termed as the striking price and the given date as the
expiration date. A call option gives the right to buy the shares and a put option
gives the right to sell the shares [1].

Options are just like any other investments in many ways in which we need to
understand what price we have to decide for the asset to make profit in future as
compare to the market price of the option. Option pricing comes in two flavors:
American and European.

American style option pricing allows its owner to exercise at any time prior to
expiry date while the European style option pricing allows its owner to exercise on
the expiry date. So many approaches have been developed to find the fair market
value of the option, which are referred to as option pricing models.

These approaches are Black-Schols option pricing model, Binomial model, Monte-
Carlo simulation method, Finite difference methods and so many other approaches
are also in the list.

The history of stock options trading begins with the 1973 establishment of the
Chicago board options exchange (CBOE), (CBOE is the largest business option
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exchanges in the world after that several) and the development of the Black-Scholes
option pricing model [2].

Over the last few decades option pricing problem has gained a lot of attention
due to the famous work of Black and schols[3]. The world of options underwent
a revolutionary change in 1973 when Fischer Black, Maryon Schols and Robert C.
Merton published their seminal paper on theory of option pricing.

Moreover, in the same year, Robert Merton extended the Black- Scholes (BS)
option pricing model in several important ways. The BS formula has been widely
used by traders to determine the price for an option.

After the Black-Scholes option pricing model in 1973, a number of other popular
approaches have been developed following the BS model, in which including Cox-
Ross-Rubinstein (1979) binomial tree model, Monte-Carlo Simulation method and
finite difference methods to price the derivative governed by solving the underlying
partial differential equation .

Over the past decade, option has developed to provide the basis for corporate
hedging and for the asset/liability management of financial institutions. Options
form the foundation of innovative financial instruments, which are extremely ver-
satile securities that can be used in many different ways[4].

2. Our Approach

Our approach is based on the concept of financial derivatives. First we will dis-
cuss some definitions and mathematical tools useful in the valuation of financial
derivatives and then discuss some approaches used for option pricing i.e option
pricing models. Later on we will compare the models in a descriptive way.

3. Some Definitions

In recent years, a large variety of financial instruments have been created by
financial institutions. The existence of financial mathematics has led to exploita-
tion of advanced tools like martingale theory, stochastic process, markov process,
brownian motion and partial differential equations in the pricing of these instru-
ments.We concentrate on the pricing of options using these advanced mathematical
tools[3].

3.1 Stochastic Process A stochastic Process X = X(t), t is a collection of
random variables with index set I, where t is time.A realization of X is called a sam-
ple path. A continuous time stochastic process X(t) is said to have independent
increments if for all t0 < t1 < t2 < .. < tn the random variables

X(t1)−X(t0), X(t2)−X(t1), .., X(tn)−X(tn−1)

are independent. It is said to possess stationary increments if X(t+ s)−X(t) has
the same distribution for all t and the distribution depends only on s.

3.2 Markov Process A Markov process is a stochastic process for which
everything that we know about its future is summarized by its current value.A
continuous time stochastic process X = X(t), t ≥ 0 is Markovian if

Prob[X(t) ≤ x|X(u), 0 ≤ u ≤ s] = Prob[X(t) ≤ x|X(s)]
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for s < t .

3.3 Martingale Suppose we observe a family of random variables and let the
observed process be denoted by St, t ∈ [0, T ] .Let us assume that time is continuous
and that over an interval [0, T ] ,we can represent the various time periods as

0 = t0 < t1 <, .,< tk−1 < tk = T

Let It, t ∈ [0, T ] represents a family of information sets that become continu-
ously available to the investor as time passes. Given S < t < T ,this family of
information sets will satisfy Is ⊆ It ⊆ IT ...

This set It, t ∈ [0, T ] , is called a filtration. At some particular time t, if the
value of the price process is St and if it is included in the information set It for
t ≥ 0 ,then it is said that St, t ∈ [0, T ] is adapted to It, t ∈ [0, T ] .This implies
that the value of St will be known given the information set It .

A stochastic process Mt, t ≥ 0 is a martingale with respect to the family of
information sets It and with respect to the probability Q , If for all t ≥ 0

(i) EQ[|Mt|] <∞

(ii) Whenever 0 ≤ s < t ; then EQ[Mt |IS ] = MS

A martingale, (1) makes the expected future value conditional on its present
value or on the set of information that is known. (2) It is not expected to drift up-
wards or downwards and thus it is a notion of a fair game and (3) is always defined
with respect to some information set, and with respect to some probability measure.

3.4 Brownian Motion A random process Bt, t ∈ [0,∞] is a Brownian motion
if

(i) Bt has both stationary and independent increments.

(ii) Bt is a continuous function of time, with B0 = 0 ,unless otherwise stated.

(iii) For 0 ≤ s ≤ t, Bt − Bs is normally distributed with mean µ(t − s) and
variance σ2|t− s| ,that is (Bt−BS ] N [µ(t− s) , σ2|t− s| , where µ and σ 6= 0
are real numbers.

Such a process is called (µσ) Brownian motion with drift µ and variance
σ2 .The (0, 1) Brownian motion is called the normalized Brownian motion, or
again the Wiener process. A (µσ) Brownian motion is also called a generalized
Wiener process or the Wiener-Bachelier process.

3.5 Geometric Brownian Motion If X(t) is a Brownian motion with drift
rate µ and variance rate σ2 the process Y (t) = eX(t), t ≥ 0 is called a geomet-
ric Brownian motion, or the exponential Brownian motion,or again the lognormal
diffusion.The mean and variance are given respectively by
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E[Y (t)] = e(µ +σ2

2 )t

V ar[y(t)] = e(2µ+σ2)t [eσ
2t − 1]

3.6 Arbitrage Arbitrage is a trading strategy that involves two or more se-
curities being mispriced relative to each other to realise a profit without taking a
risk.In general arbitrage opportunities are normally rare, short-lived and therefore
immaterial with respect to the volume of transactions. Thus the market does not
allow risk-free profits.

The main tools used to determine the fair price of a security or a derivative asset
rely on the no-arbitrage principle. It is a fundamental assumption about the mar-
ket. The no-arbitrage principle is that a portfolio yielding a zero return in every
possible scenario must have a zero present value. Any other value would imply
arbitrage opportunities, which one can realize by shorting the portfolio if its value
is positive and buying it if its value is negative.

If one makes risk free profit in the market, then arbitrage opportunities exist
and it implies that the economy is in an economic disequilibrium. An economic
disequilibrium is a position situation in which there is mispricing in the market
and investors trade. Their trading causes prices to change, moving them to new
economic equilibrium. The mispricing is corrected by trading and arbitrage oppor-
tunities no longer exist. A market is Arbitrage-free if it satisfies any of the following
conditions.

(i) Market Efficiency

Market efficiency is the characteristic of a market in which the prices of the
instruments trading therein reflect the true economic values to investors. If the
securities market is efficient, then information is widely and cheaply available to
investors and all relevant and ascertainable information is already reflected in se-
curity prices. The efficient market hypothesis comes in three different forms: weak
form, semi strong form, strong form.

(ii) Self Financing Strategy

It is a trading strategy in which the value change in a portfolio is as a result of a
change in the value of the underlying asset and not beacause of change in the portfo-
lio structure If we have ftunitsofastockstand?tunitsofabondBt, thentheportfoliosvalueis

Vt = ϕt St + ψt Bt

The strategy is self-financing if ϕt−1 St = ϕt st and ψt−1 Bt = ψt Bt ,That
is, we have re-adjusted the portfolio while the prices have remained the same and
the total value has not changed.

(iii) Risk Neutral Valuation

It is the valuation of a derivative assuming the world is risk neutral. A risk
neutral world is a world where assets are valued solely in terms of their expected
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return. The return on all securities is the risk-free interest rate and all individ-
uals are indifferent to risk.Thus the risk neutral valuation principle is important
in option pricing. Indeed it implies that all expected returns must be zero. As a
consequence, derivative prices are determined by the expected present value payoff.
We assume that the world is risk neutral and the price obtained is correct not just
in a risk-neutral world but also in the real world.

3.7 Risk

We can define the risk in a portfolio as the variance of the return. This definition
does not take into account the distribution of the return. Example, a bank savings
account or a government bond has a guaranteed return with no variance, and is
thus termed as risk-less (or risk-free). A highly volatile stock with a very uncertain
return has a large variance and is a risky asset. We assume the existence of risk-free
investments that give a guaranteed return with no chance of default.

We have two types of risk: specific and non-specific, called market or systematic
risk. Specific risk is the component of risk associated with a single asset or a sec-
tor of the market. Non-specific risk is associated with factors affecting the whole
market. Diversifying away specific risk can be achieved by having a portfolio with
a large number of assets from different sectors of the market. It is not possible to
diversify away non-specific risk. Market risk can be eliminated from a portfolio by
taking similar positions in the assets which are highly negatively correlated; as one
decreases in value, the other increases.

3.8 Volatility
A measure of risk based on the standard deviation of investment fund or we can
say it is the standard deviation measure of an assets potential deviating from its
current price. This is the simple definition we gave for risk. For greater the volatil-
ity of the underlying, the greater the value of the option. For options, volatility is
good while for other financial assets, volatility is bad.This is due to the fact that
the purchaser of options enjoy only the upside potential, not downside risk. Other
financial assets have both risks. Investors are usually assumed to be risk averse and
they place a lower value on highly priced volatile assets. Volatility gives uncertain
values and therefore risk of loss.

The price volatility in asset markets is caused mainly by information release, the
process of trading, and market-making for financial instruments. The volatility es-
timate is a measure of the uncertainty about the returns on the asset. When pricing
options, the volatility is assumed to be: (i) Time homogenous, that is, the same over
the life of the asset and (ii) Constant between the pricing date and option expiry[3].

4. APPROACHES USED FOR OPTION PRICING

The basis of trading any security based on the idea of value, the value which
tells us whether or not we are getting a good deal; whether or not we are buying
something low or selling it high. The determination of the value of an option is
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based upon a complex algorithm known as The Options Pricing Model. The Op-
tion Pricing Model calculates the values of different options .All the models are
connected, they are related somehow. They start at the same place setting up a
probability model to predict an expected value of an option. And they all end up
at a theoretical value, which is a value that an option should be worth[4].

4.1 Black Scholes Model The Black-Scholes model for calculating the pre-
mium of an option was introduced in 1973 in a paper entitled, ”The Pricing of
Options and Corporate Liabilities” published in the Journal of Political Economy .
The Black-Scholes model is used to calculate the theoretical price of European put
and call options The model assumes that the price of heavily traded assets follow
a geometric Brownian motion with constant drift and volatility.

The formula, developed by three economists Fischer Black, Myron Scholes and
Robert Merton is perhaps the world’s most well-known options pricing model.
Their dynamic hedging strategy led to a stochastic partial differential equation,
now called the BlackScholes equation, which estimates the price of the option over
time. Its solution is given by the BlackScholes formula [5].

The model makes certain assumptions, including: The options are European
and can only be exercised at expiration. No dividends are paid out during the
life of the option. Efficient markets i.e., market movements cannot be predicted.
No commissions The risk-free rate and volatility of the underlying are known and
constant. Follows a lognormal distribution, that is, returns on the underlying are
normally distributed.

The Black-Scholes PDE describes the evolution of any derivative whose under-
lying asset satisfies the Black-Scholes assumptions. Equation is,

∂v

∂t
+

1

2
σ2 S2 ∂2v

∂S2
+ rS

∂V

∂S
− rV = 0 (1)

Here,
V(S,T) is the price of a derivative as a function of time and stock price.

S, be the price of the stock.

σ , is the volatility of the stock’s returns.

r, is the annualized risk-free interest rate.

On Solving this partial differential equation we get an analytical formula for
pricing the european style options which is known as Black-Scholes formula.The
value of a call option for a non-dividend-paying unde-rlying stock in terms of the
Black-Scholes parameters is:

C(S, T ) = N(d1)S −N(d2)Ke−r(T−t)

d1 = 1
σ
√
T−t [ln SK + (r + σ2

2 ) (T − t)]
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d2 = 1
σ
√
T−t [ln SK + (r − σ2

2 ) (T − t)]
= d1 − σ

√
T − t

The price of a corresponding put option based on put-call parity is:

P (S, t) = Ke−r(T−t) − S + C(S, t)
= N(−d2) Ke−r(T−t) −N(−d1)S

Here,

N is the cumulative frequency distribution

S is the spot price of the underlying asset

K is the strike price

T-t is the time to maturity

r is the risk free rate

σ is the volatility returns of the underlying asset

The model is essentially divided into two parts, the first part, N(d1)S , mul-
tiplies the price by the change in the call premium in relation to a change in the
underlying price. This part of the formula shows the expected benefit of purchasing
the underlying outright. The second part N(d2)Ke−r(T−t) provides the current
value of paying the exercise price upon expiration (remember, the Black-Scholes
model applies to European options that are exercisable only on expiration day).
The value of the option is calculated by taking the difference between the two
parts, as shown in the equation.If we denote the current price of the underlying by
S, then the payoffs at expiry, T, for a given exercise price, K, of European Calls
and Puts is:

C(S, T ) = max(S −K, 0), P (S, T ) = max(K − S, 0) (2)

Obtained by solving the equation for the corresponding terminal and boundary
conditions.In order to price the derivative, we need to solve (1) together with some
boundary conditions. This is given by (2). Also following from (2), for any strike
price, K > 0,max(0−K, 0) = 0 . Thus we have,

C(0, t) = 0

Finally, consider the case where the underlying asset increases without bound. The
strike price, K becomes irrelevant and we have,

C(S →∞, t) = S

The European call and put analytical formulas have gained popularity in the world
of finance due to the ease with which one can use the formula to value the European
options [3].

4.2 Binomial Model Cox-Ross-Rubinstein presented the binomial tree model
in paper Option Pricing: A Simplified Approach in 1979. The model is relatively
simple and easy to understand, but it is an extremely powerful tool for pricing a
wide range of option. The Binomial model is breaks down time until expiration
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into a series of intervals or steps. Then a tree of stock prices is produced, working
forward from the present to expiration. Suppose that S is the stock price at the
beginning of a given time period. At each step, its assumed that the stock price will
move either up or down.The rate of return on the stock over each period can have
two possible values: up to uS with probability q, or down to dS with probability
1q , where u and d are the up and down factors with d < 1 < u .

files/One Step Binomial Tree.jpg

The model made the assumption that a stock will move either up or down, from
one level up to the next or down to the next,continuing the pattern until you can
see a two-branch type tree or binomial tree. That was the idea of the Binomial
model[6].

In order to calculate the fair value of the option, first we divide the life time
[0, T ] of the option into N time subintervals of length δt , where δt = T/N [15].
As stock price is S for time step δt ,the expected value of S under the continuous
random walk model is,

E(S) =
∫∞

0
S

′
p(S, δt;S

′
, δt

′
)dS

′
= erδtS

Where p(S, t;S
′
t
′
) is the probability density function, for the risk neutral

random walk.The expected value of S,under the discrete binomial random walk is,

E(S) = Squ+S(1-q)d

Equating above two expected values, we get

Serδt = Squ+ S(1− q)d

erδt = qu+ (1− q)d (3)

The variance of S is defined to be,

V ar[S] = E(S2)− [E(S)]2 (4)

Under the continuous random walk we have

E(S)2 =
∫∞

0
(S

′)2 p(S, δt;S
′
, δt

′
)dS

′
= e(2r+σ2)δt(S2)

Where p(S, t;S
′
, t

′
) is the probability density function. Thus the variance

under the continuous process is given by

V ar[S] = S2e2rδt[e(σ2δt) − 1] (5)

this can be expressed as, from (4)

S2e2rδt[eσ
2δt − 1] = qu2S2 + (1− q)d2S2 − [quS + (1− q)dS]2
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and this can be simplified to yield

e2rδt+σ2δt = qu2 + (1− q)d2 (6)

.
If we assume u = 1/d , then it follows from (3) and (6) that,

q =
erδt − d
u− d

(7)

The probability q obtained in (7) is called the risk neutral probability. It is the
probability of an upward movement of the stock price that ensures that all bets are
fair, that is, it ensures that there is no arbitrage[6]. The expectation of the share
price can be written as

E[S1] = quS + d(1− q)S (8)

Where S1 is the share price after one period, and using the value of q in (7)
we find that E[S1] = Serδt which naturally follows from our assumption of the
risk-neutral valuation.

We know that after one time period, the stock price can move up to uS with
probability q or down to dS with probability (1− q) . Therefore the corresponding
value of the call option at the first time movement δt is given by

cu = max(uS −K, 0) : after upward movement

cd = max(dS −K, 0) : after downward movement

We need to derive a formula to calculate the fair value of the option. The risk
neutral call option price at the present time is

c = [qcu + (1− q)cd]e−rδt (9)

Now when we extend the model to two periods. Let cuu denote the call value
at time 2δt for two consecutive upward stock movement, cud for one downward
and one upward movement and cdd for two consecutive downward movement of
the stock price. Then we have

cuu = max(u2S −K, 0)
cud = max(udS −K, 0)

cdd = max(d2S −K, 0) (10)

which are illustrated in figure.2 for the three different states of the asset and call
prices in the two period binomial model. Since q is the risk neutral probability, the
values of call options at time, δt are

cu = e−rδt [qcuu + (1− q)cud]
.

cd = e−rδt [qcud + (1− q)cdd] (11)

We substitute (11) into (9) and this gives us the current call value using time
2δt as

c = e−2rδt[q2cuu + 2q(1− q)cud + (1− q)2cdd] (12)
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We generalize the result in (12) to value an option which expires at T = Nδt
as

C = e−Nrδt
∑N
j=0

N !
j! (N − j)!qj(1− q)N−j cjudN−j

= e−Nrδt
N∑
j=0

N !

j!
(N − j)! qj(1− q)N−jmax?(ujdN−jS −K, 0) (13)

Where N !
J! (N − j)! is the binomial coefficient.

We assume that m is the smallest integer for which the options intrinsic value in
(13) is greater than zero. This implies that umdN−mS = K . Then (13) is written
as

C = Se−Nrδt
N∑
j=m

N !

J !
(N − j)!qj(1−q)N−jujdN−j−Ke−Nrδt

N∑
j=m

qj(1−q)N−j (14)

which gives us the present value of the call option. The term e−Nrδt is the dis-
counting factor that reduces c to its present value. The first term N !

J! (N − j)!qj(1−
q)N−j is the binomial probability of j upward movements to occur after the first
N trading periods and uj dN−jS is the corresponding value of the asset after j
upward move of the stock price. The second term is the present value of the op-
tions strike price[6]. Let R = erδt . We substitute R in the first term in (14) to yield

C = SR−N
∑N
j=m

N !
J! (N − j)!qj(1−q)N−j ujdN−j−Ke−Nrδt

∑N
j=m

N !
J! (N − j)!qj(1−

q)N−j

= S

N∑
j=m

N !

J !
(N − j)![R−1qu]j [R−1(1−q)d]N−j−Ke−Nrδt

N∑
j=m

N !

J !
(N − j)!qj(1−q)N−j

(15)
Now let φ(m;N, q) be the binomial distribution function. That is

φ(m;N, q) =

N∑
j=m

N !

J !
(N − j)!qj(1− q)N−j (16)
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is the probability of at least m success in N independent trials, each resulting in
a success with probability q and in a failure with probability 1− q . Then , letting
q
′

= R−1 qu , we obtain

R−1(1− q)d = 1− q′

Consequently it follows from the second equality in (15) that

c = Sφ(m;N, q
′
)−Ke−rT φ(m;N, q) (17)

where T = Nδt.

The model in (17) was developed by Cox, Ross and Rubinstein and we will refer
to it as the CRR model. The corresponding value of the European put option can
be obtained using the call-put parity relationship [3].When stock price movements
are governed by a multi-step binomial tree, we can treat each binomial step sepa-
rately. The multi-step binomial tree can be used for the American and European
style options[3].

Like the Black Scholes model, the CRR formula in (16) can only be used in
the valuation of European style options and can easily be implemented in Matlab.
To overcome this problem, we use multi-period binomial model for the American
style options on both the dividend and non dividend paying stocks.The no-arbitrage
arguments are used and no assumptions are required about the probabilities of up
and down movements in the stock price at each node. We now explain the procedure
for the implementation of the multi-period binomial model. At time zero, the stock
price S is known. At time δt , there are two possible stock prices uS and dS. At
time 2δt , there are three possible stock prices u2 S , udS , d2 S and so on. In
general ,at time iδt ; where 0 ≤ i ≤ N , (i+ 1) stock prices are considered, given
by

Suj dN−j for j = 0, 1, . . . , N

Where N is the total number of movements and j is the total number of up
movements. The multi-period binomial model can reflect numerous stock price
outcomes if there are numerous periods. Fortunately, the binomial option pricing
model is based on recombining trees, otherwise the computational burden would
quickly become overwhelming as the number of moves in the tree is increased.

Options are evaluated by starting at the end of the tree at time T and working
backward.We know the worth of a call and a put at time T is max (ST −K,O) and
max(K − ST , 0) respectively. Because we are assuming the risk-neutral world, the
value at each node at time (Tδt) can be calculated as the expected value at time T
discounted at rate r for a time period δt .Similarly, the value at each node at time
(T − 2δt) can be calculated as the expected value at time (T − δt) discounted for
a time period δt at rate r and so on. By working back through all the nodes, we
are able to obtain the value of the option at time zero[9].

Suppose that the life of an European option on a non-dividend paying stock is
divided into N subintervals of length δt . Denote the jth node at time iδt as the
(i, j) node, where 0 ≤ i ≤ N and 0 ≤ j ≤ i . Define f(i,j) as the value of the

option at the (i, j) node. The stock price at the (i, j) node is Sujd(t−j) .Then,
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the respective European call and put can be expressed as:

fN,j = max(SujdN−j −K, 0) for j = 0, 1, ..N
fN,j = max(K − SujdN−j , 0) for j = 0, 1..N

There is a probability q of moving from the (i, j) node at time iδt to the
(i + 1, j + 1) node at time (i + 1)δt , and a probability (1 − q) of moving from
the (i, j) node at time iδt to the (i + 1, j) node at time (i + 1)δt .The risk
neutral valuation is

fi,j = e−rδt [qfi+1,j+1 + (1− q)fi+1,j ] and 0 ≤ i ≤ N − 1, 0 ≤ j ≤ i
For an American option, we check at each node to see whether early exercise is

preferable to holding the option for a further time period δt . When early exercise is
taken into account, this value of fi,j ) must be compared with the options intrinsic
value and we have

fi,j = max[k − Sujdi−j , e−rδt(qfi+1,j+1 + (1− q)fi+1,j ]

We can represent this movement with the following diagram:

files/Multistep Binomial Tree.jpg

The model did account for early exercise and where it did have better integrity
out over time it was missing something. It was missing the fact that most of the
time stocks dont move. It assumed that at every level a stock either moves up or
moves down to the next level. It only recognized two choices.

The response to that omission in the Binomial model was the creation of The
Trinomial Model. Instead of having two choices, and a two-branch tree, the Trino-
mial had three choices and a three branch tree. From each step, the next step could
either be up a level, down a level, or straight across sideways at the same level [4].

So, the Trinomial model was able to account for a stock not moving. The Tri-
nomial model accepts the fact that a stock can stay still, stock does not have to
move either up or down it can move sideways. Where the Binomial model improved
on the Black-Scholes model by properly pricing the value of early expiration, it is
failed to see the volatility smile.The Trinomial model takes into consideration the
next step, that ability for the stock not to move thus accounting for the volatility
smile[10].
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4.3 Monte Carlo Simulation Method

Another model that was in existence during that early time was the Monte Carlo
Simulation method. Credit for inventing the Monte Carlo Simulation method often
goes to Stanislaw Ulam, a Polish born mathematician who worked for John von
Neumann on the United States Manhattan Project during World War II. Ulam
is primarily known for designing the hydrogen bomb with Edward Teller in 1951.
He invented the Monte Carlo method in 1946 while pondering the probabilities of
winning a card game of solitaire [3].

Monte-carlo simulation method also known as simulation based on the use of
random numbers and probability statistics to investigate problems. Simulation is
a numerical technique for conducting experiments by imitating a situation using
mathematical and logical models in order to estimate the likelihood of various possi-
ble outcomes over a period of time. Monte Carlo method is an analytical technique
for solving a problem by performing a large number of trial runs, called simula-
tions, and inferring a solution from the collective results of the trial runs.It has
been applied in many fields, including the pricing of financial derivatives. This
method can be used in estimating option prices for derivatives that do or do not
have a convenient analytical formula. It uses the risk-neutral valuation in which the
expected payoff in a risk neutral world is calculated using a sampling procedure,
and discounted at the risk-free interest rate. In an efficient market, the pricing of
an option is equivalent to evaluating the expectation of its discounted payoff under
a specified measure[12].

Main steps followed by Monte Carlo Simulation are:

• Simulate a path of the underlying asset under the risk neutral condition
within the desired time horizon.

• Discount the payoff corresponding to the path at the risk-free interest rate.
The structure of the security in question should be adhered to.

• Repeat the procedure for a high number of simulated sample paths.
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• Average the discounted cash flows over sample paths to obtain the options
value.

A Monte Carlo simulation can be used as a procedure for sampling random
outcomes of a process followed by the stock price

dS = µSdt+ σSdWt (18)

where dWt is a Wiener process and S is the stock price. If S is the increase in
the stock price in the next small interval of time δt then

δS

S
= µδt+ σZ

√
δt (19)

Where Z → N(0, 1) , σ is the volatility of the stock price and µ is its expected
return in a risk-neutral world. So (19) is expressed as

S(t+ δt)− S(t) = µS(t)δt+ σS(t)Z
√
δt (20)

We can calculate the value of S at time t+ δt from the initial value S, then the
value of S at time t + 2δt from the value at time t + δt and so on. We use N
random samples from a normal distribution to simulate a trial for a complete path
followed by S. It is more accurate to simulate lnS than S,we transform the asset
price process using Itos lemma

dlnS = (µ− σ2

2 )dt+ σdWt

So that

lnS(t+ δt)− lnS(t) = (µ− σ2

2 )δt+ σZ
√
δt

or

S(t+ δt) = S(t)exp[(µ− σ2

2 )δt+ σZ
√
δt]

MCS is particularly relevant when the financial derivatives pay off depends on
the path followed by the underlying asset during the life of the option, that is, for
path dependent options. The method can also be applied when the value of the
financial derivative depends only on the final value of the underlying asset. An
example is the European style option whose payoff depends on the value of S at
maturity time T. The stock price process for a European option can be expressed as :

SiT = Sexp[(µ− σ2

2 )T + σz
√
T ]

Where i = 1, 2,M and M denotes the number of trials or the different states of
the world. These M simulations are the possible paths that a stock price can have
at maturity date T.The estimated European call option value is

C = 1
M

∑M
i=1 e

−rTmax[SiT −K, 0]

This is an unbiased estimate of the derivatives price. When the number of trials
M is large, the central limit theorem provides a confidence interval for the estimate,
based on the sample variance of the discounted payoff.

Variance Reduction Procedures
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The uncertainty about the value of the derivative is inversely proportional to
the square root of the number of trials. Then, if the simulation is to give accurate
results, very large number of simulated sample paths is usually necessary. This is
very expensive in terms of computational time. The variance reduction technique
refines and improves the efficiency of the simulation.

Antithetic Variable Technique

In this technique, a simulation trial involves calculating two values of the deriv-
ative. The first value f1 is calculated in the usual way. The second value f2

is calculated by changing the sign of all the random samples from the standard
normal distribution. If Z is a sample used to calculate f1 then −Z is the corre-
sponding sample used to calculate f2 . For example, if we use (5), then we have
two equations of the form

ST = Sexp[(µ− σ2

2 )T + Zσ
√
T ]

ST = Sexp[(µ− σ2

2 )T − Zσ
√
T ]

We prefer to use the random inputs obtained from the collection of antithetic
pairs (Z,−Z) as they are more regularly distributed than a collection of 2N in-
dependent samples. The pair is called antithetic because they exhibit negative
independence. The sample mean of the antithetic pairs always equals the popu-
lation mean of zero. The mean over finitely many independent samples is almost
surely different from zero. We denote f as the average of f1 and f2 .

f = f1+f2
2

Then,

V ar(f) = V ar[ 1
2 (f1 + f2)] = 1

4var[f1] + 1
4var[f2] + 1

2cov[f1, f2]

If the covariance, Cov[f1f2] ; between f1 and f2 is negative this will yield
a smaller estimate of the variance than an independent estimate.The confidence
interval is computed by estimating the standard error using the sample standard
deviation of the N averaged pairs f1+f2

2 and not the 2N individual observa-
tions. Thus the antithetic variate exploits the existence of the negative correlation
between two estimates[12].

Control Variate Technique

In this technique, we replace the evaluation of an unknown expectation with the
evaluation of the difference between the unknown quantity and a related quantity,
whose expectation is known. The control variate uses a second estimate with a
high positive correlation with the estimate of interest. We carry out two simula-
tions using the same number streams and the same δt Back when models were first
being auditioned for their use in option pricing, computers were simply not pow-
erful enough to warrant the use of the Monte Carlo Simulation.There were many
calculations, and it was not possible to get the all those calculations because it was
uncredibly slow. Delays caused by the extended waiting periods cost traders money
and that was unacceptable [14].
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4.4 Finite Difference Methods Finite Difference methods are used to price
options by approximating the differential equation that describes how an option
price evolves over time by a set of difference equations. The discrete difference
equations may then be solved iteratively to calculate a price for the option. The
differential equation is converted into a set of difference equations and the difference
equations are solved iteratively [3].
There are three methods
• The Explicit Euler,
• The Implicit Euler and,
• The Crank −Nicolson method

to evaluate the PDE at each time step and the difference between each of the
three methods is contingent on the choice of difference used for time ( i.e forward ,
backward or central differences).The easiest scheme of the three to implement is the
Explicit Euler method. Implicit Euler and Crank-Nicolson are implicit methods,
which generally require a system of linear equations to be solved at each time step,
which can be computationally intensive on a ?ne mesh [9].

In the formulation of a partial differential equation problem there are three com-
ponents to consider:- (1) The partial differential equation. (2) The region of space-
time on which the partial differential equation is required to be satisfied (3)The
auxiliary boundary and initial conditions to be met.

Each finite difference method involve four step process:
• Discretize the appropriate ( continuous−time , partial) differential equation.

• Specify a grid of potential current and future prices for the underlying asset.

• Calculate the payoff of the option at specfic boundaries of the grid of potential
underlying prices.

• Iteratively determine the option price at all other grid points,including the
point for the current time and underlying price (i.e the option price today). The
iteration procedure is different depending on whether the explicit method, implicit
method or Crank − Nicolson method is being used and whether there is the
possibility of early exercise of the option.

Discretizing a differential Equation

We have to discretize a partial differential equation and the boundary conditions
using a forward or a backward difference approximation. The Black-Scholes PDE
given by:

∂f
∂t + 1

2σ
2S2 ∂

2f
∂S2 + rS ∂f∂S − rf = 0

We discretize the equation with respect to time and to the underlying asset price.
Divide the (S, t) plane into a sufficiently dense grid or mesh, and approximate the
infinitesimal steps ∆S and ∆t by some small fixed finite steps. Further, define
an array of N + 1 equally spaced grid points t0, t1, , tN to discretize the time
derivative with
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tn+1 − tn = ∆t and ∆t = T/N

We know that the stock price cannot go below 0 and we have assumed that
Smax = 2S0 .We have M + 1 equally spaced grid points S0, S1, , SM to discretize
the stock price derivative with Sm+1 − Sm = ∆S and ∆S = Smax/M .This gives
us a rectangular region on the (S, t) plane with sides (0, Smax) and (0, T ) .

The grid coordinates (nm) enables us to compute the solution at discrete points.
The time and stock price points define a grid consisting of a total of (M+1)(N+1)
points. The (n,m) point on the grid is the point that corresponds to time n∆t for
n = 0, 1, .N , and stock price m∆S for m = 0, 1, .,M [11].

Figure 1 illustrates the discretized stock price and time derivatives into (M+1)
and (N + 1) grid points respectively. We will denote the value of the derivative
at time step tn when the underlying asset has value Sm as

fn,m = f(n∆t,m∆S) = f(tn, Sm) = f(t, S)

where n and m are the number of discrete increments in the time to maturity
and stock price respectively. The discrete increments in the time to maturity and
the stock price are given by ∆t and ∆S , respectively.

files/image.jpg

Let fn = fn,0, fn,1, fn,M for n = 0, 1, N . Then, the quantities f0,m and
fN,m for m = 0, 1, ..,M are referred to as the boundary values which may or may
not be known ahead of time but in our PDE they are known. The quantities fn,m
for n = 1, 2, .N − 1 and m = 0, 1, .,M are referred to as interior points or values.

We classify partial differential equations as: (1) Boundary value problems, where
we need to specify the full set of boundary conditions. (2) Initial value problems,
where only the value of the function at one particular time needs to be specified.
The majority of derivative security pricing problems, including most of the options
valuation problems, are initial value problems.The idea of finite difference methods
is to replace the partial derivatives occurring in the PDEs by approximations based
on Taylor series expansions of functions near the point or points of interest. The
derivative we seek is expressed with any desired order of accuracy.

Assuming that f(t, s) is represented in the grid by f(n,m) ,the Respective
expansions of f(t, S + ∆S) and f(t, S −∆S)
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f(t, S + ∆S) = f(t, s) +
∂f

∂s
∆S +

1

2

∂2f

∂s2
∆S2 +

1

6

∂3f

∂s3
∆S3 +O(∆S4) (21)

f(t, S −∆S) = f(t, s)− ∂f

∂s
∆S +

1

2

∂2f

∂s2
∆S2 − 1

6

∂3f

∂s3
∆S3 +O(∆S4) (22)

Using (22), the forward difference is given by

∂f
∂S (t, S) = f(t,S+∆S)−f(t,S)

∆S +O(∆S)

≈ fn,m+1 − fn,m
∆S

(23)

and (23) gives the corresponding backward difference as

∂f
∂s (t, S) = f(t,s)−f(t,S−∆S)

∆S +O(∆S)

≈ fn,m − fn,m−1

∆S
(24)

Subtracting (23) from (22) and taking the first order partial derivatives results
in the central difference given by

∂f
∂S (t, S) = f(t,S+∆S)−f(t,S−∆S)

2∆S +O(∆S2)

≈ fn,m+1 − fn,m−1

2∆S
(25)

The second order partial derivatives can be estimated by the symmetric central
difference approximation. On adding (22) and (23) and take the second order par-
tial derivative to have

∂2f
∂S2 (t, S) = f(t,S+∆S)−2(t,S)+f(t,S−∆S)

∆S2 +O(∆S2)

≈ fn,m+1 − 2fn,m + fn,m−1

∆S2
(26)

Although there are other approximations, this approximation to ∂2f
∂S2 is pre-

ferred, as its symmetry preserves the reflectional symmetry of the second order
partial derivative. It is also invariant and more accurate than other similar approx-
imations.

We expand f(t+ ∆t, S) in taylors series

f(t+ ∆t, S) = f(t, s) +
∂f

∂t
∆t+

1

2

∂2f

∂t2
∆t2 +

1

6

∂3f

∂t3
∆t3 +O(∆t4) (27)

The forward difference for the time is given by

∂f
∂t (t, s) = f(t+∆t,S)−f(t,S

∆t +O(∆t)
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≈ fn+1,m − fn,m
∆t

(28)

Replacing the first and second derivatives in the Black Scholes PDE will result
in a difference equation which gives an equation that we use to approximate the
solution f(S, t) .

A partial differential equation without the auxiliary boundary or initial condi-
tions will either have an infinity of solutions, or have no solution. We need specify
the boundary and initial conditions for the European put option whose payoff is
given by max(K − St, 0) .

When the stock is worth nothing, a put is worth its strike price K.

fn,0 = K for n = 0, 1, ., N

As the price of the underlying asset price increases, the value of the put option
approaches zero.Accordingly,we choose Smax = SM and from this we get,

fn,M = 0 for n = 0, 1, .N

We know the value of the put option at time T and can impose the initial con-
dition,

fN,m = max(K −m∆S, 0) for m = 0, 1.,M

The Explicit Finite Difference Method

Given that we know the value of an option at the maturity time, it is possible
to give an expression that gives us the next value fm,n explicitly in terms of the
given values fm−1,n+1, fm,n+1, fm+1,n+1 .

We discretize the Black Scholes PDE above by taking the forward-difference for
time discretization and the central difference for the stock price discretization. This
yields

fn+1,m − fn,m
∆t

+
rm∆S

2∆S
[fn+1,m+1−fn+1,m−1]+

σ2m2∆S2

2∆S2
[fn+1,m−1−2fn+1,m+fn+1,m+1] = rfn,m

(29)
and re-arranging we have

fn,m =
1

1 + r∆t
[β1mfn+1,m−1 + β2mfn+1,m + β3mfn+1,m+1] (30)

for n = 0, 1, .., N − 1 and m = 1, 2, ,M − 1 .

The forward difference for time discretization is accurate to O(∆t) and the cen-
tral difference for stock discretization to O(∆S2) . Therefore the finite difference
method is accurate to O(∆t,∆S2) . The weights in (10) are given by
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β1m = 1
2σ

2m2∆t− 1
2rm∆t ,

β2m = 1− σ2m2∆t ,

β3m =
1

2
rm∆t+

1

2
σ2m2∆t (31)

These weights sum to unity. They are the risk neutral probabilities of the three
asset prices S−∆S, S and S+∆S at t+∆t .We are assuming that the expected
returns on the asset is also true in a risk neutral world. For the explicit version of
the finite difference to work well, the three probabilities should be positive. The
problem associated with the explicit method is that some probabilities are nega-
tive.This produces results that do not converge to the solution of the differential
equation.

The condition to have non-negative probabilities is that σ2m2∆t < 1 and
r < σ2m [3].The stock price and time in the system of equations in (9) gives rise to
a tridiagonal system written as Au+ ε = b .The vector ε arises as a result of the
boundary conditions at m = 0 and M for all n > 0 . The system is represented
as

β20 β30 0 . . . 0 0 0
β11 β21 β31 . . . 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . β1M−1 β2M−1 β3M−1

0 0 0 . . . 0 β1M β2M




fn+1,0

fn+1,1

...
fn+1,M−1

fn+1,M

 =


fn,0
fn,1

...
fn,M−1

fn,M


(32)

This system of equations can be written in the form A fn+1,m = fn,m for
m = 0, 1, ,M and we ignore the error terms as the boundary conditions will take
care of them. The vector of asset prices fn+1,m is known at time T from our initial
condition. We can work backward by solving for fn,m(m = 0, 1, .,M) using the
matrix A which comprises of the probabilities, βkm(k = 1, 2, 3) that are known.
These backward iterations leads us to the value of the option obtained at time
zero.The iterations in finding the solution leads to rounding errors as the difference
equation is solved to give the numerical solution. If these rounding errors are not
magnified at each iteration, the system is stable, otherwise it is unstable. When
using finite difference grids, we encounter two kinds of problems, the stability and
accuracy of the method. Our concern is to obtain an accurate solution with as few
computations as possible and thats why stability and accuracy are of importance.

The Stability Issue of Explicit Method

We use the matrix A in (32) to analyze the stability of the explicit finite difference
method, where the βkm , for k = 1, 2, 3 are given by (31). Matrix A is real and
symmetric. If vn is the nth eigen value of A then we have

‖A‖2 = ρ(A) = maxn vn (33)

The eigen values λn are given by



132 AASIYA LATEEF, C.K. VERMA EJMAA-2015/3(2)

λn = β2m + 2[β1mβ3m]1/2cos?
nπ

N
(34)

for n = 1, 2, , N − 1 .Further, we apply the binomial expansion on the square
root part and ignore some terms. Re-arranging we get

λn ≈ 1− 2σ2m2∆tsin2? nπ2N

Therefore the equations are stable when

‖A‖2 = max|1− 2σ2m2∆tsin2 nπ
2N ≤ 1

That is

1 ≤ 1− 2σ2m2∆tsin2 nπ

2N
≤ 1 (35)

for n = 1, 2, ..N − 1 as ∆t→ 0 , N →∞ and sin2 nπ
2N → 1 .

Hence

0 ≤ σ2m2∆t ≤ 1 (36)

In (31), the other condition is that r < σ2m . These conditions are necessary
for the weights βkm(k = 1, 2, 3) to be positive. otherwise, they will be negative.
These weights areprobabilities and should always be non negative. We said that
the main disadvantage of the Explicit method is that some weights are negative
and thus the scheme does not converge to the solution of the differential equation.

The Implicit Finite Difference Method

We express fn+1,m implicitly in terms of the unknowns fn,m−1 , fn,m and
fn,m+1 . We discretize the Black Scholes PDE above using the forward difference
for time and central difference for the stock price to have

fn+1,m − fn,m
∆t

+rm∆S[
fn,m+1 − fn,m−1

2∆S
]+

1

2
σ2m2∆S2[

fn,m+1 − 2fn,m + fn,m−1

∆S2
]

(37)
On rearranging, we get

fn+1,m =
1

1− r∆t
[α1mfn,m−1 + α2mfn,m + α3mfn,m+1] (38)

for n = 0, 1, , N − 1 and m = 1, 2, .,M − 1 .

Similar to the explicit method, the implicit method is accurate to O(∆t,∆S2) .The

parameters α
′

kms for k = 1, 2, 3... are given as

α1m = 1
2rm∆t− 1

2σ
2m2∆t

α2m = 1 + σ2m2∆t

α3m =
−1

2
rm∆t− 1

2
σ2m2∆t (39)

The system of equations can be expressed as a tridiagonal system
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fn+1,0

fn+1,1

...
fn+1,M−1

fn+1,M

 =


α20 α30 0 . . . 0 0 0
α11 α21 α31 . . . 0 0 0

...
...

...
. . . α1M−1 α2M−1 α3M−1

0 0 0 . . . 0 α1M α2M




fn,0
fn,1

...
fn,M−1

fn,M


(40)

Which can be written as Afn,m = fn+1,m for m = 0, 1, ,M . Let fn,m = fn .
We need to solve for fn given matrix A and column vector fn+1 and this implies
that fn = A−1fn+1 .

The matrix A has α2m = 1 + σ2m2∆t in the diagonal which is positive. The
product of the diagonal elements are non zero and therefore the matrix is non sin-
gular. We can solve the system by finding the inverse matrix A−1 .

When we apply the boundary conditions together with (38), this gives rise to
some changes in the elements of matrix A with α20 , α2M = 1 and α30 ,
α1M = 0 .Our initial condition give values for the N th time step, and we solve for
fn at tn in terms of fn+1 at tn+1 .We set the right hand side of the system to
our initial condition and solve the system to produce a solution to the equation for
time step N − 1 .

By repeatedly iterating in such a manner, we can obtain the value of f at any
time step 0, 1, , N − 1 .The implicit method allows us to use a large number of
S-mesh points without having to take ridiculously small time-steps[3].

The Stability Issue of Implicit Method

We analyzed the stability of the explicit method. We apply the same principle
to test for the stability of the implicit finite difference method.

The eigen values λn are given by

λn = α2m + 2[α1mα3m]1/2cos
nπ

N
(41)

for n = 1, , N − 1 .Substituting the values of αs in (39), we have

λn = 1 + σ2m2∆t[1− r2

σ4m2
]1/2[1− 2sin2nπ

2n
] (42)

for n = 1, 2, ., N − 1 . Furthermore, applying the binomial expansion on the
square root part and re-arranging we have

λn ≈ 1 + 2σ2m2∆t− 2σ2m2∆tsin2 nπ
2N

Where there is change of sign due to the truncation of the binomial expansion
.Therefore the equations are stable when

‖A‖2 = max
∣∣1 + 2σ2m2∆t− 2σ2m2∆tsin2 nπ

2N

∣∣ ≤ 1

That is,

− 1 ≤ 1 + 2σ2m2∆t− 2σ2m2∆tsin2 nπ

2N
≤ 1forn = 1, 2, .., N − 1 (43)
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As ∆t→ 0, N →∞ and sin2 (N−1)π
2N → 1 ,(43) reduces to |1| ≤ 1 .

1 + σ2m2∆t ≥ 0 and ‖A‖∞
Therefore by Lax’s equivalence theorem, the scheme is unconditionally stable,

convergent and consistent.

Solving Systems of Linear Equations

We can apply the direct solvers or iterative solvers in solving our system of linear
equations. A direct solver is one that achieves the solution within a finite number
of steps. The popular direct solver is the tridiagonal solver which is the Gaussian
elimination method applied to tridiagonal equations.

An iterative solver achieves a solution on the basis of satisfying an accuracy
criterion. This use of accuracy as a termination criterion gives iterative solvers a
dimension of flexibility and efficiency. The two main types of iterative solvers are
stationary and non stationary methods.

Stationary methods use iteration schemes with parameters that remain fixed
during the iterations. Examples are Jacobi, Gauss-Seidel, and Successive over-
relaxation (SOR) methods.

The matrix A in the implicit method is tridiagonal and has the property that,
only the diagonal, super-diagonal and Subdiagonal elements are non-zero.We can
solve our system of linear equations using either the LU decomposition method or
the SOR method.

The use of these techniques makes implicit method as almost as efficient as
the explicit method in terms of arithmetical operations per time-step. As fewer
time-steps need to be taken, the implicit finite difference method, which is uncon-
ditionally stable, is more efficient over-all than the explicit method[7].

The Crank Nicolson Method

The Crank Nicolson implicit finite difference method is the average of the im-
plicit and explicit methods. The explicit scheme is given by (38) and the implicit
by (30). We take the average of the two equations to get,

fn+1,m−fn,m
∆t + rm∆S

4∆S [fn+1,m+1−fn+1,m+1+fn,m+1−fn,m−1]+ σ2m2∆S2

4∆S2 [fn,m−1−
2fn,m + fn,m+1 + fn+1,m−1 − 2fn+1,m + fn+1,m+1] = 1

2 [rfn,m + rfn+1,m]

On re-arranging we get

[ 1
4rm∆t− 1

4σ
2m2∆t] fn,m−1 [1 + 1

2r∆t+ 1
2σ

2m2∆t]fn,m + [−1
4 σ

2m2∆t−
1
4rm∆t]fn,m+1

= [
1

4
σ2m2∆t−1

4
rm∆t]fn+1,m−1 + [1−1

2
r∆t−1

2
σ2m2∆t]fn+1,m + [

1

4
rm∆t+

1

4
σ2m2∆t]fn+1,m+1

(44)
and we simplify to get
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ρ1mfn,m−1 + ρ2mfn,m + ρ3mfn,m+1 = χ1mfn+1,m−1 + χ2mfn+1,m + χ3mfn+1,m+1

(45)
for n = 0, 1, ., N − 1 and m = 1, 2, ..,M − 1 . Then, the parameters ρkm and

χkm for k = 1, 2, 3 are given as

ρ1m = 1
4rm∆t− 1

4σ
2m2∆t ,

ρ2m = 1 + 1
2r∆t+ 1

2σ
2m2δt ,

ρ3m = −1
4 σ

2m2δt− 1
4rmδt ,

χ1m = 1
4σ

2m2δt− 1
4rmδt ,

χ2m = 1− 1
2rδt−

1
2σ

2m2δt ,

χ3m =
1

4
rmδt+

1

4
σ2m2δt (46)

We express the system of equations in (45) as Cfn = Dfn+1 .This results into
a tridiagonal system given by


ρ20 ρ30 0 . . . 0 0 0
ρ11 ρ21 ρ31 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . ρ1M−1 ρ2M−1 ρ3M−1

0 0 0 . . . 0 ρ1M ρ2M




fn,0
fn,1

...
fn,m−1

fn,M

 =


χ20 χ30 0 . . . 0 0 0
χ11 χ21 χ31 . . . 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . χ1M−1 χ2M−1 χ3M−1

0 0 0 . . . 0 χ1M χ2M




fn+1,0

fn+1,1

...
fn+1,M−1

fn+1,M


The elements of vector fn+1 are known at maturity time T, and we express the

system as fn = C−1Dfn+1 .By repeatedly iterating from time T to time zero, we
obtain the value of f as the price of the option. The diagonal entries of matrix C is
ρ2m = 1 + r∆t/2 +σ2m2 ∆t/2 are always positive and thus the diagonal elements
are non zero. Therefore the matrix is non singular as the diagonal entries are non
zero.

The boundary conditions and (45) results in some entry changes in the tridiag-
onal matrices C and D. For the matrix C, ρ20, ρ2M = 1 and ρ30, ρ1M = 0 . For
the matrix D, χ20, χ2M = 1 and χ30, χ1M = 0 .

Accuracy of Crank Nicolson Method
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The finite difference approximations from the Taylors series expansion leads to
truncation errors and this affects the accuracy of the scheme. The Crank Nicolson
method is more accurate than the Explicit and Implicit methods with an accuracy
of up to O(∆t2,∆S2) . We show this accuracy by equating the central difference
and the symmetric central difference at fn+ 1

2 ,m
= f(t+ ∆t

2 , S) . We expand fn+1,m

in taylor series at fn+1/2,m to yield

fn+1,m = fn+1/2,m +
1

2

∂f

∂t
∆t+O(∆t2) (47)

And expanding fn,m at fn+1/2,m gives

fn,m = fn+1/2,m −
1

2

∂f

∂t
∆t+O(∆t2) (48)

Taking the average of these two equations yields
1
2 [fn,m + fn+1,m] = fn+1/2,m +O(∆t2)

The subscript m was arbitrary and we can write this for subscripts m − 1,m
and m+ 1 as follows

fn+ 1
2 ,m−1−2fn+ 1

2 ,m
+fn+ 1

2 ,m+1 =
1

2
[fn,m−1−2fn,m+fn,m+1]+

1

2
[fn+1,m−1−2fn+1,m+fn+1,m+1]+O(∆t2)

(49)
The right hand side of (49) is an average of two symmetric central differences

centered at grid points n and n+ 1 Dividing by ∆S2 we obtain the equality

∂2f(t+ 1
2∆t, S)

∂S2
=

1

2
[
∂2f(t, S)

∂S2
+
∂2f(t+ ∆t, S)

∂S2
] +O(∆t2,∆S2) (50)

which is the second order partial derivative defined by the symmetric central
difference approximation. The subscript m is arbitrary and we derive the central
difference approximation as follows

fn+1/2,m+1−fn+1/2,m−1 =
1

2
[fn,m+1−fn,m−1]+

1

2
[fn+1,m+1−fn+1,m−1]+O(∆t2)

(51)
We divide the equation by 2∆S to get the equality

∂f(t+ 1
2∆t, S)

∂S
=

1

2
[
∂f(t, s)

∂S
+
∂f(t+ ∆t, S)

∂S
+O(∆t2,∆S2) (52)

which is the first order partial derivative defined by the symmetric central dif-
ference approximation. Now, subtract (48) from (47) to obtain the approximation

of ∂f
∂t centered at (t+ 1

2∆t, S) .

∂f(t+ 1
2 ∆t,S)

∂t =
fn+1,m−fn,m

∆t +O(∆t2)

Hence the Black Scholes PDE centered at (t + 1
2∆t, S) has a finite difference

approximation

fn+1,m−fn,m
∆t + rm∆S

4∆S [fn,m+1 − fn,m−1 + fn+1,m+1 − fn+1,m−1] +
σ2m2∆S2

4∆S2 [fn,m−1 − 2fn,m + fn,m+1 + fn+1,m−1 − 2fn+1,m + fn+1,m+1] = rfn,m
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and re-arranging, we get an equation of the form (45) which is the exact Crank
Nicolson scheme. Therefore, the scheme has a leading error of order O(∆t2∆s2) .The
reason that Finite difference methods are a popular choice for pricing options is that
all options will satisfy the Black-Scholes PDE, or appropriate variants of it.

The difference between each option contract is in determining the boundary
conditions that it satisfies. Finite Difference methods can be applied to American
(early exercise) Options and they can also be used for many exotic contracts [11].

5. Short Comparison of Models

In this section we are going to compare all the models which we have discussed in
previous chapters in descriptive manner. Starting with the first model which is the
well known and popular model among all i.e the Black-Schole Model. Black -Schole
model was designed to calculate the price of European-style options and European
options do not allow for early exercise. This is the main problem with the Black-
Scholes model. The correctness of generated price of BS model is very depended
on the accuracy of the parameters inputs Parameters like time, exercise and strike
price and interest rate. Many have tested it against the option miss-pricing. It does
not account for exercising early to collect interest rate. It also does not account
for exercising early to collect the dividend. And further, as you go out over time,
the model loses its integrity. Next model is the Binomial model, the intent here
was to develop a model that was very similar to the Black-Scholes in its speed and
accuracy, but adjusted for early exercise, and for better integrity out over time.
And thats what the Binomial model does. To this day, there are probably more
people using the Cox, Ross Rubenstein Binomial model than there are using the
Black-Scholes model. But it only recognized two choices to move up and down. So
Trinomial model came with three choices. It does not have to move either up or
down it can move sideways. So Trinomial model was able to account for a stock not
moving. Monte carlo and finite difference methods are also very effective in pricing
options. Monte carlo is extremly accurate but the problem is that it is incredibly
slow. So it is not possible to get all the calculations done fast to suit the needs of
traders that needed instant answers and the Finite difference methods are similar
to binomial and trinomial Sometimes, certain exotic options can be found to have
a closed form solution. A closed form solution does not exist for other methods.
In these cases, the only way a market participant will be able to obtain a price
is by using an appropriate numerical method. The three finite difference methods
i.e The Explicit method, Implicit method and the Crank Nicolson method has ad-
vantages and disadvantages. Crank-Nicolson exhibits the greatest accuracy of the
three for a given domain discretisation. The main disadvantage to using Explicit
Euler is that it is unstable for certain choices of domain discretisation. Though
Implicit Euler and Crank-Nicolson involve solving linear systems of equations, they
are each unconditionally stable with respect to the domain discretisation[13][16].

6. Conclusion

In this review article we explained almost all the models of option pricing and
their working. It gives brief knowledge of the models of option pricing and the
strategy behind each and every model. I have tried to write this review article in
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such a way that those students who are beginners in this field could understand
without having any prior knowledge of mathematical finance, options and its mod-
els. At last this could be right to say, all models plays an eminent role in pricing
options and each and every model has its advantage and disadvantage of use but
its investors duty to make profit by using appropriate model at a perfect time.
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