Electronic Journal of Mathematical Analysis and Applications, Vol. 3(2) July 2015, pp. 147-153. ISSN: 2090-729(online) http://fcag-egypt.com/Journals/EJMAA/

# ON CONVERGENCE THEOREMS IN METRIC SPACES

M. A. AHMED, A. KAMAL , ASMAA M. ABD-ELAL

ABSTRACT. In this paper, we establish some convergence theorems to a unique fixed point for any map in metric spaces. These theorems generalize and unify the results of Ahmed [1] and Ahmed et al [3, 4].

#### 1. INTRODUCTION

In the last two decades, some convergence theorems to a unique fixed point for generalized types of quasi-nonexpansive mappings in metric spaces have appeared (see, e.g., [2, 3], [10, 11, 12]). On the other hand, in 2007, Ahmed [1] introduced a new iteration and proved a convergence theorem of this iteration to a unique fixed point for any map in metric spaces. Also, there are some remarks on convergence theorems such as Kirk [7]. Following [1, 2, 3], let (X, d) be a metric space. Assume that  $T: D \subseteq X \longrightarrow X$  is any map and F(T) is the set of all fixed points of T.

**Definition 1.1** The mapping  $T: D \longrightarrow X$  is said to be quasi-nonexpansive w.r.t. a sequence  $\{x_n\}$  if  $\{x_n\} \subseteq D$  and for all  $n \in N \cup \{0\}$  (N := the set of all positive integers) and for each  $p \in F(T)$ ,  $d(x_{n+1}), p) \leq d(x_n, p)$ . is defined by [2].

As in [2, 3] the quasi-nonexpansiveness w.r.t. a sequence  $\{x_n\} \Rightarrow$  the weak quasinonexpansive w.r.t. a sequence  $\{x_n\}$  but the converse of the last implication may not be true.

**Definition 2.1** A subset D of a normed space X is called balanced (or circled) if  $x \in D$  and  $|\gamma| \leq 1$  implies  $\gamma x \in D$  is defined by [13].

Following [8], we assume that  $L_c := \{x \in X : F(x) \le c\}$ , where  $F : X \to R$ . We use the symbol  $\mu$  to denote the usual Kuratowski measure of noncompactness. For some properties of  $\mu$ , see Zeidler ([14], pages 493-495).

The following definitions is given by Angrisani and Clavelli [6]. **Definition 3.1** Let D be a topological space. The function  $F: X \to R$  is said to be a regular-global-inf (r.g.i) at  $x \in X$  if  $F(x) > \inf_X(F)$  implies that there

<sup>2010</sup> Mathematics Subject Classification. 47H10,54H25.

Key words and phrases. Fixed point, Metric space.

Submitted May 29, 2014.

exists  $\epsilon > 0$  such that  $\epsilon < F(x) - \inf_X(F)$  and a neighborhood  $N_X$  of x such that  $F(y) > F(x) - \epsilon$  for each  $y \in N_x$ . If this condition holds for each  $x \in X$ , then F is said to be an r.g.i on X.

**Definition 4.1** Let *D* be a convex subset of a normed space *X*. A mapping  $T: D \to D$  is called directionally nonexpansive if  $||T(x) - T(m)|| \le ||x - m||$  for each  $x \in D$  and for all  $m \in [x, T(x)]$  where [x, y] denotes the segment joining *x* and *y*; that is,  $[x, y] = \{\lambda x + (1 - \lambda)y : 0 \le \lambda \le 1\}.$ 

## 2. Main Results

First we state and prove our main results as follows. **Theorem 2.1** Let  $\{x_n\}$  be a sequence in a subset D of a metric space (X, d) and  $T: D \longrightarrow X$  any map such that  $F(T) \neq \emptyset$ . Assume that F(T) is a closed set. Then  $\{x_n\}$  converges to a unique point in F(T) if and only if  $\lim_{n \to \infty} ?d(x_n, F(T)) = 0$ . **Proof.** ( $\Rightarrow$ ) Suppose that  $\{x_n\}$  converges to a unique point in F(T). In this case,

From: ( $\Rightarrow$ ) suppose that  $\{x_n\}$  converges to a unique point in F(T). In this case,  $\lim_{n \to \infty} ?x_n$  exists in F(T). From the closedness of F(T), we find that  $\lim_{n \to \infty} ?x_n \in F(T) = \overline{F(T)}$ .

Hence, we obtain that  $d(\lim_{n\to\infty} ?x_n, F(T)) = 0$ . Since  $d : X \times 2^X \longrightarrow [0,\infty)$  is a uniformly continuous (see, [5], page 49), we get that

$$\lim_{n\to\infty}?d(x_n,F(T))=d(\lim_{n\to\infty}?x_n,F(T))=0.$$

 $(\Leftarrow)$  Suppose that  $\lim_{n\to\infty} d(x_n, F(T)) = 0$ . Since d is uniformly continuous, then

$$d(\lim_{n \to \infty} ?x_n, F(T)) = \lim_{n \to \infty} ?d(x_n, F(T)) = 0$$

Therefore, we have that  $\lim_{n \to \infty} ?x_n \in \overline{F(T)}$ . The closedness of F(T) leads to  $\lim_{n \to \infty} ?x_n \in F(T)$ .

**Remark 2.1** Theorem 2.1 generalizes and improves each of Theorem 2.1 [1], Theorem 2.1 [3] and Theorem 2.1 [4] for certain reasons. These reasons are the following:

- (1) The completeness of X is superfluous in Theorem 2.1 [3, 4];
- (2) The existence of  $\lim_{n \to \infty} (\gamma T)^n(x_0), |\gamma| \le 1$ , is superfluous in Theorem 2.1 [1];

(3) The quasi-nonexpansiveness of T w.r.t. a sequence  $\{x_n\}$  (resp., The weak quasinonexpansiveness of T w.r.t. a sequence  $\{x_n\}$ ) in Theorem 2.1 [3] (resp., Theorem 2.1 [4]) is superfluous.

**Corollary 2.1** Let F(T) be nonempty closed set. Then

(i)  $\lim_{n \to \infty} ?d(x_n, F(T)) = 0$  if  $\{x_n\}$  converges to a point in F(T).

EJMAA-2015/3(2)

(ii)  $\{x_n\}$  converges to a point in F(T) if  $\lim_{n\to\infty} d(x_n, F(T)) = 0$ , T is quasi nonexpansive w.r.t  $\{x_n\}$  and X is complete.

**Corollary 2.2** Let  $F(\gamma T), |\gamma| \leq 1$ , be a nonempty set. Then

(i)  $\lim_{n\to\infty} ?d((\gamma T)^n(x_0), F(\gamma T)) = 0$  if  $\{(\gamma T)^n(x_0)\}$  converges to a unique point in  $F(\gamma T)$ ,

(ii)  $\{(\gamma T)^n(x_0)\}$  converges to a unique point in  $F(\gamma T)$  if  $\lim_{n \to \infty} ?d((\gamma T)^n(x_0), F(\gamma T)) = 0$ ,  $T((\gamma T)^{n-1}(x_0))$  for all  $n \in N$  and for some  $x_0 \in D$ ,  $F(\gamma T)$  is a closed set and  $\lim_{n \to \infty} ?(\gamma T)^n(x_0)$  exists.

**Corollary 2.3** Let  $\{x_n\}$  be sequence in a subset D of a metric space (X, d) and let  $T: D \longrightarrow X$  be a map such that  $F(T) \neq \emptyset$ . then

(i)  $\lim_{n \to \infty} d(x_n, F(T)) = 0$  if  $\{x_n\}$  converges to a point in F(T);

(ii)  $\{x_n\}$  converges to a point in F(T) if  $\lim_{n \to \infty} ?d(x_n, F(T)) = 0$  is closed set, T is weakly quasi-nonexpansive with respect to  $\{x_n\}$ , and X is complete.

As a consequence of Theorem 2.1, We state and prove the following theorem

**Theorem 2.2** Let  $\{x_n\}$  be a sequence in a subset D of a metric space (X, d) and  $T: D \longrightarrow X$  any map such that  $F(T) \neq \emptyset$ . Assume that

(i) F(T) is closed set;

(ii)  $d(x_n, F(T))$  is monotonically decreasing sequence in  $[0, \infty)$ ;

(iii)  $\lim_{n \to \infty} ?d(x_n, x_{n+1}) = 0$ ;

(iv) If the sequence  $\{y_n\}$  satisfies  $\lim_{n \to \infty} d(y_n, y_{n+1}) = 0$ , then

$$\liminf_{n \to \infty} d(y_n, F(T)) = 0 \text{ or } \limsup_{n \to \infty} d(y_n, F(T)) = 0.$$

Then  $\{x_n\}$  converges to a unique point in F(T).

**proof.** From (ii) and the boundedness from below by zero of the sequence  $d(x_n, F(T))$ , we find that  $\lim_{n \to \infty} d(x_n, F(T))$  exists and equals say, y. Therefore,

$$\liminf_{n\to\infty} d(y_n, F(T)) = \limsup_{n\to\infty} d(y_n, F(T)) = y.$$

The conditions (iii) and (iv) asserts that  $\liminf_{n \to \infty} 2d(x_n, F(T)) = 0$  or  $\limsup_{n \to \infty} 2d(x_n, F(T)) = 0$ .

From the uniqueness of y, then  $\lim_{n\to\infty} ?d(x_n, F(T)) = 0$ . Applying Theorem 2.1, we conclude that  $\{x_n\}$  converges to unique point in F(T).

**Corollary 2.4** Let  $\{x_n\}$  be a complete metric space and let F(T) be nonempty closed set. Assume that

(i) T is quasi-nonexpansive with respect to  $\{x_n\}$ ;

(ii) 
$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0$$
, equivalently,  $\{x_n\}$  is cauchy sequence;

(iii) if the sequence  $\{y_n\}$  satisfies  $\lim_{n \to \infty} d(y_n, y_{n+1}) = 0$ , then

$$\liminf_{n \to \infty} d(y_n, F(T)) = 0 \text{ or } \limsup_{n \to \infty} d(y_n, F(T)) = 0.$$

Then  $T^n(x_0)$  converges to a point in F(T).

**Corollary 2.5** Let *D* be balanced subset of normed space *X* and let  $F(\gamma T), |\gamma| \leq 1$ , be a nonempty closed set. Assume that

(i)  $T((\gamma T)^{n-1}(x_0)) \in D$  for all  $n \in N$  and  $(\gamma T)$  is quasi-nonexpansive w.r.t.  $\{(\gamma T)^n(x_0)\};$ 

(ii)  $(\gamma T)$  is asymptotically regular at  $x_0 \in D$ ;

(iii) if the sequence  $\{y_n\}$  in D satisfies  $\lim_{n \to \infty} ||(I - \gamma T)(y_n)|| = 0$ , then

$$\liminf_{n} d(y_n, F(\gamma T)) = 0 \quad \text{or} \quad \limsup_{n} d(y_n, F(\gamma T)) = 0.$$

If  $\lim_{n\to\infty} (\gamma T)^n(x_0)$  exists, then  $\{(\gamma T)^n(x_0)\}$  converges to a unique point in  $F(\gamma T)$ .

**Corollary 2.6** Let  $\{x_n\}$  be a sequence in a subset D of a complete metric space (X, d) and  $T: D \longrightarrow X$  be a map such that  $F(T) \neq \emptyset$  is a closed set. Assume that

(i) T is weakly quasi-nonexpansive with respect to  $\{x_n\}$ ;

(ii)  $\{d(x_n, F(T))\}$  is monotonically decreasing sequence in  $[0, \infty)$ ;

- (iii)  $\lim_{n \to \infty} d(x_n, x_{n+1}) = 0$ ;
- (iv) If the sequence  $\{y_n\}$  satisfies  $\lim_{n\to\infty} ?d(y_n, y_{n+1}) = 0$ , then

$$\liminf_{n\to\infty} ?d(y_n,F(T)) = 0 \quad \text{or} \quad \limsup_{n\to\infty} ?d(y_n,F(T)) = 0.$$

Then  $\{x_n\}$  converges to a point in F(T).

From ([8], Corollary 2.4) and Theorem 2.1, we state and prove the following theorem.

EJMAA-2015/3(2)

- (i)  $d(T(x), T^2(x)) \le hd(x, T(x))$  for some  $h \in (0, 1)$  and for all  $x \in X$ ;
- (*ii*)  $\mu(T(L_c)) \leq k\mu(L_c)$  for some k < 1 and for all c > 0;
- (iii) F is an r.g.i. on X;
- $(iv) \quad \{x_n\} \text{ is a sequence in} X \text{such that} \lim_{n \to \infty} d(x_n, Tx_n) = 0.$

Then  $\{x_n\}$  converges to a unique point in F(T).

**Proof.** Using ([8], Corollary 2.4) and the conditions (i), (ii) and (iii) lead to the nonemptyness and closdness of F(T). Since the condition (iv) holds, then  $\lim_{n\to\infty} d(x_n, F(T)) = 0$ . Applying Theorem 2.1, we obtain that  $\{x_n\}$  converges to a unique point in F(T).

**Corollary 2.7** Let  $T: X \longrightarrow X$  be a mapping of a complete metric space (X, d) satisfying

- (i)  $d(T(x), T^2(x)) \le hd(x, T(x))$  for some  $h \in (0, 1)$  and for all  $x \in X$ ;
- (ii)  $\mu(T(L_c)) \leq k\mu(L_c)$  for some k < 1 and for all c > 0;
- (iii) F is an r.g.i. on X;

(iv)  $\{x_n\}$  is a sequence in X such that  $\lim_{n\to\infty} d(x_n, Tx_n) = 0$  and T is weakly quasinonexpansive with respect to  $\{x_n\}$ . Then  $\{x_n\}$  converges to a point F(T).

From ([8], Theorem 3.3) and Theorem 2.2, we state the following theorem without proof.

**Theorem 2.4** Let D be a bounded closed subset of a Banach space X. Suppose  $T: D \to D$  satisfies

- (i)  $||T(x) T^2(x)|| \le h ||x T(x)||$  for some  $h \in (0, 1)$  and for all  $x \in X$ ;
- (*ii*)  $\mu(T(L_c)) \leq k\mu(L_c)$  for some k < 1 and for all c > 0;
- (iii) F is an r.g.i. on X;
- (*iv*)  $\{x_n\} \subseteq D$  satisfies  $\lim_{n \to \infty} ||x_n Tx_n|| = 0.$

Then  $\{x_n\}$  converges to a unique point in F(T).

## 3. Applications

Motivated by the paper of Ahmed [2], we apply Theorem 2.1 and Theorem 2.2 for obtaining convergence theorems in metric spaces.

**Definition 3.1** Let *D* be a nonempty subset of a metric space (X, d). A point  $q \in D \subseteq X$  is closed fixed point of  $T: D \times D \longrightarrow X$  if q = T(q, u) for some  $u \in D$  is defined by [2].

**Theorem 3.1** Let  $\{x_n\}$  be a sequence in a subset D of a metric space (X, d)and let  $T: D \times D \longrightarrow X$  be any map such that  $F(T) \neq \emptyset$ . Assume that F(T) is closed set  $\{x_n\}$  converges to a unique point in F(T) if and only if

$$\liminf_{n \to \infty} d(x_n, F(T)) = 0.$$

**Theorem 3.2** Let  $\{x_n\}$  be a sequence in a subset D of a metric space (X, d)and  $T: D \times D \longrightarrow X$  be any map such that  $F(T) \neq \emptyset$ . Assume that

- (i) F(T) is closed set;
- (ii)  $d(x_n, F(T))$  is monotonically decreasing sequence in  $[0, \infty)$ ;
- (iii)  $\lim_{n \to \infty} ?d(x_n, x_{n+1}) = 0$ ;

(iv) If the sequence  $\{y_n\}$  satisfies  $\lim_{n\to\infty} d(y_n, y_{n+1}) = 0$ , then

$$\liminf_{n\to\infty}?d(y_n,F(T))=0\quad \text{or}\quad \limsup_{n\to\infty}?d(y_n,F(T))=0.$$

Then  $\{x_n\}$  converges to a point in F(T).

#### References

- M. A. Ahmed, A convergence theorem of a sequence of a new iterate to fixed points for any mapping and its applications, Proc. Math. Phys. Soc. Egypt (2007), 1-6.
- [2] M. A. Ahmed, Common fixed points of hybrid maps and applications, Computers and Math. Appl. 60(2010), 1888- 1895.
- [3] M. A. Ahmed and F. M. Zeyada, On convergence of a sequence in complete metric spaces and its applications to some iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 274(1)(2002), 458 - 465.
- [4] M. A. Ahmed and F. M. Zeyada, Some convergence theorems of a sequence in complete metric spaces and its applications, J. Fixed Point Theory and applications, Volume 2010, Article ID 647085, 10 pages.
- [5] J.-P. Aubin, Applied Abstract Analysis, Wiley, 1977.
- [6] M. Angrisani and M. Clavelli, Synthetic approaches to problems of fixed points in metric space, Annali di Matematica pure ed Applicata. Serie Quarta, 170(1996), 1-12.
- [7] W. A. Kirk, Remarks on approximation and approximate fixed points in metric fixed point theory, Ann. Univ. Mariae Curie-Sklodowska Sect. ALI.2 15(1997), 167-178.
- [8] W. A. Kirk and L. M. Saliga, Some results on existence and approximation in metric fixed point theory, J. Computational and Applied Math., 113(1-2)(2000), 141-152.
- [9] E. Kreyszig, Introdctory functional analysis with applications, John Wiley and Sons, 1989.
- [10] L. Qihou, Iterative sequences for asymptotically quasi-nonexpansive mappings, J.Math. Anal. Appl., 259(2001) 1-7.
- [11] L. Qihou, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J.Math. Anal. Appl., 259(2001) 18-24.
- [12] L. Qihou, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member with uniform convex Banach space, J.Math. Anal. Appl., 266(2002) 468-471.
- [13] M. Reed and B. Simon, Methods of modern mathematical physics, I: Functional analysis, Academic Press, Inc. 1972.
- [14] E. Zeidler, Nonlinear functional analysis and its applications. I: Fixed-point theorems, Springer, New York, NY, USA, 1986.

EJMAA-2015/3(2)

M. A. Ahmed

Faculty of Science, Assiut University, Assiut, Egypt  $E\text{-}mail\ address: \texttt{mahmed68@yahoo.com}$ 

A. KAMAL

Faculty of Science, portsaid University, portsaid, Egypt  $E\text{-}mail\ address:\ \texttt{alaa_mohamed1@yahoo.com}$ 

Asmaa M. Abd-Elal

FACULTY OF SCIENCE, PORTSAID UNIVERSITY, PORTSAID, EGYPT  $E\text{-}mail \ address: \texttt{asmaamoh1221@yahoo.com}$