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EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS

FOR A SYSTEM OF DIFFERENCE EQUATIONS WITH FINITE

DELAY

ERNEST YANKSON

Abstract. We consider a special class of system of delay difference equations.

The fundamental matrix solution together with Floquet theory is used to con-
vert the system of equations into an equivalent summation equation. Fixed
point theorems due to Krasnoselski and Banach are then used to show the
existence of a unique periodic solution of the system of difference equations.

1. Introduction

The study of the existence of periodic solutions for difference equations have
gained the attention of many researchers in recent times, see for example [1] [2],[3],[4],
[5],[7], [8], [9], [10], [11], [12], [13] and [15].

In this paper we consider the system of difference equations

∆x(n) = A(n)x(n− τ), (1)

where A(n) ∈ Rs×s is a nonsigular matrix and τ is a positive constant. We are
mainly motivated by the work of Raffoul in [13] where he obtained sufficient con-
ditions for the existence and uniqueness of a periodic solution of a scalar version of
(1). Thus, in this paper we establish sufficient conditions for (1) to have a unique
periodic solution.

Floquet theory offers a lot of results on the periodicity of system (1) when τ = 0.
Throughout this paper ∆ denotes the forward difference operator ∆x(n) = x(n +
1) − x(n) for any sequence {x(n), n = 0, 1, 2, ...}. Also, we define the operator E
by Ex(n) = x(n+ 1). For more on difference calculus we refer the reader to [6].
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2. Existence and uniqueness

We assume in this section that there exist a nonsingular s× s matrix G(n) such
that

∆x(n) = G(n)x(n)−∆n

n−1∑
k=n−τ

G(k)x(k) +
[
A(n)−G(n− τ)

]
x(n− τ). (2)

Lemma 1 Equation (1) is equivalent to (2).

Proof. By taking the difference with respect to n of the summation term in
(2) we obtain

∆n

n−1∑
k=n−τ

G(k)x(k) = G(n)x(n)−G(n− τ)x(n− τ). (3)

Substituting (3) into (2) gives

∆x(n) = G(n)x(n)−G(n)x(n) +G(n− τ)x(n− τ) +
[
A(n)−G(n− τ)

]
x(n− τ)

= A(n)x(n− τ).

This completes the proof.
Let T be an integer such that T ≥ 1. Let PT be the set of all real-valued s-vector

sequences {x(n), n = 0, 1, 2, ...}, periodic in n of period T. Then (PT , ||.||) is a
Banach space with the maximum norm

||x(.)|| = max
n∈[0,T−1]

|x(n)|,

where |.| denotes the infinity norm for x ∈ Rs. Also, if A is an s × s real matrix,
then we define the norm of A by |A| = max1≤i≤s

∑s
j=1 |aij |.

Definition 2 If the matrix G(n) is periodic of period T, then the linear system

∆x(n) = G(n)x(n) (4)

is said to be noncritical with respect to T if it has no periodic solution of period T
except the trivial solution x = 0.

Throughout this paper it is assumed that system (4) is noncritical. The funda-
mental matrix of (4) has the following properties:
(i) det Φ(n) ̸= 0.
(ii) There exists a constant matrix B such that Φ(n − T + 1) = Φ(n + 1)B−T , by
Floquet theory.
(iii) System (4) is noncritical if and only if det(I − Φ(n)) ̸= 0.

In this paper we assume that

A(n+ T ) = A(n), G(n+ T ) = G(n) (5)

We now state and prove in the following lemma one of the fundamental proper-
ties of the difference operator.

Lemma 3 For functions y(n) and z(n) of a real variable n,

∆(y(n)z(n)) = Ey(n)∆z(n) + [∆y(n)]z(n). (6)
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Proof.

∆(y(n)z(n)) = y(n+ 1)z(n+ 1)− y(n)z(n)

= y(n+ 1)z(n+ 1)− y(n+ 1)z(n) + y(n+ 1)z(n)− y(n)z(n)

= y(n+ 1)[z(n+ 1)− z(n)] + [y(n+ 1)− y(n)]z(n)

= Ey(n)∆z(n) + [∆y(n)]z(n).

Lemma 4 Suppose (5) hold. Suppose further that Φ(0) = I. If x(n) ∈ PT then
x(n) is a solution of (1) if and only if

x(n) = −
n−1∑

k=n−τ

G(k)x(k)

+ Φ(n)(Φ−1(T )− I)−1
n+T−1∑
u=n

Φ−1(u+ 1)
[
A(u)x(u− τ)− G(u)

u−1∑
k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)
]
. (7)

Proof. Let x(n) ∈ PT be a solution of (1) and Φ(n) is a fundamental system
of solutions of (2). First we write (1) as

∆[x(n) +
n−1∑

k=n−τ

G(k)x(k)] = G(n)[x(n) +
n−1∑

k=n−τ

G(k)x(k)]

− G(n)

n−1∑
k=n−τ

G(k)x(k) +A(n)x(n− τ)

− G(n− τ)x(n− τ).

Since Φ(n)Φ−1(n) = I, it follows from Lemma 3 that

0 = ∆(Φ(n)Φ−1(n)) = Φ(n+ 1)∆Φ−1(n) + [∆Φ(n)]Φ−1(n)

= Φ(n+ 1)∆Φ−1(n) + [G(n)Φ(n)]Φ−1(n)

= Φ(n+ 1)∆Φ−1(n) +G(n).

This implies that

∆Φ−1(n) = −Φ−1(n+ 1)G(n).
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If x(n) is a solution of (1) with x(0) = x0, then

∆
[
Φ−1(n)

(
x(n) +

n−1∑
k=n−τ

G(k)x(k)
)]

= Φ−1(n+ 1)∆
(
x(n) +

n−1∑
k=n−τ

G(k)x(k)
)

+ [∆Φ−1(n)][x(n) +

n−1∑
k=n−τ

G(k)x(k)]

= Φ−1(n+ 1)
[
G(n)[x(n) +

n−1∑
k=n−τ

G(k)x(k)]

− G(n)
n−1∑

k=n−τ

G(k)x(k) +A(n)x(n− τ)

− G(n− τ)x(n− τ)
]

− [Φ−1(n+ 1)G(n)][x(n) +
n−1∑

k=n−τ

G(k)x(k)]

= Φ−1(n+ 1)
[
A(n)x(n− τ)− G(n)

n−1∑
k=n−τ

G(k)x(k)

− G(n− τ)x(n− τ)
]
.

Summing the above equation from 0 to n− 1 gives,

x(n) = −
n−1∑

k=n−τ

G(k)x(k) + Φ(n)
(
x0 +

−1∑
k=−τ

G(k)x(k)
)

+ Φ(n)

n−1∑
u=0

Φ−1(u+ 1)
[
A(u)x(u− τ)− G(u)

u−1∑
k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)
]
.

(8)

Since x(T ) = x0 = x(0), using (8) we obtain

x0 +
−1∑

k=−τ

G(k)x(k) = (I − Φ(T ))−1
T−1∑
u=0

Φ(T )Φ−1(u+ 1)[A(u)x(u− τ)− G(u)
u−1∑

k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)]. (9)

Substituting (9) into (8) gives

x(n) = −
n−1∑

k=n−τ

G(k)x(k)

+ Φ(n)(I − Φ(T ))−1
T−1∑
u=0

Φ(T )Φ−1(u+ 1)[A(u)x(u− τ)− G(u)
u−1∑

k=u−τ

G(k)x(k)
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− G(u− τ)x(u− τ)]

+ Φ(n)
n−1∑
u=0

Φ−1(u+ 1)
[
A(u)x(u− τ)− G(u)

u−1∑
k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)
]
.

(10)

We will now show that (10) is equivalent to (7). Since

(I − Φ(T ))−1 = (Φ(T )(Φ−1(T )− I))−1 = (Φ−1(T )− I)−1Φ−1(T ),

equation (10) becomes

x(n) = −
n−1∑

k=n−τ

G(k)x(k)

+ Φ(n)(Φ−1(T )− I)−1
T−1∑
u=0

Φ−1(u+ 1)[A(u)x(u− τ)− G(u)

u−1∑
k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)]

+ Φ(n)
n−1∑
u=0

Φ−1(u+ 1)
[
A(u)x(u− τ)− G(u)

u−1∑
k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)
]

= −
n−1∑

k=n−τ

G(k)x(k)

+ Φ(n)(Φ−1(T )− I)−1
{ T−1∑

u=0

Φ−1(u+ 1)[A(u)x(u− τ)− G(u)
u−1∑

k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)]

+ (Φ−1(T )− I)
n−1∑
u=0

Φ−1(u+ 1)
[
A(u)x(u− τ)− G(u)

u−1∑
k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)
]}

= −
n−1∑

k=n−τ

G(k)x(k)

+ Φ(n)(Φ−1(T )− I)−1
{ T−1∑

u=n

Φ−1(u+ 1)[A(u)x(u− τ)− G(u)
u−1∑

k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)]

+

n−1∑
u=0

Φ−1(T )Φ−1(u+ 1)
[
A(u)x(u− τ)− G(u)

u−1∑
k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)
]}
.
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By letting u = s− T, the above expression implies

x(n) = −
n−1∑

k=n−τ

G(k)x(k)

+ Φ(n)(Φ−1(T )− I)−1
{ T−1∑

u=n

Φ−1(u+ 1)[A(u)x(u− τ)− G(u)
u−1∑

k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)]

+
n+T−1∑
s=T

Φ−1(T )Φ−1(s− T + 1)
[
A(s− T )x(s− T − τ)

− G(s− T )
s−T−1∑

k=s−T−τ

G(k)x(k)−G(s− T − τ)x(s− T − τ)
]}
. (11)

By (ii) we have Φ(n−T+1) = Φ(n+1)B−T and Φ−1(T ) = B−T .Hence Φ−1(T )Φ−1(s−
T + 1) = Φ−1(s+ 1). Consequently, equation (11) becomes

x(n) = −
n−1∑

k=n−τ

G(k)x(k)

+ Φ(n)(Φ−1(T )− I)−1
{ T−1∑

u=n

Φ−1(u+ 1)[A(u)x(u− τ)− G(u)
u−1∑

k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)]

+
n+T−1∑
u=T

Φ−1(u+ 1)
[
A(u)x(u− τ)− G(u)

u−1∑
k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)
]}

= −
n−1∑

k=n−τ

G(k)x(k)

+ Φ(n)(Φ−1(T )− I)−1
n+T−1∑
u=n

Φ−1(u+ 1)[A(u)x(u− τ)− G(u)

u−1∑
k=u−τ

G(k)x(k)

− G(u− τ)x(u− τ)].

This completes the proof.

Define a mapping H by

(Hφ)(n) = −
n−1∑

k=n−τ

G(k)φ(k)
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+ Φ(n)(Φ−1(T )− I)−1
n+T−1∑
u=n

Φ−1(u+ 1)[A(u)φ(u− τ)

− G(u)

u−1∑
k=u−τ

G(k)φ(k)−G(u− τ)φ(u− τ)].

(12)

It is clear that H : PT → PT by the way it was constructed in Lemma 4.

Next we state Krasnosel’skii’s fixed point theorem which is the main mathemat-
ical tool that we will use to prove the existence of a periodic solution. We refer the
reader to [14] for the proof of Krasnosel’skii’s fixed point theorem.

Theorem 5 [Krasnosel’skii] Let M be a closed convex nonempty subset of a
Banach space (B, ||.||). Suppose that C and B map M into B such that
(i) C is continuous and CM is contained in a compact set,
(ii) B is a contraction mapping.
(iii) x, y ∈ M, implies Cx+By ∈ M.
Then there exists z ∈ M with z = Cz +Bz.

Next we define C,B : PT → PT by

(Bφ)(n) = −
n−1∑

k=n−τ

G(k)φ(k), (13)

and

(Cφ)(n) = Φ(n)(Φ−1(T )− I)−1
n+T−1∑
u=n

Φ−1(u+ 1)[A(u)φ(u− τ)− G(u)
u−1∑

k=u−τ

G(k)φ(k)

− G(u− τ)φ(u− τ)].

(14)

It follows from (13) and (14) that (Hφ)(n) = (Bφ)(n) + (Cφ)(n).

Lemma 6 Suppose the assumptions of Lemma 4 hold. If C is defined by (14),
then C is continuous and the image of C is contained in a compact set.

Proof. Let φ,ψ ∈ PT . Given ϵ > 0, take δ = ϵ/N with N = rT (|A|+|G|2τ+|G|)
where

r = max
n∈[0,T ]

(
max

n≤u≤n+T−1
|[Φ(u+ 1)(Φ−1(T )− I)Φ−1(n)]−1|

)
. (15)

Now for ∥φ− ψ∥ < δ, we have that

∥Cφ(.)− Cψ(.)∥ ≤ r
T−1∑
u=0

[
|A|∥φ− ψ∥+ |G|2τ∥φ− ψ∥+ |G|∥φ− ψ∥

]
≤ N∥φ− ψ∥ < ϵ.

Thus, showing that C is continuous.
Next, we show that C maps bounded subsets into compact sets. Let J be given.
Consider S = {φ ∈ PT : ||φ|| ≤ J} and Q = {(Cφ)(n) : φ ∈ S}. Then S is a
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subset of RT which is closed and bounded thus compact. Since C is continuous in
φ it maps compact sets into compact sets. Therefore Q = C(S) is compact. This
completes the proof.

Lemma 7 Suppose that

|G|τ < 1,

then B is a contraction.

Proof. Let B be defined by (13). Then for φ,ψ ∈ PT , we have

||Bφ(.)−Bψ(.)|| = max
n∈[0,T−1]

|Bφ(n)−Bψ(n)|

≤ τ |G|||φ− ψ||.

Thus showing that B defines a contraction mapping.

Theorem 8 Suppose the hypothesis of Lemma 6 and Lemma 7 holds. Suppose
further that (5) hold. Let r be given by (15). Moreover, let γ be a positive constant
satisfying the inequality

rT
[
|A|+ |G|2τ + |G|

]
γ + τ |G|γ ≤ γ. (16)

Let M = {φ ∈ PT : ||φ|| ≤ γ}. Then equation (1) has a T -periodic solution in M.

Proof. Define M = {φ ∈ PT : ||φ|| ≤ γ}. By lemma 6, C is continuous and CM
is contained in a compact set. It follows also from Lemma 7 that the mapping B is
a contraction and it is not difficult to see that B : PT → PT . Finally we will show
that if φ,ψ ∈ M, we have ||Cφ+Bψ|| ≤ γ. Let φ,ψ ∈ M with ||φ||, ||ψ|| ≤ γ. Then

||Cφ(.) +Bψ(.)|| ≤ r
T−1∑
u=0

[
|A|||φ||+ τ |G|2||φ||+ |G|||φ||

]
+

n−1∑
k=n−τ

|G|||ψ||

≤ rT
[
|A|+ τ |G|2 + |G|

]
γ + τ |G|γ ≤ γ.

Therefore, all the conditions of Krasnoselskii’s theorem are satisfied. Thus, a fixed
point z exist in M such that z = Bz+Cz. By Lemma 4, this fixed point is a solution
of (1). Hence equation (1)has a T -periodic solution.

Theorem 9 Suppose that (5) hold. Suppose also that

rT
[
|A|+ |G|2τ + |G|

]
+ τ |G| ≤< 1.

Then equation (1) has a unique T -periodic solution.

Proof. Let φ,ψ ∈ PT . Using (12) we obtain

||Hφ(.)−Hψ(.)|| ≤
(
rT

[
|A|+ |G|2τ + |G|

]
+ τ |G|

)
||φ− ψ||.

Thus, by the contraction mapping principle, equation (1) has a unique T -periodic
solution.



EJMAA-2015/3(2) EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS 201

References

[1] R.P. Agarwal , C. Cuevas and M. Frasson , Semilinear functional difference equations with

infinite delay, Mathematical and Computer Modelling, 55(2012), No 3-4, pp. 1083-1105.
[2] A. Ardjouni, and A. Djoudi, Periodic solutions in totally nonlinear difference equations with

functional delay, Studia Universitatis Babes-Bolyai, 56(2011), No. 3, 7?17
[3] F. Dannan, S. Elaydi, and P. Liu, Periodic solutions of difference equations, Journal of

Difference Equations Applications, 6(2)(2000), 203-232.
[4] M. Gil’, and S.S. Cheng, Periodic solutions of a perturbed difference equation, Journal of

Applied Analysis, 76 (2000) 241-248.
[5] Y. Hamaya, Existence of an almost periodic solution in a difference equation with infnite

delay, Journal of Difference Equations and Applications, 9 (2) (2003) 227-237.
[6] W.G. Kelly, and A.C. Peterson, Difference Equations: An introduction with applications,

Academic press, 2001.
[7] Y. Liu, Periodic solution of nonlinear functional difference equation at nonresonance case,

Journal of Mathematical Analysis and Applications, 327(2007),801-815.
[8] M. Ma, and J.S. Yu, Existence of multiple positive periodic solutions for nonlinear functional

difference equations, Journal of Mathematical Analysis Applications, 305(2005),483-490.
[9] M.R. Maroun, and Y.N. Raffoul, Periodic solutions in nonlinear neutral difference equations

with functional delay, Journal of Korean Mathematical Society, 42 (2005), No. 2, pp. 255-268.
[10] S. Padhi, S. Pati and S. Srivastava, Multiple positive periodic solutions for nonlinear first order

functional difference equations, International Journal of Dynamical Systems and Differential

Equations , Vol. 2, Nos.1/2, 2009.
[11] Y.N. Raffoul, Positive periodic solutions of nonlinear functional difference equation, Elec-

tronic Journal of Differential Equations, 2002(2002),No.55,1-8.
[12] Y.N. Raffoul, Existence of periodic solutions in neutral nonlinear difference systems with

delay, Journal of Differential Equations and Applications, 11(13)(2005), 1109-1118.
[13] Y.N. Raffoul, Stability and periodicity in discrete delay equations, Journal of Mathematical

Analysis and Applications, 324(2006), 1356-1362.
[14] D.R. Smart, Fixed Point Theorems, Cambridge University Press, 1980.

[15] Z. Zeng, Existence of positive periodic solutions for a class of nonautonomous difference
equations, Electronic Journal of Differential Equations, 2006(2006),N0.3,1-18.

ERNEST YANKSON
Department of Mathematics and Statistics, University of Cape Coast, Cape Coast,
Ghana

E-mail address: ernestoyank@gmail.com


