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NUMERICAL SOLUTION OF AN UNSTEADY MHD FLOW OF

A ROTATING FLUID PAST AN INFINITE VERTICAL POROUS

PLATE IN THE PRESENCE OF RADIATION AND CHEMICAL

REACTION

K. ANITHA

Abstract. Finite element solution of an unsteady hydromagnetic natural con-

vection heat and mass transfer flow of a rotating, incompressible, viscous
Boussinesq fluid is presented in this study in the presence of radiative heat

transfer and a first order chemical reaction between the fluid and the diffusing

species. The Rosseland approximation for an optically thick fluid is invoked
to describe the radiative flux. Results obtained show that a decrease in the

temperature boundary layer occurs when the Prandtl number and the radia-
tion parameter are increased and the flow velocity approaches steady state as

the time parameter is increased. These findings are in quantitative agreement

with earlier reported studies.

1. Introduction

The phenomenon of free convection arises in the fluid when temperature changes
cause density variation leading to buoyancy forces acting on the fluid elements. Con-
siderable attention has been given to the unsteady free convection flow of viscous
incompressible, electrically conducting fluid in presence of applied magnetic field in
connection with the theories of fluid motion in the liquid core of the Earth and also
meteorological and oceanographic applications. It is worth mentioning that MHD
is now undergoing a stage of great enlargement and differentiation of subject matter.
These new problems draw the attention of the researchers due to their varied signif-
icance, in liquid metals, electrolytes and ionized gases etc. In geophysics, it finds its
applications in the design of MHD generators and accelerators, underground water
energy storage system etc. It is worth mentioning that MHD is now undergoing
a stage of great enlargement and differentiation of subject matter. The flow of
an incompressible Boussinesq fluid in the presence of rotation has applications in
space science and engineering fluid dynamics. Bestman and Adjepong [3] studied
the unsteady hydro magnetic free convection flow with radiative heat transfer in
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a rotating fluid. Free convection heat transfer to steady radiating non Newto-
nian MHD flow past a vertical porous plate was studied by Bestman [4]. Azzam
[2] investigated the effect of Radiation on the MHD mixed free fixed convective
flow past a semi infinite moving vertical plate for high temperature differences.
Elbarbary et al.[8] investigated finite difference method for the effect of variable
viscosity on magneto micro polar fluid flow with radiation. Helmy[9] studied an
Unsteady free convection flow past a vertical porous plate. Unsteady magnetohy-
drodynamic micro polar fluid flow and heat transfer over a vertical porous medium
in the presence of thermal and mass diffusion with constant heat source was stud-
ied by Ibrahim[10]. Jha [11] studied MHD free convection and mass transfer flow
through a porous medium but did not consider the effect of radiation which is of
great relevance to astrophysical and cosmic studies. Effects of chemical reaction,
heat and mass transfer along a wedge with heat source and concentration in the
presence of suction or injection was explored by Kandaswamy[12]. The effects of
Hall current on hydromagnetic free convection with mass transfer in a rotating fluid
was studied by Agrawal et al. [1]. Recently, Chamkha [5] investigated unsteady
convective heat and mass transfer past a semi infinite permeable moving plate
with heat absorption where it was found that increase in solutal Grashof number
enhanced the concentration buoyancy effects leading to an increase in the velocity.
In other recent study Ibrahim et al. [11] investigated unsteady magnetohydrody-
namic micro polar fluid flow and heat transfer over a vertical porous plate through a
porous medium in the presence of thermal and mass diffusion with a constant heat
source. Chamkha and Cookey [6],[7], give a good review on MHD flows through a
porous medium. Ogulu[14] investigated on MHD free convection and mass trans-
fer flow with radiative heat transfer. Singh eta.l [15] Studied the Finite difference
analysis of unsteady hydromagnetic free convection flow with constant heat flux
Motivated by the work above, objective of the present work is to study the effects
of Chemical reaction on an unsteady magnetohydrodynamic flow of a rotating fluid
past a vertical porous plate in the presence of radiation. Hence, the purpose of this
study is to extend Muthucumaraswamy and Ganesan [13] to study the unsteady
problem which includes internal thermal radiation and chemical reaction for first
order. The governing equations are solved numerically using a very efficient finite
element method known as Galerkin method. The results obtained under special
cases are then compared with those of Muthucumaraswamy and Ganesan [13] in
absence of thermal radiation by using Laplace transform technique and found to
agree very favorably. In this study, the effects of different flow parameters encoun-
tered in the equations are also studied. The problem is solved numerically using the
Galerkin finite element method, which is more economical from the computational
view point.

2. Mathematical Formulation

We consider in three dimensions the unsteady motion of an incompressible elec-
trically conducting viscous fluid which moves in its own plane with velocity U0 and
rotates with angular velocity Ω as in [4]. We assume a uniform magnetic field B0

applied in the direction of the flow fixed relative to the plate. We also assume that
induced magnetic fields are negligible in comparison with the applied field. Fur-
ther, we assume no applied voltage present which means no electric field present



204 K. ANITHA EJMAA-2015/3(2)

and viscous dissipation heating is absent in the energy equation. With these as-
sumptions and those usually associated with the Boussinesq approximations, the
proposed governing equations are

∂u′
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− 2Ω′v′ = υ
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We now introduce the following non−dimensional quantities and parameters
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Where u, v, Velocity components; q,Complex velocity; U0,Scale of free stream veloc-
ity; y,Coordinate; T ,Dimensional temperature; C ′,Dimensional species concentra-
tion; t,Time; k,Thermal conductivity; Dm,Solutal diffusivity; ρ,density; Cp,Specific
heat at constant pressure; ε,Time corrective parameter; β,Coefficients of volume ex-
pansion due to temperature; β∗,Coefficient of volume expansion due to concentra-
tion; M2, Hartmann number; Pr,Prandtl number; Sc,Schmidt number; kr,Chemical
reaction constant; K,Porosity parameter; θ,nondimensional temperature; C,Nondimensional
species concentration; g,Acceleration due to gravity; Gr,Grashof number; Gc,Modified
Grashof number; σ,Electrical conductivity; υ,Kinematic coefficient of viscosity;
Ω,Angular velocity; B0,Magnetic field strength; qr,Radiative flux vector;
Subscripts: w,Wall condition; ∞,Free stream condition.

Introducing equation (6) into equations (1)-(5) we obtain
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We now find it convenient to combine equations (1) and (2) into a single equation.
We multiply equation (2) by i and add the resultant to equation (1) to obtain

∂q

∂t
+

(
2iΩ +M2 +

1

K

)
q =

∂2q

∂y2
+Grθ +GcC (11)

q = u+ iv and i = −1
Further, for the radiative heat flux in equation (9) we invoke the differential ap-
proximation, Elbarbary and Elgazery [8]

∇.qr = 4(T − Tw)

∫ ∞
0

α2

(
∂β

∂T

)
dλ (12)

For an optically thick fluid, as noted in Azzam [2] , in addition to emission there is
also self absorption and usually the absorption coefficient is wavelength dependent
and large (as noted in [4] ) so we can adopt the Rosseland approximation of equation
(12) where the radiative flux vector qr is given by

qr = −4σ∗

3α

∂T 4

∂y
(13)

Where σ∗ -the Stefan-Boltzmann constant and α - the mean absorption coefficient.
It should be noted that by using Rosseland approximation, the present analysis
is limited to optically thick fluids. If temperature differences within the flow are
sufficient, small, then equation (13) can be linearised by expanding T 4 in the Taylor
series about T∞, which after neglecting higher order terms take the form

T 4 ∼= 4T 3
∞T − 3T 4

∞ (14)

Substituting equation (14) into equation (9) we obtain

∂θ
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=

(
1 +N

Pr

)
∂2θ

∂y2
(15)

Where N = 3αk
4σ∗T 3

∞
is the radiation parameter.

The initial and boundary conditions are now

t ≤ 0 : q(y, t) = θ(y, t) = C(y, t) = 0

t > 0 :

{
q(0, t) = q0 θ(0, t) = 1 C(0, t) = 1
q(∞, t)→ 0 θ(∞, t)→ 0 C(∞, t)→ 0

(16)

The mathematical statement of the problem is now complete.

3. Method of Solution

By applying Galerkin finite element method for equation (11) over the element
(e), (yj ≤ y ≤ yk) is∫ yk

yj

{
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∂y2
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]}
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where P = (Gr)θ + (Gc)C, R = 2iΩ +M2 + 1
K

Integrating the first term in equation (17) by parts one obtains
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Neglecting the first term in equation (18), one gets:∫ yk
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simplifying we get
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Where prime and dot denotes differentiation with respect to y and time t respec-
tively. Assembling the element equations for two consecutive elements (yi−1 ≤ y ≤
yi) and (yi ≤ y ≤ yi+1) following is obtained:
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Now put row corresponding to the i to zero,from equation (19) the difference
schemes with l(e) = h is:

1

h2
[−qi−1 + 2qi − qi+1] +

1

6
[q̇i−1 + 4q̇i + q̇i+1] +

R

6
[qi−1 + 4qi + qi+1] = P (20)

Applying the trapezoidal rule,following system of equations in Crank-Nicholson
method are obtained:

A1q
n+1
i−1 +A2q

n+1
i +A3q

n+1
i+1 = A4q

n
i−1 +A5q

n
i +A6q

n
i+1 + P ∗ (21)

Now from equations (10) and (15) following equations are obtained:

B1θ
n+1
i−1 +B2θ

n+1
i +B3θ

n+1
i+1 = B4θ

n
i−1 +B5θ

n
i +B6θ

n
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n
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n
i + C6C

n
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Where A1 = 2− 6r+Rk,A2 = 8 + 12r+ 4Rk,A3 = 2− 6r+Rk,A4 = 2 + 6r−Rk
A5 = 8− 12r − 4Rk,A6 = 2 + 6r −Rk
B1 = 2(Pr)− 6(1 +N)r,B2 = 8(Pr) + 12(1 +N)r,B3 = 2(Pr)− 6(1 +N)r,
B4 = 2(Pr) + 6(1 +N)r,B5 = 8(Pr)12(1 +N)r,B6 = 2(Pr) + 6(1 +N)r,
C1 = 2(Sc)−6r+kr(Sc)k,C2 = 8(Sc)+12r+4kr(Sc)k,C3 = 2(Sc)−6r+kr(Sc)k,
C4 = 2(Sc)+6r−kr(Sc)k,C5 = 8(Sc)−12r−4kr(Sc)k,C6 = 2(Sc)+6r−kr(Sc)k,
P ∗ = 12phk == 12hk(Gr)θ + 12hk(Gc)C
Here r = k

h2 and h, k are mesh sizes along y direction and time direction respectively.
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Index i refers to space and j refers to the time. In the equations (21),(22) and
(23),taking i = 1(1)n and using boundary conditions (16), then the following system
of equations are obtained:

AiXi = Bi, i = i(1)3 (24)

where Ai’s are matrices of order n and Xi, Bi’s are column matrices having n com-
ponents. The solutions of above system of equations are obtained by using Thomas
algorithm for velocity, temperature and concentration. Also, numerical solutions
for these equations are obtained by C programme. In order to prove the conver-
gence and stability of Galerkin finite element method, the same C programme was
run with smaller values of h and k no significant change was observed in the values
of q, θ and C Hence the Galerkin finite element method is stable and convergent.
Skin friction and Rate of heat transfer

The expression for skin friction coefficient(τ)at the plate is τ =

(
∂q

∂y

)
y=0

(25)

The rate of Heat transfer coefficient (Nu) at the plate isNu = −
(
∂θ

∂y

)
y=0

(26)

The rate of Mass transfer coefficient (Sh) at the plate isSh = −
(
∂C

∂y

)
y=0

(27)

4. Results and Discussion

The problem of radiative heat transfer to unsteady hydromagnetic flow involving
heat and mass transfer is addressed in this study. Numerical calculations have been
carried out for the non dimensional Temperature (θ), Concentration (C), Complex
velocity (q) keeping the other parameters of the problem fixed. The solution ob-
tained for the velocity is complex and only the real part of the complex quantity is
invoked for the numerical discussion with the help of Abramowitcz and Stegun [1].
Numerical calculations of these results are presented graphically in figures (1)-(10).
These results show the effect of material parameters on the temperature distribu-
tion, concentration profiles, complex velocity and the shear stress at the wall. And
the results of skinfriction (τ) due to complex velocity, Rate of heat transfer (Nu)
due to temperature and mass transfer (Sh) due to concentration are presented in
tabular form. To find out the solution of this problem, we have placed an infinite
vertical plate in a finite length in the flow. Hence, we solve the entire problem in
a finite boundary. However, in the graphs, the y values vary from 0 to 4 and the
complex velocity, temperature, and concentration tend to zero as y tends to 4. This
is true for any value of y. Thus, we have considered finite length.

The temperature and the species concentration are coupled to the velocity via
Grashof number (Gr) and Modified Grashof number (Gc) as seen in equation (11).
For various values of Grashof number and Modified Grashof number, the velocity
profiles u are plotted in figures (1) and (2). The Grashof number (Gr) signifies the
relative effect of the thermal buoyancy force to the viscous hydrodynamic force in
the boundary layer. As expected, it is observed that there is a rise in the veloc-
ity due to the enhancement of thermal buoyancy force. Also, as (Gr) increases,
the peak values of the velocity increases rapidly near the porous plate and then
decays smoothly to the free stream velocity. The Modified Grashof number (Gr)
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defines the ratio of the species buoyancy force to the viscous hydrodynamic force.
As expected, the fluid velocity increases and the peak value is more distinctive
due to increase in the species buoyancy force. The velocity distribution attains a
distinctive maximum value in the vicinity of the plate and then decreases properly
to approach the free stream value. It is noticed that the velocity increases with
increasing values of Modified Grashof number (Gc).

Figure (3) depicts the effect of Prandtl number on complex velocity profiles in
presence of foreign species such as Mercury (Pr = 0.025), Air (Pr = 0.71), Water
(Pr = 7.00) and Methanol (Pr = 11.62) are shown in figure 3. We observe that
from figure 3, the complex velocity decreases with increasing of Prandtl number
P (r). The effects of the thermal radiation parameter (N) on the complex velocity
and temperature profiles in the boundary layer are illustrated in figures (4) and (8)
respectively. Increasing the thermal radiation parameter (N) produces significant
increase in the thermal condition of the fluid and its thermal boundary layer. This
increase in the fluid temperature induces more flow in the boundary layer causing
the velocity of the fluid there to increase. The nature of complex velocity profiles
in presence of foreign species such as Hydrogen (Sc = 0.22), Helium (Sc = 0.30),
Oxygen (Sc = 0.60) and Water vapour (Sc = 0.66) are shown in figure (5). The
flow field suffers a decrease in complex velocity at all points in presence of heavier
diffusing species. Figure (7) depicts that the temperature profiles (θ) against y tak-
ing different values of Prandtl number (Pr). The thermal boundary layer thickness
is greater for fluids with small Prandtl number. The reason is that smaller values
of Prandtl number are equivalent to increasing thermal conductivity and therefore
heat is able to diffuse away from the heated surface more rapidly than for higher
values of (Pr) .

Figure (9) shows the concentration field due to variation in Schmidt number
(Sc) for the gasses Hydrogen, Helium, Water vapour and Oxygen. It is observed
that concentration field is steadily for Hydrogen and falls rapidly for Water vapour
and Oxygen in comparison to Helium. Thus Hydrogen can be used for maintaining
effective concentration field and Helium can be used for maintaining normal con-
centration field. Figures (6) and (10) display the effects of the chemical reaction
parameter (kr) on the complex velocity and concentration profiles, respectively. As
expected, the presence of the chemical reaction significantly affects the concentra-
tion profiles as well as the velocity profiles. It should be mentioned that the studied
case is for a destructive chemical reaction (kr). In fact, as chemical reaction (kr)
increases, the considerable reduction in the velocity profiles is predicted, and the
presence of the peak indicates that the maximum value of the velocity occurs in
the body of the fluid close to the surface but not at the surface. Also, with an in-
crease in the chemical reaction parameter, the concentration decreases. It is evident
that the increase in the chemical reaction (kr) significantly alters the concentration
boundary layer thickness but does not alter the momentum boundary layers.

The profiles for skin friction (τ) due to complex velocity under the effects of
Grashof number (Gr) Modified Grashof number (Gc) Schmidt number (Sc) Prandtl
number (Pr) Thermal radiation parameter (N) and Chemical reaction (k − r) are
presented in the table (1). We observe from the above table (1), the skin friction
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(τ) due to complex velocity rises under the effects of Grashof number (Gr) Modified
Grashof number (Gc) Thermal radiation parameter (N) And the skin friction (τ)
due to complex velocity falls under the effects of Schmidt number (Sc), Prandtl
number (Pr) Chemical reaction (kr). The profiles for Nusselt number (Nu) due
to temperature profile under the effect of Prandtl number is presented in table
(3). We see from this table the Nusselt number (Nu) due to temperature profile
falls under the effect of Prandtl number (Pr) and rises under the effect of Thermal
radiation parameter (N). The profiles for Sherwood number (Sh) due to concen-
tration profiles under the effect of Schmidt number (Sc) and Chemical reaction
(kr)are presented in the table (3). We see from this figure the Sherwood number
(Sh) due to concentration profile decreases under the effects of Schmidt number
(Sc) and Chemical reaction (kr) In order to ascertain the accuracy of the numer-
ical results, the present results are compared with the previous analytical results
of Muthucumaraswamy and Ganesan [15] for Gr = Gc = 1.0, P r = 0.71, Sc = 0.22
and kr = 1.0 in table (2). They are found to be in an excellent agreement. (τ) is

Gr Gc Sc Pr N kr τ

1.0 1.0 0.22 0.71 1.0 1.0 1.2265
2.0 1.0 0.22 0.71 1.0 1.0 2.0398
1.0 2.0 0.22 0.71 1.0 1.0 2.6398
1.0 1.0 0.30 0.71 1.0 1.0 1.1684
1.0 1.0 0.22 0.70 1.0 1.0 0.4307
1.0 1.0 0.22 0.71 2.0 1.0 1.4568
1.0 1.0 0.22 0.71 1.0 2.0 0.3602

Table 1. Skin - Friction Coefficient(τ)

the Skin friction results obtained in the present study,and (τ∗) is Skin - Friction
results obtained by Muthucumaraswamy and Ganesan [15]

Gr Gc Sc Pr kr τ τ∗

1.0 1.0 0.22 0.71 1.0 2.2265 2.2236
2.0 1.0 0.22 0.71 1.0 3.0398 3.0309
1.0 2.0 0.22 0.71 1.0 3.6398 3.6314
1.0 1.0 0.30 0.71 1.0 2.1684 2.1621
1.0 1.0 0.22 0.70 1.0 1.4307 1.4299
1.0 1.0 0.22 0.71 2.0 2.3602 2.3593

Table 2. Comparison between Skin - Friction (τ) and (τ∗)

Pr N Nu Sc kr Sh

0.71 1.0 5.9361 0.22 1.0 7.3607
7.00 1.0 4.0179 0.71 1.0 7.1800
0.71 2.0 6.0335 0.22 2.0 7.2688

Table 3. Rate of heat and Mass transfer coefficients (Nu, Sh)
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Figure 1. Velocity profiles for different values of Gr

Figure 2. Velocity profiles for different values of Gc

Figure 3. Velocity profiles for different values of Pr
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Figure 4. Velocity profiles for different values of N

Figure 5. Velocity profiles for different values of Sc

Figure 6. Velocity profiles for different values of kr
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Figure 7. Temperature profiles for different values of Pr

Figure 8. Temperature profiles for different values of N

Figure 9. Concentration profiles for different values of Sc
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Figure 10. Concentration profiles for different values of kr

5. Conclusion

In this study we have examined the governing equations for unsteady hydromag-
netic natural convection heat and mass transfer flow of a rotating Boussinesq fluid
past a vertical porous plate in the presence of radiative heat transfer. Employing
Finite element technique, the leading equations are solved numerically in the com-
plex plane. We present results to illustrate the flow characteristics for the velocity
and temperature fields as well as the skinfriction, Nusselt number and Sherwood
number show how the flow fields are influenced by the material parameters of the
flow problem.

(1) It is observed that the complex velocity (q) of the fluid increases with the
increasing of parameters Gr, Gc, N and decreases with the increasing of
parameters Pr, Sc and Kr.

(2) The fluid temperature (θ) increases with the increasing of N and decreases
with the increasing of Pr.

(3) The Concentration of the fluid decreases with the increasing of Kr and Sc.
(4) From table (1) it is concluded that the magnitude of shearing stress in-

creases as the increasing values of Gr, Gc, N and this behavior is found just
reverse with the increasing of Pr, Sc and Kr.

(5) From table (3) it is concluded that the Nusselt number (Nu) increases as
the increasing values of N and this behavior is found just reverse with the
increasing of Pr.

(6) From table (3) it is concluded that the Sherwood number (Sh) decreases
as the increasing values of Sc and Kr. On comparing the skin friction
τ results with the skin friction (τ∗) results of Muthucumaraswamy and
Ganesan [15] it can be seen that they agree very well.
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