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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR

PROBLEMS WITH WEIGHTED P-LAPLACIAN AND

P-BIHARMONIC OPERATORS

A. C. CAVALHEIRO

Abstract. In this work we are interested in the existence and uniqueness of

solutions for the Navier problem associated to the degenerate nonlinear elliptic
equations

∆(ω(x) |∆u|p−2∆u)−
n∑

j=1

Dj

[
ω(x)Aj(x, u,∇u)

]
= f0(x)−

n∑
j=1

Djfj(x), in Ω

in the setting of the Weighted Sobolev Spaces

1. Introduction

In this work we prove the existence and uniqueness of (weak) solutions in the

weighted Sobolev space X = W 2,p(Ω, ω)∩W 1,p
0 (Ω, ω) (see Definition 3) for the

Navier problem

(P )


Lu(x) = f0(x)−

n∑
j=1

Djfj(x), in Ω

u(x) = 0, on ∂Ω
∆u = 0, on ∂Ω

where L is the partial differential operator

Lu(x) = ∆(ω(x) |∆u|p−2
∆u)−

n∑
j=1

Dj

[
ω(x)Aj(x, u(x),∇u(x))

]
where Dj = ∂/∂xj , Ω is a bounded open set in Rn, ω is a weight function, ∆ is the
Laplacian operator, 1 < p < ∞ and the functions Aj : Ω×R×Rn→R (j = 1, ..., n)
satisfies the following conditions:
(H1) x7→Aj(x, η, ξ) is measurable on Ω for all (η, ξ)∈R×Rn

(η, ξ) 7→Aj(x, η, ξ) is continuous on R×Rn for almost all x∈Ω.
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(H2) there exist a constant θ1 > 0 such that

[A(x, η, ξ)−A(x, η′, ξ′)].(ξ − ξ′)≥ θ1 |ξ − ξ′|p,

whenever ξ, ξ′∈Rn, ξ ̸=ξ′, where A(x, η, ξ) = (A1(x, η, ξ), ...,An(x, η, ξ)) (where a
dot denote here the Euclidian scalar product in Rn).
(H3) A(x, η, ξ).ξ≥λ1|ξ|p, where λ1 is a positive constant.

(H4) |A(x, η, ξ)| ≤K1(x) + h1(x)|η|p/p
′
+ h2(x)|ξ|p/p

′
, where K1, h1 and h2 are

positive functions, with h1 and h2∈L∞(Ω), and K1∈Lp ′
(Ω, ω) (with 1/p+ 1/p ′ =

1).

By a weight, we shall mean a locally integrable function ω on Rn such that
ω(x) > 0 for a.e. x∈Rn. Every weight ω gives rise to a measure on the measurable
subsets on Rn through integration. This measure will be denoted by µ. Thus,
µ(E) =

∫
E
ω(x) dx for measurable sets E⊂Rn.

In general, the Sobolev spaces Wk,p(Ω) without weights occur as spaces of solu-
tions for elliptic and parabolic partial differential equations. For degenerate partial
differential equations, i.e., equations with various types of singularities in the co-
efficients, it is natural to look for solutions in weighted Sobolev spaces (see [1], [2]
and [4]).

In various applications, we can meet boundary value problems for elliptic equa-
tions whose ellipticity is disturbed in the sense that some degeneration or singularity
appears. This bad behaviour can be caused by the coefficients of the corresponding
differential operator as well as by the solution itself. The so-called p-Laplacian is
a prototype of such an operator and its character can be interpreted as a degen-
eration or as a singularity of the classical (linear) Laplace operator (with p = 2).
There are several very concrete problems from practice which lead to such differen-
tial equations, e.g. from glaceology, non-Newtonian fluid mechanics, flows through
porous media, differential geometry, celestial mechanics, climatology, petroleum
extraction, reaction-diffusion problems, etc.

A class of weights, which is particularly well understood, is the class of Ap-
weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see [11]).
These classes have found many useful applications in harmonic analysis (see [13]).
Another reason for studying Ap-weights is the fact that powers of the distance
to submanifolds of Rn often belong to Ap (see [10]). There are, in fact, many
interesting examples of weights (see [9] for p-admissible weights).

In the non-degenerate case (i.e. with ω(x) ≡ 1), for all f ∈Lp(Ω) the Poisson
equation associated with the Dirichlet problem{

−∆u = f(x), in Ω
u(x) = 0, on ∂Ω

is uniquely solvable in W 2,p(Ω)∩W 1,p
0 (Ω) (see [8]), and the nonlinear Dirichlet

problem {
−∆pu = f(x), in Ω
u(x) = 0, on ∂Ω

is uniquely solvable in W 1,p
0 (Ω) (see [3]), where ∆pu = div(|∇u|p−2∇u) is the p-

Laplacian operator. In the degenerate case, the weighted p-Biharmonic operator
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have been studied by many authors (see [12] and the references therein), and the
degenerated p-Laplacian has been studied in [4].

The following theorem will be proved in section 3.
Theorem 1 Assume (H1)-(H4). If ω ∈Ap (with 1 < p < ∞), fj/ω ∈Lp ′

(Ω, ω)
(j = 0, 1, ..., n and 1/p + 1/p ′ = 1) then the problem (P) has a unique solution

u∈X = W 2,p(Ω, ω)∩W 1,p
0 (Ω, ω). Moreover, we have

∥u∥X≤ 1

γp ′/p

(
CΩ∥f0/ω∥Lp ′ (Ω,ω) +

n∑
j=1

∥fj/ω∥Lp ′ (Ω,ω)

)p ′/p

,

where γ = min {λ1, 1}.

2. DEFINITIONS AND BASIC RESULTS

Let ω be a locally integrable nonnegative function in Rn and assume that 0 <
ω(x) < ∞ almost everywhere. We say that ω belongs to the Muckenhoupt class
Ap, 1 < p < ∞, or that ω is an Ap-weight, if there is a constant C = Cp,ω such
that (

1

|B|

∫
B

ω(x)dx

)(
1

|B|

∫
B

ω1/(1−p)(x)dx

)p−1

≤C

for all balls B⊂Rn, where |.| denotes the n-dimensional Lebesgue measure in Rn. If
1 < q≤ p, then Aq ⊂Ap (see [7],[9] or [13] for more information about Ap-weights).
The weight ω satisfies the doubling condition if there exists a positive constant
C such that µ(B(x; 2r))≤C µ(B(x; r)) for every ball B = B(x; r)⊂Rn, where
µ(B) =

∫
B
ω(x) dx. If ω∈Ap, then µ is doubling (see Corollary 15.7 in [9]).

As an example of Ap-weight, the function ω(x) = |x|α, x∈Rn, is in Ap if and
only if −n < α < n(p− 1) (see Corollary 4.4, Chapter IX in [13]).

If ω∈Ap, then

(
|E|
|B|

)p

≤C
µ(E)

µ(B)
whenever B is a ball in Rn and E is a measur-

able subset of B (see 15.5 strong doubling property in [9]). Therefore, if µ(E) = 0
then |E| = 0.

Definition 1 Let ω be a weight, and let Ω⊂Rn be open. For 1 < p < ∞ we
define Lp(Ω, ω) as the set of measurable functions f on Ω such that

∥f∥Lp(Ω,ω) =

(∫
Ω

|f(x)|pω(x)dx
)1/p

< ∞.

If ω ∈Ap, 1 < p < ∞, then ω−1/(p−1) is locally integrable and we have
Lp(Ω, ω)⊂L1

loc(Ω) for every open set Ω (see Remark 1.2.4 in [14]). It thus makes
sense to talk about weak derivatives of functions in Lp(Ω, ω).

Definition 2 Let Ω⊂Rn be open and let ω ∈Ap (1 < p < ∞). We define the
weighted Sobolev space W 1,p(Ω, ω) as the set of functions u∈Lp(Ω, ω) with weak
derivatives Dju∈Lp(Ω, ω) for j = 1, ..., n. The norm of u in W 1,p(Ω, ω) is defined
by

∥u∥W 1,p(Ω,ω) =

(∫
Ω

|u(x)|p ω(x) dx+

n∑
j=1

∫
Ω

|Dju(x)|p ω(x) dx
)1/p

. (1)

We also define W 1,p
0 (Ω, ω) as the closure of C∞

0 (Ω) with respect to the norm
∥.∥W 1,p(Ω,ω).
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If ω ∈Ap, then W 1,p(Ω, ω) is the closure of C∞(Ω) with respect to the norm

(1) (see Theorem 2.1.4 in [14]). The spaces W 1,p(Ω, ω) and W 1,p
0 (Ω, ω) are Banach

spaces.
It is evident that the weight function ω which satisfy 0 < c1 ≤ω(x)≤ c2 for

x∈Ω (c1 and c2 positive constants), give nothing new (the space W1,p
0 (Ω, ω) is

then identical with the classical Sobolev space W1,p
0 (Ω)). Consequently, we shall

interested above all in such weight functions ω which either vanish somewhere in Ω̄
or increase to infinity (or both).

In this article we use the following results.
Theorem 2 Let ω ∈Ap, 1 < p < ∞, and let Ω be a bounded open set in

Rn. If um→u in Lp(Ω, ω) then there exist a subsequence {umk
} and a function

Φ∈Lp(Ω, ω) such that
(i) umk

(x)→u(x), mk →∞, µ-a.e. on Ω;
(ii) |umk

(x)| ≤Φ(x), µ-a.e. on Ω;
(where µ(E) =

∫
E
ω(x) dx).

Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [6]. �

Theorem 3 (The weighted Sobolev inequality) Let Ω be an open bounded set
in Rn and ω∈Ap (1 < p < ∞). There exist positive constants CΩ and δ such that

for all u∈W 1,p
0 (Ω, ω) and all k satisfying 1≤ k≤n/(n− 1) + δ,

∥u∥Lkp(Ω,ω) ≤CΩ∥∇u∥Lp(Ω,ω). (2)

Proof. Its suffices to prove the inequality for functions u∈C∞
0 (Ω) (see Theorem

1.3 in [5]). To extend the estimates (2) to arbitrary u∈W 1,p
0 (Ω, ω), we let {um} be a

sequence of C∞
0 (Ω) functions tending to u inW 1,p

0 (Ω, ω). Applying the estimates (2)
to differences um1 −um2 , we see that {um} will be a Cauchy sequence in Lkp(Ω, ω).
Consequently the limit function u will lie in the desired spaces and satisfy (2). �

Lemma 1 Let 1 < p < ∞.
(a) There exists a constant αp such that∣∣∣∣ |x|p−2

x− |y|p−2
y

∣∣∣∣≤αp |x− y|(|x|+ |y|)p−2,

for all x, y ∈Rn;
(b) There exist two positive constants βp, γp such that for every x, y ∈Rn

βp (|x|+ |y|)p−2|x− y|2 ≤ (|x|p−2
x− |y|p−2

y).(x− y)≤ γp (|x|+ |y|)p−2|x− y|2.

Proof. See [3], Proposition 17.2 and Proposition 17.3. �
Definition 3 We say that an element u∈X = W 2,p(Ω, ω)∩W 1,p

0 (Ω, , ω) is a
(weak) solution of problem (P) if, for all φ∈X,∫

Ω

|∆u|p−2
∆u∆φω dx+

n∑
j=1

∫
Ω

ω(x)Aj(x, u(x),∇u(x))Djφ(x)dx

=

∫
Ω

f0(x)φ(x)dx+

n∑
j=1

∫
Ω

fj(x)Djφ(x)dx,
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3. PROOF OF THEOREM 1

The basic idea is to reduce the problem (P) to an operator equation Au = T
and apply the theorem below.

Theorem 4 Let A : X→X∗ be a monotone, coercive and hemicontinuous oper-
ator on the real, separable, reflexive Banach space X. Then the following assertions
hold:

(a) For each T ∈X∗ the equation Au = T has a solution u∈X;
(b) If the operator A is strictly monotone, then equation Au = T is uniquely

solvable in X.
Proof. See Theorem 26.A in [16]. �

To prove the existence of solutions, we define B,B1, B2 : X ×X→R and
T : X→R by

B(u, φ) = B1(u, φ) +B2(u, φ)

B1(u, φ) =

n∑
j=1

∫
Ω

ωAj(x, u,∇u)Djφdx =

∫
Ω

ωA(x, u,∇u).∇φdx

B2(u, φ) =

∫
Ω

|∆u|p−2
∆u∆φω dx

T (φ) =

∫
Ω

f0(x)φ(x) dx+
n∑

j=1

∫
Ω

fj(x)Djφ(x) dx.

Then u∈X is a (weak) solution to problem (P) if

B(u, φ) = B1(u, φ) +B2(u, φ) = T (φ),

for all φ∈X.
Step 1 For j = 1, ..., n we define the operator Fj : X→Lp ′

(Ω, ω) by

(Fju)(x) = Aj(x, u(x),∇u(x)).

We have that the operator Fj is bounded and continuous. In fact:
(i) Using (H4) we obtain

∥Fju∥p
′

Lp ′ (Ω,ω)
=

∫
Ω

|Fju(x)|p
′
ω dx =

∫
Ω

|Aj(x, u,∇u)|p
′
ω dx

≤
∫
Ω

(
K1 + h1|u|p/p

′
+ h2|∇u|p/p

′
)p ′

ω dx

≤Cp

∫
Ω

[
(Kp ′

1 + hp ′

1 |u|p + hp ′

2 |∇u|p)ω
]
dx

= Cp

[ ∫
Ω

Kp ′

1 ω dx+

∫
Ω

hp ′

1 |u|p ω dx+

∫
Ω

hp ′

2 |∇u|pω dx

]
, (3)

where the constant Cp depends only on p. We have, by Theorem 3,∫
Ω

hp ′

1 |u|p ω dx ≤ ∥h1∥p
′

L∞(Ω)

∫
Ω

|u|p ω dx

≤ Cp
Ω ∥h1∥p

′

L∞(Ω)

∫
Ω

|∇u|p ω dx

≤ Cp
Ω ∥h1∥p

′

L∞(Ω) ∥u∥
p
X ,
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and

∫
Ω

hp ′

2 |∇u|pω dx≤∥h2∥p
′

L∞(Ω)

∫
Ω

|∇u|p ω dx≤∥h2∥p
′

L∞(Ω)∥u∥
p
X . Therefore, in

(3) we obtain

∥Fju∥Lp ′ (Ω,ω) ≤ Cp

(
∥K∥Lp ′ (Ω,ω) + (C

p/p ′

Ω ∥h1∥L∞(Ω) + ∥h2∥L∞(Ω)) ∥u∥
p/p ′

X

)
.

(ii) Let um→u in X as m → ∞. We need to show that Fjum→Fju in Lp ′
(Ω, ω).

If um→u in X, then um→u in Lp(Ω, ω) and |∇um|→ |∇u| in Lp(Ω, ω). Using
Theorem 2, there exist a subsequence {umk

} and functions Φ1 and Φ2 in Lp(Ω, ω)
such that

umk
(x)→u(x), µ− a.e. in Ω,

|umk
(x)|≤Φ1(x), µ− a.e. in Ω,

|∇umk
(x)|→|∇u(x)|, µ− a.e. in Ω,

|∇umk
(x)|≤Φ2(x), µ− a.e. in Ω.

Hence, using (H4), we obtain

∥Fjumk
− Fju∥p

′

Lp ′ (Ω,ω)
=

∫
Ω

|Fjumk
(x)− Fju(x)|p

′
ω dx

=

∫
Ω

|Aj(x, umk
,∇umk

)−Aj(x, u,∇u)|p
′
ω dx

≤Cp

∫
Ω

(
|Aj(x, umk

,∇umk
)|p

′
+ |Aj(x, u,∇u)|p

′
)
ω dx

≤Cp

[ ∫
Ω

(
K1 + h1|umk

|p/p
′
+ h2|∇umk

|p/p
′
)p ′

ω dx

+

∫
Ω

(
K1 + h1|u|p/p

′
+ h2|∇u|p/p

′
)p ′

ω dx

]
≤ 2Cp

∫
Ω

(
K1 + h1Φ

p/p ′

1 + h2Φ
p/p ′

2

)p ′

ω dx

≤ 2Cp

[ ∫
Ω

Kp ′

1 ω dx+

∫
Ω

hp ′

1 Φp
1 ω dx+

∫
Ω

hp ′

2 Φp
2 ω dx

]
≤ 2Cp

[
∥K1∥p

′

Lp ′ (Ω,ω)
+ ∥h1∥p

′

L∞(Ω)

∫
Ω

Φp
1ω dx

+∥h2∥p
′

L∞(Ω)

∫
Ω

Φp
2 ω dx

]
≤ 2Cp

[
∥K1∥p

′

Lp ′ (Ω,ω)
+ ∥h1∥p

′

L∞(Ω) ∥Φ1∥pLp(Ω,ω)

+∥h2∥p
′

L∞(Ω)∥Φ2∥pLp(Ω,ω)

]
.

By condition (H1), we have

Fjum(x) = Aj(x, um(x),∇um(x))→Aj(x, u(x),∇u(x)) = Fju(x),

as m → +∞. Therefore, by the Dominated Convergence Theorem, we obtain

∥Fjumk
− Fju∥Lp ′ (Ω,ω)→ 0,
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that is,

Fjumk
→Fju in Lp ′

(Ω, ω).

By the Convergence Principle in Banach spaces (see Proposition 10.13 in [15]),
we have

Fjum→Fju in Lp ′
(Ω, ω). (4)

Step 2 We define the operator

G : X→Lp ′
(Ω, ω)

(Gu)(x) = |∆u(x)|p−2
∆u(x).

We also have that the operator G is continuous and bounded. In fact:
(i) We have

∥Gu∥p
′

Lp ′ (Ω,ω)
=

∫
Ω

∣∣ |∆u|p−2
∆u

∣∣p ′

ω dx

=

∫
Ω

|∆u|(p−2) p ′
|∆u|p

′
ω dx

=

∫
Ω

|∆u|p ω dx

≤ ∥u∥pX .

Hence, ∥Gu∥Lp ′ (Ω,ω) ≤∥u∥p/p
′

X .

(ii) If um →u in X then ∆um→∆u in Lp(Ω, ω).By Theorem 2, there exist a
subsequence {umk

} and a function Φ3 ∈Lp(Ω, ω) such that

∆umk
(x)→∆u(x), µ− a.e. in Ω

|∆umk
(x)| ≤Φ3(x), µ− a.e. in Ω.

Hence, using Lemma 1(a), we obtain, if p ̸=2

∥Gumk
−Gu∥p

′

Lp ′ (Ω,ω)
=

∫
Ω

|Gumk
−Gu|p

′
ω dx

=

∫
Ω

∣∣∣∣ |∆umk
|p−2

∆umk
− |∆u|p−2

∆u

∣∣∣∣p ′

ω dx

≤
∫
Ω

[
αp |∆umk

−∆u| ( |∆umk
|+ |∆u|)(p−2)

]p ′

ω dx

≤αp ′

p

∫
Ω

|∆umk
−∆u|p

′
(2Φ3)

(p−2) p ′
ω dx

≤αp ′

p 2(p−2)p ′
(∫

Ω

|∆umk
−∆u|p ω dx

)p ′/p

×

×
(∫

Ω

Φ
(p−2) p p ′/(p−p ′)
3 ω dx

)(p−p ′)/p

≤αp ′

p 2(p−2) p ′
∥umk

− u∥p
′

X ∥Φ∥p−p ′

Lp(Ω,ω),

since (p− 2) p p ′/(p− p ′) = p if p ̸=2. If p = 2,we have

∥Gumk
−Gu∥2L2(Ω,ω) =?

∫
Ω

|∆umk
−∆u|2 ω dx

≤ ∥umk
− u∥2X .
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Therefore (for 1 < p < ∞), by the Dominated Convergence Theorem, we obtain

∥Gumk
−Gu∥X → 0,

that is, Gumk
→Gu in Lp ′

(Ω, ω). By convergence principle in Banach spaces
(see Proposition 10.13 in [15]), we have

Gum →Gu in Lp ′
(Ω, ω). (5)

Step 3 We have, by Theorem 3,

|T (φ)| ≤
∫
Ω

|f0||φ| dx+

n∑
j=1

∫
Ω

|fj ||Djφ| dx

=

∫
Ω

|f0|
ω

|φ|ω dx+
n∑

j=1

∫
Ω

|fj |
ω

|Djφ|ω dx

≤ ∥f0/ω∥Lp ′ (Ω,ω)∥φ∥Lp(Ω,ω) +

n∑
j=1

∥fj/ω∥Lp ′ (Ω,ω)∥Djφ∥Lp(Ω,ω)

≤
(
CΩ ∥f0/ω∥Lp ′ (Ω,ω) +

n∑
j=1

∥fj/ω∥Lp ′ (Ω,ω)

)
∥φ∥X .

Moreover, using (H4) and the Hölder inequality, we also have

|B(u, φ)| ≤ |B1(u, φ)|+ |B2(u, φ)|

≤
n∑

j=1

∫
Ω

|Aj(x, u,∇u)||Djφ|ω dx+

∫
Ω

|∆u|p−2 |∆u| |∆φ|ω dx.(6)

In (6) we have∫
Ω

|A(x, u,∇u)| |∇φ|ω dx≤
∫
Ω

(
K1 + h1|u|p/p

′
+ h2|∇u|p/p

′
)
|∇φ|ω dx

≤ ∥K1∥Lp ′ (Ω,ω)∥∇φ∥Lp(Ω,ω) + ∥h1∥L∞(Ω)∥u∥
p/p ′

Lp(Ω,ω)∥∇φ∥Lp(Ω,ω)

+ ∥h2∥L∞(Ω)∥∇u∥p/p
′

Lp(Ω,ω)∥∇φ∥Lp(Ω,ω)

≤
(
∥K1∥Lp ′ (Ω,ω) + (C

p/p ′

Ω ∥h1∥L∞(Ω) + ∥h2∥L∞(Ω))∥u∥
p/p ′

X

)
∥φ∥X ,

and∫
Ω

|∆u|p−2 |∆u| |∆φ|ω dx =

∫
Ω

|∆u|p−1 |∆φ|ω dx

≤
(∫

Ω

|∆u|p ω dx

)1/p ′(∫
Ω

|∆φ|p ω dx

)1/p

≤ ∥u∥p/p
′

X ∥φ∥X .

Therefore, in (6) we obtain, for all u, φ∈X

|B(u, φ)| ≤
[
∥K1∥Lp ′ (Ω,ω) + C

p/p ′

Ω ∥h1∥L∞(Ω)∥u∥
p/p ′

X

+ ∥h2∥L∞(Ω,ω)∥u∥
p/p ′

X + ∥u∥p/p
′

X

]
∥φ∥X .
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Since B(u, .) is linear, for each u∈X, there exists a linear and continuous opera-
tor A : X→X∗ such that ⟨Au,φ⟩ = B(u, φ), for all u, φ∈X (where ⟨f, x⟩ denotes
the value of the linear functional f at the point x) and

∥Au∥∗ ≤∥K1∥Lp ′ (Ω,ω) + C
p/p ′

Ω ∥h1∥L∞(Ω)∥u∥
p/p ′

X + ∥h2∥L∞(Ω,ω)∥u∥
p/p ′

X + ∥u∥p/p
′

X .

Consequently, problem (P) is equivalent to the operator equation

Au = T, u∈X.

Step 4 Using condition (H2) and Lemma 1(b), we have

⟨Au1 −Au2, u1 − u2⟩ = B(u1, u1 − u2)−B(u2, u1 − u2)

=

∫
Ω

ωA(x, u1,∇u1).∇(u1 − u2) dx+

∫
Ω

|∆u1|p−2
∆u1 ∆(u1 − u2)ω dx

−
∫
Ω

ωA(x, u2,∇u2).∇(u1 − u2) dx−
∫
Ω

|∆u2|p−2
∆u2 ∆(u1 − u2)ω dx

=

∫
Ω

ω

(
A(x, u1,∇u1)−A(x, u2,∇u2)

)
.∇(u1 − u2) dx

+

∫
Ω

(|∆u1|p−2
∆u1 − |∆u2|p−2

∆u2)∆(u1 − u2)ω dx

≥ θ1

∫
Ω

ω |∇(u1 − u2)|p dx+ βp

∫
Ω

(|∆u1|+ |∆u2|)p−2 |∆u1 −∆u2|2 ω dx

≥ θ1

∫
Ω

ω |∇(u1 − u2)|p dx+ βp

∫
Ω

(|∆u1 −∆u2|)p−2 |∆u1 −∆u2|2 ω dx

= θ1

∫
Ω

ω |∇(u1 − u2)|p dx+ βp

∫
Ω

|∆u1 −∆u2|p ω dx

≥ θ ∥u1 − u2∥pX

where θ = min {θ1, βp}.
Therefore, the operator A is strictly monotone. Moreover, using (H3), we obtain

⟨Au, u⟩ = B(u, u) = B1(u, u) +B2(u, u)

=

∫
Ω

ωA(x, u,∇u).∇u dx+

∫
Ω

|∆u|p−2
∆u∆uω dx

≥
∫
Ω

λ1|∇u|p ω dx+

∫
Ω

|∆u|p ω dx

≥ γ ∥u∥pX

where γ = min {λ1, 1}. Hence, since p > 1, we have

⟨Au, u⟩
∥u∥X

→+∞, as ∥u∥X →+∞,

that is, A is coercive.
Step 5 We show that the operator A is continuous which, in particular means

that A is hemicontinuous.
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Let um→u in X as m → ∞. We have,

|B1(um, φ)−B1(u, φ)| ≤
n∑

j=1

∫
Ω

|Aj(x, um,∇um)−Aj(x, u,∇u)||Djφ|ω dx

=
n∑

j=1

∫
Ω

|Fjum − Fju||Djφ|ω dx

≤
n∑

j=1

∥Fjum − Fju∥Lp ′ (Ω,ω)∥Djφ∥Lp(Ω,ω)

≤
n∑

j=1

∥Fjum − Fju∥Lp ′ (Ω,ω)∥φ∥X ,

and

|B2(um, φ)−B2(u, φ)|

=

∣∣∣∣ ∫
Ω

|∆um|p−2
∆um ∆φω dx−

∫
Ω

|∆u|p−2
∆u∆φω dx

∣∣∣∣
≤
∫
Ω

∣∣∣∣ |∆um|p−2
∆um − |∆u|p−2

∆u

∣∣∣∣ |∆φ|ω dx

=

∫
Ω

|Gum −Gu| |∆φ|ω dx

≤∥Gum −Gu∥Lp ′ (Ω,ω) ∥φ∥X .

for all φ∈X. Hence,

|B(um, φ)−B(u, φ)| ≤ |B1(um, φ)−B1(u, φ)|+ |B2(um, φ)−B2(u, φ)|

≤
[ n∑

j=1

∥Fjum − Fju∥Lp ′ (Ω,ω) + ∥Gum −Gu∥Lp ′ (Ω,ω)

]
∥φ∥X .

Then we obtain

∥Aum −Au∥∗ ≤
n∑

j=1

∥Fjum − Fju∥Lp ′ (Ω,ω) + ∥Gum −Gu∥Lp ′ (Ω,ω).

Therefore, using (4) and (5) we have ∥Aum −Au∥∗→ 0 as m → +∞, that is, A is
continuous.

Therefore, by Theorem 4, the operator equation Au = T has a unique solution
u∈X and it is the unique solution for problem (P).

Step 6 In particular, by setting φ = u in Definition 3, we have

B(u, u) = B1(u, u) +B2(u, u) = T (u). (7)

Hence, using (H3) and γ = min {λ1, 1}, we obtain

B1(u, u) +B2(u, u) =

∫
Ω

ωA(x, u,∇u).∇u dx+

∫
Ω

|∆u|p−2
∆u∆uω dx

≥
∫
Ω

λ1 |∇u|p +
∫
Ω

|∆u|p ω dx

≥ γ∥u∥pX
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and

T (u) =

∫
Ω

f0 u dx+
n∑

j=1

∫
Ω

fj Dju dx

≤ ∥f0/ω∥Lp ′ (Ω,ω)∥u∥Lp(Ω,ω) +
n∑

j=1

∥fj/ω|Lp ′ (Ω)∥Dju∥Lp(Ω,ω)

≤
(
CΩ ∥f0/ω∥Lp ′ (Ω,ω) +

n∑
j=1

∥fj/ω∥Lp ′ (Ω)

)
∥u∥X .

Therefore, in (7), we have

γ ∥u∥pX ≤
(
CΩ ∥f0/ω∥Lp ′ (Ω,ω) +

n∑
j=1

∥fj/ω∥Lp ′ (Ω,ω)

)
∥u∥X ,

and we obtain

∥u∥X ≤ 1

γp ′/p

(
CΩ ∥f0/ω∥Lp ′ (Ω,ω) +

n∑
j=1

∥fj/ω∥Lp ′ (Ω,ω)

)p ′/p

.

Example Let Ω = {(x, y)∈R2 : x2 + y2 < 1}, the weight function ω(x, y) =
(x2 + y2)−1/2 (ω ∈A3, p = 3), and the function

A : Ω××R2→R2

A((x, y), η, ξ) = h2(x, y) |ξ| ξ,

where h(x, y) = 2 e(x
2+y2). Let us consider the partial differential operator

Lu(x, y) = ∆((x2 + y2)−1/2|∆u|∆u)− div ((x2 + y2)−1/2 A((x, y), u,∇u)).

Therefore, by Theorem 1, the problem

(P )


Lu(x) =

cos(xy)

(x2 + y2)
− ∂

∂x

(
sin(xy)

(x2 + y2)

)
− ∂

∂y

(
sin(xy)

(x2 + y2)

)
, in Ω

u(x) = 0, on ∂Ω
∆u = 0, on ∂Ω

has a unique solution u∈X = W 2,3(Ω, ω)∩W 1,3
0 (Ω, ω).
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