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SOLVABILITY FOR NONLOCAL PROBLEM OF

SECOND-ORDER DIFFERENTIAL EQUATION

EMAN M. A. HAMD-ALLAH

Abstract. Here, we study the existence of a positive nondecreasing solution
for the nonlocal problem of the differential equation

x
′′
(t) = f(t, x(t)), t ∈ (0, 1) (1)

with the nonlocal condition

x(0) =

n−2∑
k=1

ak x(τk), x′(0) =
m−2∑
j=1

bj x′(ηj) (2)

where:

τk, ηj ∈ (0, 1), 0 < τ1 < τ2 < ....... < τn−2 < 1 and 0 < η1 < η2 < ....... <
ηm−2 < 1.
As an application, we prove that the existence of the maximal and minimal
positive solutions for the nonlocal problem of the differential equation (1)with

the nonlocal condition

x(0) = α x(b), x′(0) = β x′(c). (3)

where b ∈ [τ1, τn−2], c ∈ [η1, ηm−2], α =
∑n−2

k=1 ak and β =
∑m−2

j=1 bj .

1. Introduction

The study of initial value problems with nonlocal conditions is of significance,
since they have applications in problems in physics and other areas of applied math-
ematics ([18],[19]).
Problems with non-local conditions have been extensively studied by several authors
in the last two decades. The reader is referred examples, to ([1]-[5]), ([8]-[13])and
([27]-[30]) and references therein.

2. Integral equation representation

Consider the nonlocal problem (1) and (2). Assume the following assumptions
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(i) f : [0, 1] × IR+ → IR+ is measurable in t ∈ [0, 1] for all x ∈ IR+ and
continuous in x ∈ IR+ for almost all t ∈ [0, 1] .

(ii) There exists an integrable function m ∈ L1[0, 1] such that f(t, x) ≤ m(t) .

(iii)
∫ 1

0
m(s) ds ≤ M .

(iv)
∑n−2

k=1 ak < 1 ,
∑m−2

j=1 bj < 1.

Lemma 1. The solution of the nonlocal problem (1)-(2) can be expressed by the
integral equation

x(t) = AB

(
n−2∑
k=1

akτk

) m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+ A

(
n−2∑
k=1

ak

∫ τk

0

(τk − s)f(s, x(s))ds

)

+ B t

 m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+

∫ t

0

(t− s)f(s, x(s))ds,

where A =
(
1 −

∑n−2
k=1 ak

)−1

and B =
(
1 −

∑m−2
j=1 bj

)−1

.

Proof. Integrating equation (1), we obtain

x′(t) = x′(0) +

∫ t

0

f(s, x(s))ds. (4)

Let t = ηj in (4), we get

x′(ηj) = x′(0) +

∫ ηj

0

f(s, x(s))ds,

m−2∑
j=1

bjx
′(ηj) = x′(0)

m−2∑
j=1

bj +
m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds,

and

x′(0) = x′(0)

m−2∑
j=1

bj +

m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds,

1 −
m−2∑
j=1

bj

 x′(0) =

m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds,

x′(0) = B
m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds, (5)

where B =
(
1 −

∑m−2
j=1 bj

)−1

.
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Integrating equation (4), we obtain

x(t) = x(0) + x′(0) t +

∫ t

0

(t− s)f(s, x(s))ds. (6)

Let t = τk in (6), we get

x(τk) = x(0) + x′(0) τk +

∫ τk

0

(τk − s)f(s, x(s))ds,

n−2∑
k=1

ak x(τk) = x(0)
n−2∑
k=1

ak + x′(0)
n−2∑
k=1

ak τk +
n−2∑
k=1

ak

∫ τk

0

(τk − s)f(s, x(s))ds,

and

x(0) = x(0)
n−2∑
k=1

ak + x′(0)
n−2∑
k=1

ak τk +
n−2∑
k=1

ak

∫ τk

0

(τk − s)f(s, x(s))ds,

(
1 −

n−2∑
k=1

ak

)
x(0) = x′(0)

n−2∑
k=1

ak τk +

n−2∑
k=1

ak

∫ τk

0

(τk − s)f(s, x(s))ds,

x(0) = Ax′(0)

n−2∑
k=1

ak τk + A

n−2∑
k=1

ak

∫ τk

0

(τk − s)f(s, x(s))ds (7)

where A =
(
1 −

∑n−2
k=1 ak

)−1

.

Substitute from (5) into (7), we deduce that

x(0) = AB

(
n−2∑
k=1

akτk

) m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+ A

(
n−2∑
k=1

ak

∫ τk

0

(τk − s)f(s, x(s))ds

)
. (8)

Substitute from (5) and (8) into (6), we get

x(t) = AB

(
n−2∑
k=1

akτk

) m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+ A

(
n−2∑
k=1

ak

∫ τk

0

(τk − s)f(s, x(s))ds

)

+ B t

 m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+

∫ t

0

(t− s)f(s, x(s))ds, (9)

which proves that the solution of the nonlocal problem (1)-(2) can be expressed by
the integral equation (9).
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3. Existence of solution

Now, we study the existence of a solution of the nonlocal problem (1)-(2).

Theorem 1. Let the assumptions (i)-(iv) be satisfied. Then the nonlocal problem
(1)-(2) has at least one solution x ∈ C[0, 1] .

proof. Define the subset Qr ⊂ C[0, 1] by Qr = {x ∈ IR : |x(t)| ≤ r } .
Clearly the set Qr , is nonempty, closed and convex.
Let H be an operator defined by

(Hx)(t) = AB

(
n−2∑
k=1

akτk

) m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+ A

(
n−2∑
k=1

ak

∫ τk

0

(τk − s)f(s, x(s))ds

)

+ B t

 m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+

∫ t

0

(t− s)f(s, x(s))ds.

Now, let x ∈ Qr then

|(Hx)(t)| ≤ AB

(
n−2∑
k=1

akτk

) m−2∑
j=1

bj

∫ ηj

0

|f(s, x(s))|ds


+ A

(
n−2∑
k=1

ak

∫ τk

0

(τk − s)|f(s, x(s))|ds

)
+ B t

 m−2∑
j=1

bj

∫ ηj

0

|f(s, x(s))|ds


+

∫ t

0

(t− s)|f(s, x(s))|ds.

≤ AB

(
n−2∑
k=1

akτk

) m−2∑
j=1

bj

∫ 1

0

m(s)ds

 + A

(
n−2∑
k=1

ak

∫ 1

0

m(s)ds

)

+ B

 m−2∑
j=1

bj

∫ 1

0

m(s)ds

 +

∫ 1

0

m(s)ds,

≤ AB

(
n−2∑
k=1

ak

) m−2∑
j=1

bj

M + A

(
n−2∑
k=1

ak

)
M + B

 m−2∑
j=1

bj

M + M

= r,

where r = (ABCD + AC +BD + 1)M, C =
∑n−2

k=1 ak and D =
∑m−2

j=1 bj .

Then {Hx(t)} is uniformly bounded in Qr .
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Also, for t1, t2 ∈ [0, 1] such that t1 < t2 , we have

(Hx)(t2)− (Hx)(t1) = B(t2 − t1)

 m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+

∫ t2

0

(t2 − s)f(s, x(s))ds −
∫ t1

0

(t1 − s)f(s, x(s))ds,

= B(t2 − t1)

 m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+

∫ t1

0

(t2 − t1)f(s, x(s))ds +

∫ t2

t1

(t2 − s)f(s, x(s))ds.

Then

|(Hx)(t2)− (Hx)(t1)| ≤ B|t2 − t1|

m−2∑
j=1

bj

∫ 1

0

m(s)ds


+ |t2 − t1|

∫ 1

0

m(s)ds +

∫ t2

t1

(t2 − s)m(s)ds

= BD|t2 − t1|M + |t2 − t1|M +

∫ t2

t1

(t2 − s)m(s)ds.

Therefore {Hx(t)} is equi-continuous. By Arzela-Ascolis Theorem {Hx(t)} is
relatively compact.
Since all conditions of Schauder fixed point theorem are hold, then H has a fixed
point in Qr which proves that the existence of at least one solution x ∈ C[0, 1]
of the integral equation (9).
To complete the proof, we prove that the integral equation (9) satisfies the nonlocal
problem (1)-(2).
Differentiating (9), we get

x′(t) = B

 m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds

 +

∫ t

0

f(s, x(s))ds (10)

and

x′′(t) = f(t, x(t)).
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Let t = τk in (9), we get

x(τk) = AB

(
n−2∑
k=1

akτk

) m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+ A

(
n−2∑
k=1

ak

∫ τk

0

(τk − s)f(s, x(s))ds

)

+ B τk

 m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+

∫ t

0

(τk − s)f(s, x(s))ds.

n−2∑
k=1

ak x(τk) = AB

(
n−2∑
k=1

ak

)(
n−2∑
k=1

akτk

) m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+ A

(
n−2∑
k=1

ak

)(
n−2∑
k=1

ak

∫ τk

0

(τk − s)f(s, x(s))ds

)

+ B

(
n−2∑
k=1

akτk

) m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+

n−2∑
k=1

ak

∫ t

0

(τk − s)f(s, x(s))ds.

n−2∑
k=1

ak x(τk) = AB

(
n−2∑
k=1

akτk

) m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds

(n−2∑
k=1

ak +
1

A

)

+ A

(
n−2∑
k=1

ak

∫ τk

0

(τk − s)f(s, x(s))ds

)(
n−2∑
k=1

ak +
1

A

)
,

but
(∑n−2

k=1 ak + 1
A

)
= 1 . Then

n−2∑
k=1

ak x(τk) = AB

(
n−2∑
k=1

akτk

) m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+ A

(
n−2∑
k=1

ak

∫ τk

0

(τk − s)f(s, x(s))ds

)
= x(0).

Let t = ηj in (10), we obtain

x′(ηj) = B

 m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds

 +

∫ ηj

0

f(s, x(s))ds
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m−2∑
j=1

bj x′(ηj) = B

 m−2∑
j=1

bj

 m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


+

m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds

= B

 m−2∑
j=1

bj +
1

B

 m−2∑
j=1

bj

∫ ηj

0

f(s, x(s))ds


= x′(0).

This completes the proof.

Corollary 1. The solution x(t) of the nonlocal problem (1)-(2) is positive and
nondecreasing.

As a particular case of Theorem 1, we have the following corollary.

Corollary 2. The nonlocal problem

x
′′
(t) = f(t, x(t)), t ∈ (0, 1) (11)

with the nonlocal condition

x(0) = αx(b) , x
′
(0) = βx

′
(c) (12)

has at least one positive nondecreasing solution in the form

x(t) =
α β b

(1− α)(1− β)

∫ c

0

f(s, x(s))ds +
α

(1− α)

∫ b

0

(b− s)f(s, x(s))ds

+
β t

(1− β)

∫ c

0

f(s, x(s))ds+

∫ t

0

(t− s)f(s, x(s))ds. (13)

4. Maximal and minimal solutions

Definition.
let q(t) be a solution of (13). Then q is said to be a maximal solution of (13) if
every solution x(t) of (13) satisfies the inequality x(t) < q(t) .
A minimal solution s(t) can be defined by similar way by reversing the above in-
equality i.e. x(t) > s(t) .

The following lemma will be used later.
Lemma 2.
Let x, y are continuous functions on [0, 1], satisfying

x(t) ≤ α β b

(1− α)(1− β)

∫ c

0

f(s, x(s))ds +
α

(1− α)

∫ b

0

(b− s)f(s, x(s))ds

+
β t

(1− β)

∫ c

0

f(s, x(s))ds+

∫ t

0

(t− s)f(s, x(s))ds,
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y(t) ≥ α β b

(1− α)(1− β)

∫ c

0

f(s, y(s))ds +
α

(1− α)

∫ b

0

(b− s)f(s, y(s))ds

+
β t

(1− β)

∫ c

0

f(s, y(s))ds+

∫ t

0

(t− s)f(s, y(s))ds

and one of them is strict. If f(t, x) is monotonic nondecreasing in x , then

x(t) < y(t), t > 0 (14)

proof. Let the conclusion (14) be false, then there exists t1 such that

x(t1) = y(t1), t1 > 0

and

x(t) < y(t), 0 < t ≤ t1.

From the monotonicity of f in x , we get

x(t1) ≤ α β b

(1− α)(1− β)

∫ c

0

f(s, x(s))ds +
α

(1− α)

∫ b

0

(b− s)f(s, x(s))ds

+
β t1

(1− β)

∫ c

0

f(s, x(s))ds+

∫ t1

0

(t1 − s)f(s, x(s))ds

<
α β b

(1− α)(1− β)

∫ c

0

f(s, y(s))ds +
α

(1− α)

∫ b

0

(b− s)f(s, y(s))ds

+
β t1

(1− β)

∫ c

0

f(s, y(s))ds+

∫ t1

0

(t1 − s)f(s, y(s))ds

< y(t1),

which contradicts the fact that x(t1) = y(t1) , then x(t) < y(t) .

For the existence of the maximal and minimal solutions we have the following
theorem,
Theorem 2.
Let the assumptions of Theorem 1 be satisfied. If f is a nondecreasing in x on
[0, 1]. Then there exist maximal and minimal solutions of the integral equation (13).

proof. Firstly we shall prove the existence of the maximal solution of (13). Let
ϵ > 0 be given and consider the integral equation

xϵ(t) =
α β b

(1− α)(1− β)

∫ c

0

fϵ(s, xϵ(s))ds +
α

(1− α)

∫ b

0

(b− s)fϵ(s, xϵ(s))ds

+
β t

(1− β)

∫ c

0

fϵ(s, xϵ(s))ds+

∫ t

0

(t− s)fϵ(s, xϵ(s))ds, t ∈ [0, 1] (15)

where fϵ(t, xϵ(t)) = f(t, xϵ(t)) + ϵ .
Clearly the function fϵ(t, xϵ(t)) satisfies assumptions (i)-(ii) of Theorem 1 and
therefore equation (15) has at least a positive solution xϵ(t) ∈ C[0, 1] .
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let ϵ1 and ϵ2 be such that 0 < ϵ2 < ϵ1 ≤ ϵ. Then

xϵ2(t) =
α β b

(1− α)(1− β)

∫ c

0

fϵ2(s, xϵ2(s))ds +
α

(1− α)

∫ b

0

(b− s)fϵ2(s, xϵ2(s))ds

+
β t

(1− β)

∫ c

0

fϵ2(s, xϵ2(s))ds+

∫ t

0

(t− s)fϵ2(s, xϵ2(s))ds

=
α β b

(1− α)(1− β)

∫ c

0

(f(s, xϵ2(s)) + ϵ2)ds +
α

(1− α)

∫ b

0

(b− s)(f(s, xϵ2(s)) + ϵ2)ds

+
β t

(1− β)

∫ c

0

(f(s, xϵ2(s)) + ϵ2)ds+

∫ t

0

(t− s)(f(s, xϵ2(s)) + ϵ2)ds, (16)

xϵ1(t) =
α β b

(1− α)(1− β)

∫ c

0

(f(s, xϵ1(s)) + ϵ1)ds +
α

(1− α)

∫ b

0

(b− s)(f(s, xϵ1(s)) + ϵ1)ds

+
β t

(1− β)

∫ c

0

(f(s, xϵ1(s)) + ϵ1)ds+

∫ t

0

(t− s)(f(s, xϵ1(s)) + ϵ1)ds,

xϵ1(t) >
α β b

(1− α)(1− β)

∫ c

0

(f(s, xϵ1(s)) + ϵ2)ds +
α

(1− α)

∫ b

0

(b− s)(f(s, xϵ1(s)) + ϵ2)ds

+
β t

(1− β)

∫ c

0

(f(s, xϵ1(s)) + ϵ2)ds+

∫ t

0

(t− s)(f(s, xϵ1(s)) + ϵ2)ds. (17)

Applying Lemma 2 on (16) and (17), we have

xϵ2(t) < xϵ1(t) for t ∈ [0, 1].

As shown before the family of functions xϵ(t) is equi-continuous and uniformly
bounded. Hence by Arzela-Ascolis Theorem, there exists a decreasing sequence ϵn
such that ϵn → 0 as n → ∞ , and limn→∞ xϵn(t) exists uniformly in [0, 1].
Denote this limit by q , then from the continuity of the function fϵ(t, xϵ) in the
second argument, we get

q(t) = lim
n→∞

xϵn(t) =
α β b

(1− α)(1− β)

∫ c

0

f(s, q(s))ds +
α

(1− α)

∫ b

0

(b− s)f(s, q(s))ds

+
β t

(1− β)

∫ c

0

f(s, q(s))ds+

∫ t

0

(t− s)f(s, q(s))ds, (18)

which implies that q is a solution of (13).
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Finally, we shall show that q is the maximal solution of (13). To do that, let
xϵ be any solution of (13). Then

xϵ(t) =
α β b

(1− α)(1− β)

∫ c

0

fϵ(s, xϵ(s))ds +
α

(1− α)

∫ b

0

(b− s)fϵ(s, xϵ(s))ds

+
β t

(1− β)

∫ c

0

fϵ(s, xϵ(s))ds+

∫ t

0

(t− s)fϵ(s, xϵ(s))ds

=
α β b

(1− α)(1− β)

∫ c

0

(f(s, xϵ(s)) + ϵ)ds +
α

(1− α)

∫ b

0

(b− s)(f(s, xϵ(s)) + ϵ)ds

+
β t

(1− β)

∫ c

0

(f(s, xϵ(s)) + ϵ)ds+

∫ t

0

(t− s)(f(s, xϵ(s)) + ϵ)ds

>
α β b

(1− α)(1− β)

∫ c

0

f(s, xϵ(s))ds +
α

(1− α)

∫ b

0

(b− s)f(s, xϵ(s))ds

+
β t

(1− β)

∫ c

0

f(s, xϵ(s))ds+

∫ t

0

(t− s)f(s, xϵ(s))ds. (19)

And for any solution x(t) of (13), we have

x(t) =
α β b

(1− α)(1− β)

∫ c

0

f(s, x(s))ds +
α

(1− α)

∫ b

0

(b− s)f(s, x(s))ds

+
β t

(1− β)

∫ c

0

f(s, x(s))ds+

∫ t

0

(t− s)f(s, x(s))ds. (20)

Applying Lemma 2,we get

x(t) < xϵ(t) for t ∈ [0, 1],

from the uniqueness of the maximal solution, it is clear that xϵ(t) tends to q(t)
uniformly in t ∈ [0, 1] as ϵn → 0 .
By similar way as done above we can prove the existence of the minimal solution
of (13).
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