# SOLVABILITY FOR NONLOCAL PROBLEM OF SECOND-ORDER DIFFERENTIAL EQUATION 

EMAN M. A. HAMD-ALLAH

Abstract. Here, we study the existence of a positive nondecreasing solution for the nonlocal problem of the differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)=f(t, x(t)), t \in(0,1) \tag{1}
\end{equation*}
$$

with the nonlocal condition

$$
\begin{equation*}
x(0)=\sum_{k=1}^{n-2} a_{k} x\left(\tau_{k}\right), x^{\prime}(0)=\sum_{j=1}^{m-2} b_{j} x^{\prime}\left(\eta_{j}\right) \tag{2}
\end{equation*}
$$

where:

$$
\tau_{k}, \eta_{j} \in(0,1), 0<\tau_{1}<\tau_{2}<\ldots \ldots<\tau_{n-2}<1 \text { and } 0<\eta_{1}<\eta_{2}<\ldots \ldots<
$$

$$
\eta_{m-2}<1
$$

As an application, we prove that the existence of the maximal and minimal positive solutions for the nonlocal problem of the differential equation (1)with the nonlocal condition

$$
\begin{equation*}
x(0)=\alpha x(b), x^{\prime}(0)=\beta x^{\prime}(c) \tag{3}
\end{equation*}
$$

where $b \in\left[\tau_{1}, \tau_{n-2}\right], c \in\left[\eta_{1}, \eta_{m-2}\right], \alpha=\sum_{k=1}^{n-2} a_{k}$ and $\beta=\sum_{j=1}^{m-2} b_{j}$.

## 1. Introduction

The study of initial value problems with nonlocal conditions is of significance, since they have applications in problems in physics and other areas of applied mathematics ([18],[19]).
Problems with non-local conditions have been extensively studied by several authors in the last two decades. The reader is referred examples, to ([1]-[5]), ([8]-[13]) and ([27]-[30]) and references therein.

## 2. Integral equation representation

Consider the nonlocal problem (1) and (2). Assume the following assumptions

[^0](i) $f:[0,1] \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is measurable in $t \in[0,1]$ for all $x \in \mathbb{R}^{+}$and continuous in $x \in \mathbb{R}^{+}$for almost all $t \in[0,1]$.
(ii) There exists an integrable function $m \in L^{1}[0,1]$ such that $f(t, x) \leq m(t)$.
(iii) $\int_{0}^{1} m(s) d s \leq M$.
(iv) $\sum_{k=1}^{n-2} a_{k}<1, \sum_{j=1}^{m-2} b_{j}<1$.

Lemma 1. The solution of the nonlocal problem (1)-(2) can be expressed by the integral equation

$$
\begin{aligned}
x(t) & =A B\left(\sum_{k=1}^{n-2} a_{k} \tau_{k}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& +A\left(\sum_{k=1}^{n-2} a_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s\right) \\
& +B t\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& +\int_{0}^{t}(t-s) f(s, x(s)) d s
\end{aligned}
$$

where $A=\left(1-\sum_{k=1}^{n-2} a_{k}\right)^{-1}$ and $B=\left(1-\sum_{j=1}^{m-2} b_{j}\right)^{-1}$.
Proof. Integrating equation (1), we obtain

$$
\begin{equation*}
x^{\prime}(t)=x^{\prime}(0)+\int_{0}^{t} f(s, x(s)) d s \tag{4}
\end{equation*}
$$

Let $t=\eta_{j}$ in (4), we get

$$
\begin{gathered}
x^{\prime}\left(\eta_{j}\right)=x^{\prime}(0)+\int_{0}^{\eta_{j}} f(s, x(s)) d s \\
\sum_{j=1}^{m-2} b_{j} x^{\prime}\left(\eta_{j}\right)=x^{\prime}(0) \sum_{j=1}^{m-2} b_{j}+\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s
\end{gathered}
$$

and

$$
\begin{gather*}
x^{\prime}(0)=x^{\prime}(0) \sum_{j=1}^{m-2} b_{j}+\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s \\
\left(1-\sum_{j=1}^{m-2} b_{j}\right) x^{\prime}(0)=\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s \\
x^{\prime}(0)=B \sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s \tag{5}
\end{gather*}
$$

where $B=\left(1-\sum_{j=1}^{m-2} b_{j}\right)^{-1}$.

Integrating equation (4), we obtain

$$
\begin{equation*}
x(t)=x(0)+x^{\prime}(0) t+\int_{0}^{t}(t-s) f(s, x(s)) d s \tag{6}
\end{equation*}
$$

Let $t=\tau_{k}$ in (6), we get

$$
\begin{gathered}
x\left(\tau_{k}\right)=x(0)+x^{\prime}(0) \tau_{k}+\int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s \\
\sum_{k=1}^{n-2} a_{k} x\left(\tau_{k}\right)=x(0) \sum_{k=1}^{n-2} a_{k}+x^{\prime}(0) \sum_{k=1}^{n-2} a_{k} \tau_{k}+\sum_{k=1}^{n-2} a_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s
\end{gathered}
$$

and

$$
\begin{gather*}
x(0)=x(0) \sum_{k=1}^{n-2} a_{k}+x^{\prime}(0) \sum_{k=1}^{n-2} a_{k} \tau_{k}+\sum_{k=1}^{n-2} a_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s \\
\left(1-\sum_{k=1}^{n-2} a_{k}\right) x(0)=x^{\prime}(0) \sum_{k=1}^{n-2} a_{k} \tau_{k}+\sum_{k=1}^{n-2} a_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s \\
x(0)=A x^{\prime}(0) \sum_{k=1}^{n-2} a_{k} \tau_{k}+A \sum_{k=1}^{n-2} a_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s \tag{7}
\end{gather*}
$$

where $A=\left(1-\sum_{k=1}^{n-2} a_{k}\right)^{-1}$.
Substitute from (5) into (7), we deduce that

$$
\begin{align*}
x(0) & =A B\left(\sum_{k=1}^{n-2} a_{k} \tau_{k}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& +A\left(\sum_{k=1}^{n-2} a_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s\right) . \tag{8}
\end{align*}
$$

Substitute from (5) and (8) into (6), we get

$$
\begin{align*}
x(t) & =A B\left(\sum_{k=1}^{n-2} a_{k} \tau_{k}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& +A\left(\sum_{k=1}^{n-2} a_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s\right) \\
& +B t\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& +\int_{0}^{t}(t-s) f(s, x(s)) d s, \tag{9}
\end{align*}
$$

which proves that the solution of the nonlocal problem (1)-(2) can be expressed by the integral equation (9).

## 3. Existence of solution

Now, we study the existence of a solution of the nonlocal problem (1)-(2).
Theorem 1. Let the assumptions (i)-(iv) be satisfied. Then the nonlocal problem (1)-(2) has at least one solution $x \in C[0,1]$.
proof. Define the subset $Q_{r} \subset C[0,1]$ by $Q_{r}=\{x \in \mathbb{R}:|x(t)| \leq r\}$.
Clearly the set $Q_{r}$, is nonempty, closed and convex.
Let $H$ be an operator defined by

$$
\begin{aligned}
(H x)(t) & =A B\left(\sum_{k=1}^{n-2} a_{k} \tau_{k}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& +A\left(\sum_{k=1}^{n-2} a_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s\right) \\
& +B t\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& +\int_{0}^{t}(t-s) f(s, x(s)) d s .
\end{aligned}
$$

Now, let $x \in Q_{r}$ then

$$
\begin{aligned}
|(H x)(t)| & \leq A B\left(\sum_{k=1}^{n-2} a_{k} \tau_{k}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}}|f(s, x(s))| d s\right) \\
& +A\left(\sum_{k=1}^{n-2} a_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right)|f(s, x(s))| d s\right)+B t\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}}|f(s, x(s))| d s\right) \\
& +\int_{0}^{t}(t-s)|f(s, x(s))| d s . \\
& \leq A B\left(\sum_{k=1}^{n-2} a_{k} \tau_{k}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{1} m(s) d s\right)+A\left(\sum_{k=1}^{n-2} a_{k} \int_{0}^{1} m(s) d s\right) \\
& +B\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{1} m(s) d s\right)+\int_{0}^{1} m(s) d s, \\
& \leq A B\left(\sum_{k=1}^{n-2} a_{k}\right)\left(\sum_{j=1}^{m-2} b_{j}\right) M+A\left(\sum_{k=1}^{n-2} a_{k}\right) M+B\left(\sum_{j=1}^{m-2} b_{j}\right) M+M \\
& =r,
\end{aligned}
$$

where $r=(A B C D+A C+B D+1) M, C=\sum_{k=1}^{n-2} a_{k}$ and $D=\sum_{j=1}^{m-2} b_{j}$. Then $\{H x(t)\}$ is uniformly bounded in $Q_{r}$.

Also, for $t_{1}, t_{2} \in[0,1]$ such that $t_{1}<t_{2}$, we have

$$
\begin{aligned}
(H x)\left(t_{2}\right)-(H x)\left(t_{1}\right) & =B\left(t_{2}-t_{1}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& +\int_{0}^{t_{2}}\left(t_{2}-s\right) f(s, x(s)) d s-\int_{0}^{t_{1}}\left(t_{1}-s\right) f(s, x(s)) d s \\
& =B\left(t_{2}-t_{1}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& +\int_{0}^{t_{1}}\left(t_{2}-t_{1}\right) f(s, x(s)) d s+\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right) f(s, x(s)) d s
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|(H x)\left(t_{2}\right)-(H x)\left(t_{1}\right)\right| & \leq B\left|t_{2}-t_{1}\right|\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{1} m(s) d s\right) \\
& +\left|t_{2}-t_{1}\right| \int_{0}^{1} m(s) d s+\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right) m(s) d s \\
& =B D\left|t_{2}-t_{1}\right| M+\left|t_{2}-t_{1}\right| M+\int_{t_{1}}^{t_{2}}\left(t_{2}-s\right) m(s) d s
\end{aligned}
$$

Therefore $\{H x(t)\}$ is equi-continuous. By Arzela-Ascolis Theorem $\{H x(t)\}$ is relatively compact.
Since all conditions of Schauder fixed point theorem are hold, then $H$ has a fixed point in $Q_{r}$ which proves that the existence of at least one solution $x \in C[0,1]$ of the integral equation (9).
To complete the proof, we prove that the integral equation (9) satisfies the nonlocal problem (1)-(2).
Differentiating (9), we get

$$
\begin{equation*}
x^{\prime}(t)=B\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right)+\int_{0}^{t} f(s, x(s)) d s \tag{10}
\end{equation*}
$$

and

$$
x^{\prime \prime}(t)=f(t, x(t))
$$

Let $t=\tau_{k}$ in (9), we get

$$
\begin{aligned}
& x\left(\tau_{k}\right)=A B\left(\sum_{k=1}^{n-2} a_{k} \tau_{k}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
&+A\left(\sum_{k=1}^{n-2} a_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s\right) \\
&+B \tau_{k}\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
&+\int_{0}^{t}\left(\tau_{k}-s\right) f(s, x(s)) d s . \\
&+A B\left(\sum_{k=1}^{n-2} a_{k}\right)\left(\sum_{k=1}^{n-2} a_{k} \tau_{k}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& \sum_{k=1}^{n-2} a_{k} x\left(\tau_{k}\right)\left.\sum_{k=1}^{n-2} a_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s\right) \\
&+\sum_{k=1}^{n-2} a_{k} \int_{0}^{n-2}\left(\tau_{k}-s\right) f(s, x(s)) d s . \\
&+ A\left(\sum_{k=1}^{n-2} a_{k} \tau_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s\right)\left(\sum_{k=1}^{n-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& \sum_{k=1}^{n-2} a_{k} x\left(\tau_{k}\right)= A B\left(\sum_{k=1}^{n-2} a_{k} \tau_{k}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right)\left(\sum_{k=1}^{n-2} a_{k}+\frac{1}{A}\right) \\
&\left.\sum_{k=1}^{n-2}\right)
\end{aligned}
$$

but $\left(\sum_{k=1}^{n-2} a_{k}+\frac{1}{A}\right)=1$. Then

$$
\begin{aligned}
\sum_{k=1}^{n-2} a_{k} x\left(\tau_{k}\right) & =A B\left(\sum_{k=1}^{n-2} a_{k} \tau_{k}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& +A\left(\sum_{k=1}^{n-2} a_{k} \int_{0}^{\tau_{k}}\left(\tau_{k}-s\right) f(s, x(s)) d s\right) \\
& =x(0)
\end{aligned}
$$

Let $t=\eta_{j}$ in (10), we obtain

$$
x^{\prime}\left(\eta_{j}\right)=B\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right)+\int_{0}^{\eta_{j}} f(s, x(s)) d s
$$

$$
\begin{aligned}
\sum_{j=1}^{m-2} b_{j} x^{\prime}\left(\eta_{j}\right) & =B\left(\sum_{j=1}^{m-2} b_{j}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& +\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s \\
& =B\left(\sum_{j=1}^{m-2} b_{j}+\frac{1}{B}\right)\left(\sum_{j=1}^{m-2} b_{j} \int_{0}^{\eta_{j}} f(s, x(s)) d s\right) \\
& =x^{\prime}(0)
\end{aligned}
$$

This completes the proof.
Corollary 1. The solution $x(t)$ of the nonlocal problem (1)-(2) is positive and nondecreasing.

As a particular case of Theorem 1, we have the following corollary.
Corollary 2. The nonlocal problem

$$
\begin{equation*}
x^{\prime \prime}(t)=f(t, x(t)), t \in(0,1) \tag{11}
\end{equation*}
$$

with the nonlocal condition

$$
\begin{equation*}
x(0)=\alpha x(b), x^{\prime}(0)=\beta x^{\prime}(c) \tag{12}
\end{equation*}
$$

has at least one positive nondecreasing solution in the form

$$
\begin{align*}
x(t) & =\frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c} f(s, x(s)) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s) f(s, x(s)) d s \\
& +\frac{\beta t}{(1-\beta)} \int_{0}^{c} f(s, x(s)) d s+\int_{0}^{t}(t-s) f(s, x(s)) d s \tag{13}
\end{align*}
$$

## 4. Maximal and minimal solutions

## Definition.

let $q(t)$ be a solution of (13). Then $q$ is said to be a maximal solution of (13) if every solution $x(t)$ of (13) satisfies the inequality $x(t)<q(t)$.
A minimal solution $\mathrm{s}(\mathrm{t})$ can be defined by similar way by reversing the above inequality i.e. $x(t)>s(t)$.

The following lemma will be used later.

## Lemma 2.

Let $x, y$ are continuous functions on $[0,1]$, satisfying

$$
\begin{aligned}
x(t) & \leq \frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c} f(s, x(s)) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s) f(s, x(s)) d s \\
& +\frac{\beta t}{(1-\beta)} \int_{0}^{c} f(s, x(s)) d s+\int_{0}^{t}(t-s) f(s, x(s)) d s
\end{aligned}
$$

$$
\begin{aligned}
y(t) & \geq \frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c} f(s, y(s)) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s) f(s, y(s)) d s \\
& +\frac{\beta t}{(1-\beta)} \int_{0}^{c} f(s, y(s)) d s+\int_{0}^{t}(t-s) f(s, y(s)) d s
\end{aligned}
$$

and one of them is strict. If $f(t, x)$ is monotonic nondecreasing in $x$, then

$$
\begin{equation*}
x(t)<y(t), t>0 \tag{14}
\end{equation*}
$$

proof. Let the conclusion (14) be false, then there exists $t_{1}$ such that

$$
x\left(t_{1}\right)=y\left(t_{1}\right), t_{1}>0
$$

and

$$
x(t)<y(t), 0<t \leq t_{1}
$$

From the monotonicity of $f$ in $x$, we get

$$
\begin{aligned}
x\left(t_{1}\right) & \leq \frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c} f(s, x(s)) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s) f(s, x(s)) d s \\
& +\frac{\beta t_{1}}{(1-\beta)} \int_{0}^{c} f(s, x(s)) d s+\int_{0}^{t_{1}}\left(t_{1}-s\right) f(s, x(s)) d s \\
& <\frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c} f(s, y(s)) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s) f(s, y(s)) d s \\
& +\frac{\beta t_{1}}{(1-\beta)} \int_{0}^{c} f(s, y(s)) d s+\int_{0}^{t_{1}}\left(t_{1}-s\right) f(s, y(s)) d s \\
& <y\left(t_{1}\right)
\end{aligned}
$$

which contradicts the fact that $x\left(t_{1}\right)=y\left(t_{1}\right)$, then $x(t)<y(t)$.
For the existence of the maximal and minimal solutions we have the following theorem,
Theorem 2.
Let the assumptions of Theorem 1 be satisfied. If $f$ is a nondecreasing in $x$ on $[0,1]$. Then there exist maximal and minimal solutions of the integral equation (13).
proof. Firstly we shall prove the existence of the maximal solution of (13). Let $\epsilon>0$ be given and consider the integral equation

$$
\begin{align*}
x_{\epsilon}(t) & =\frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c} f_{\epsilon}\left(s, x_{\epsilon}(s)\right) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s) f_{\epsilon}\left(s, x_{\epsilon}(s)\right) d s \\
& +\frac{\beta t}{(1-\beta)} \int_{0}^{c} f_{\epsilon}\left(s, x_{\epsilon}(s)\right) d s+\int_{0}^{t}(t-s) f_{\epsilon}\left(s, x_{\epsilon}(s)\right) d s, t \in[0,1] \tag{15}
\end{align*}
$$

where $f_{\epsilon}\left(t, x_{\epsilon}(t)\right)=f\left(t, x_{\epsilon}(t)\right)+\epsilon$.
Clearly the function $f_{\epsilon}\left(t, x_{\epsilon}(t)\right)$ satisfies assumptions (i)-(ii) of Theorem 1 and therefore equation (15) has at least a positive solution $x_{\epsilon}(t) \in C[0,1]$.
let $\epsilon_{1}$ and $\epsilon_{2}$ be such that $0<\epsilon_{2}<\epsilon_{1} \leq \epsilon$. Then

$$
\begin{align*}
x_{\epsilon_{2}}(t) & =\frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c} f_{\epsilon_{2}}\left(s, x_{\epsilon_{2}}(s)\right) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s) f_{\epsilon_{2}}\left(s, x_{\epsilon_{2}}(s)\right) d s \\
& +\frac{\beta t}{(1-\beta)} \int_{0}^{c} f_{\epsilon_{2}}\left(s, x_{\epsilon_{2}}(s)\right) d s+\int_{0}^{t}(t-s) f_{\epsilon_{2}}\left(s, x_{\epsilon_{2}}(s)\right) d s \\
& =\frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c}\left(f\left(s, x_{\epsilon_{2}}(s)\right)+\epsilon_{2}\right) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s)\left(f\left(s, x_{\epsilon_{2}}(s)\right)+\epsilon_{2}\right) d s \\
& +\frac{\beta t}{(1-\beta)} \int_{0}^{c}\left(f\left(s, x_{\epsilon_{2}}(s)\right)+\epsilon_{2}\right) d s+\int_{0}^{t}(t-s)\left(f\left(s, x_{\epsilon_{2}}(s)\right)+\epsilon_{2}\right) d s \tag{16}
\end{align*}
$$

$$
\begin{aligned}
x_{\epsilon_{1}}(t) & =\frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c}\left(f\left(s, x_{\epsilon_{1}}(s)\right)+\epsilon_{1}\right) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s)\left(f\left(s, x_{\epsilon_{1}}(s)\right)+\epsilon_{1}\right) d s \\
& +\frac{\beta t}{(1-\beta)} \int_{0}^{c}\left(f\left(s, x_{\epsilon_{1}}(s)\right)+\epsilon_{1}\right) d s+\int_{0}^{t}(t-s)\left(f\left(s, x_{\epsilon_{1}}(s)\right)+\epsilon_{1}\right) d s,
\end{aligned}
$$

$$
x_{\epsilon_{1}}(t)>\frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c}\left(f\left(s, x_{\epsilon_{1}}(s)\right)+\epsilon_{2}\right) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s)\left(f\left(s, x_{\epsilon_{1}}(s)\right)+\epsilon_{2}\right) d s
$$

$$
\begin{equation*}
+\frac{\beta t}{(1-\beta)} \int_{0}^{c}\left(f\left(s, x_{\epsilon_{1}}(s)\right)+\epsilon_{2}\right) d s+\int_{0}^{t}(t-s)\left(f\left(s, x_{\epsilon_{1}}(s)\right)+\epsilon_{2}\right) d s \tag{17}
\end{equation*}
$$

Applying Lemma 2 on (16) and (17), we have

$$
x_{\epsilon_{2}}(t)<x_{\epsilon_{1}}(t) \text { for } t \in[0,1] .
$$

As shown before the family of functions $x_{\epsilon}(t)$ is equi-continuous and uniformly bounded. Hence by Arzela-Ascolis Theorem, there exists a decreasing sequence $\epsilon_{n}$ such that $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$, and $\lim _{n \rightarrow \infty} x_{\epsilon_{n}}(t)$ exists uniformly in $[0,1]$. Denote this limit by $q$, then from the continuity of the function $f_{\epsilon}\left(t, x_{\epsilon}\right)$ in the second argument, we get

$$
\begin{align*}
q(t)=\lim _{n \rightarrow \infty} x_{\epsilon_{n}}(t) & =\frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c} f(s, q(s)) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s) f(s, q(s)) d s \\
& +\frac{\beta t}{(1-\beta)} \int_{0}^{c} f(s, q(s)) d s+\int_{0}^{t}(t-s) f(s, q(s)) d s \tag{18}
\end{align*}
$$

which implies that $q$ is a solution of (13).

Finally, we shall show that $q$ is the maximal solution of (13). To do that, let $x_{\epsilon}$ be any solution of (13). Then

$$
\begin{align*}
x_{\epsilon}(t) & =\frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c} f_{\epsilon}\left(s, x_{\epsilon}(s)\right) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s) f_{\epsilon}\left(s, x_{\epsilon}(s)\right) d s \\
& +\frac{\beta t}{(1-\beta)} \int_{0}^{c} f_{\epsilon}\left(s, x_{\epsilon}(s)\right) d s+\int_{0}^{t}(t-s) f_{\epsilon}\left(s, x_{\epsilon}(s)\right) d s \\
& =\frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c}\left(f\left(s, x_{\epsilon}(s)\right)+\epsilon\right) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s)\left(f\left(s, x_{\epsilon}(s)\right)+\epsilon\right) d s \\
& +\frac{\beta t}{(1-\beta)} \int_{0}^{c}\left(f\left(s, x_{\epsilon}(s)\right)+\epsilon\right) d s+\int_{0}^{t}(t-s)\left(f\left(s, x_{\epsilon}(s)\right)+\epsilon\right) d s \\
& >\frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c} f\left(s, x_{\epsilon}(s)\right) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s) f\left(s, x_{\epsilon}(s)\right) d s \\
& +\frac{\beta t}{(1-\beta)} \int_{0}^{c} f\left(s, x_{\epsilon}(s)\right) d s+\int_{0}^{t}(t-s) f\left(s, x_{\epsilon}(s)\right) d s . \tag{19}
\end{align*}
$$

And for any solution $x(t)$ of (13), we have

$$
\begin{align*}
x(t) & =\frac{\alpha \beta b}{(1-\alpha)(1-\beta)} \int_{0}^{c} f(s, x(s)) d s+\frac{\alpha}{(1-\alpha)} \int_{0}^{b}(b-s) f(s, x(s)) d s \\
& +\frac{\beta t}{(1-\beta)} \int_{0}^{c} f(s, x(s)) d s+\int_{0}^{t}(t-s) f(s, x(s)) d s \tag{20}
\end{align*}
$$

Applying Lemma 2, we get

$$
x(t)<x_{\epsilon}(t) \text { for } t \in[0,1]
$$

from the uniqueness of the maximal solution, it is clear that $x_{\epsilon}(t)$ tends to $q(t)$ uniformly in $t \in[0,1]$ as $\epsilon_{n} \rightarrow 0$.
By similar way as done above we can prove the existence of the minimal solution of (13).

## References

[1] Benchohra, M. Gatsori, E.P. and Ntouuyas, S.K. Existence results for semi-linear integrodifferential inclusions with nonlocal conditions. Rocky Mountain J. Mat. Vol.34,No.3, Fall 2004.
[2] Benchohra, M. Hamani, S. and Ntouuyas, S.K. Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Analysis Vol.71(2009)23912396.
[3] Boucherif, A. First-Order Differential Inclusions With Nonlocal Initial Conditions, Applied Mathematics Letters, 15 (2002) 409-414.
[4] Boucherif, A. Semilinear Evolution Inclusions With Nonlocal Initial Conditions, Applied Mathematics Letters, Vol. 22 (2009) 1145-1149.
[5] Boucherif, A and Precup, R. On the nonlocal initial value problem for first order differential equations. Fixed Point Theory, Vol. 4 No. 2, (2003) 205-212. .
[6] Curtain, R . F and Pritchand, A . J. Functional Analysis in Modern Applied Mathematics Academic, press(1977).
[7] Dugundji, J. and Grans, A. Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw (1963).
[8] El-Sayed, A. M. A. and Abd El-Salam, Sh. A. On the stability of a fractional-order differential equation with nonlocal initial conditin, Electronic Journal of Differential Equations, Vol. 2009 No. 29 (2009) pp. 1-8.
[9] El-Sayed, A. M. A. Hamdallah, E. M. and El-Kadeky, Kh. W. Solutions of a class of nonlocal problems for the differential inclusion $x^{\prime}(t) \in F(t, x(t))$, Applied Mathematics and Information Sciences-An International Journal, 5 (3) (2011) 413-421.
[10] El-Sayed, A. M. A. Hamdallah, E. M. and El-Kadeky, Kh. W. Solutions of a class of deviatedadvanced nonlocal problems for the differential inclusion $x^{\prime}(t) \in F(t, x(t))$, Abstract and Applied Analysis, Vol. 2011, Article ID 476392,(2011).
[11] El-Sayed, A. M. A. Hamdallah, E. M. and El-Kadeky, Kh. W. Monotonic positive solutions of nonlocal boundary value problems for a second-order functional differential equation, Abstract and Applied Analysis, Vol. 2012, Article ID 489353,(2012).
[12] El-Sayed, A. M. A. Hamdallah, E. M. and El-Kadeky, Kh. W. Uniformly stable positive monotonic solution of a nonlocal Cauchy problem, Advances in Pure Mathematics, Vol. 2, No. 2, Article ID 5300149,(March 2012).
[13] El-Sayed, A. M. A. Hamdallah, E. M. and El-Kadeky, Kh. W. Solutions of a class of nonlocal problems for the differential inclusion $x^{\prime}(t) \in F(t, x(t))$, Egyptian-Chinese Journal of Computational and Applied Mathematics, Vol. 1 No. 1 (2012) 1-8.
[14] Feng, Y and Liu, S. Existence multiplicity and uniqueness results for a second order m-point boundary value problems, Bull. Korean Math. Soc. 41(2004), NO. 3,PP. 483-492.
[15] Goebel, K and Kirk, W.A. Topics in Metric Fixed Point Theory, Cambridge University press, Cambridge (1990).
[16] Gupta, C . P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J.Math.Anal.Appl 168(1992)540-551.
[17] Guo, Y, Ji, Y and Zhang, J. Three positive solutions for a nonlinear nth-order m-point boundary value problem, Nonlinear Analysis 68(2007)3485-3492.
[18] Il,in, V . A and Moiseev, E. I. Nonlocal boundary value problem of the first kind for a sturm Liouville operator in its differential and finite difference aspects, Differential Equations 23(7)(1987)803-810
[19] Il'in, V . A and Moiseev, E. I. Nonlocal boundary value problem of the second kind for a sturm Liouville operator, Differential Equations 23(8)(1987)979-987.
[20] Infante, G and Webb, J . R . L. Positive solutions of some nonlocal boundary value problems, Abstract and Applied Analysis 2003:18(2003)1047-1060.
[21] Kolmoqorov, A . N and Fomin, S . V. Introductory Real Analysis, Prentice - Hall Inc (1970).
[22] Lasota, A and Opial, Z, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astoronom. Phys. 13(1955) 781-786.
[23] Li, F, Jia, M, Liu, X, Li, C and Li, G. Existence and uniqueness of solutions of second-order three-point boundary value problems with upper and lower solutions in the reversed order, Nonlinear Analysis 68(7)(2008)2381-2388.
[24] Liang, R, Peng, J and Shen, J. Positive solutions of a generalized second-order three-point boundary value problem, Applied Mathematics and Computation, 196(2008)931-940.
[25] Liu, B. Positive solutions of nonlinear three-point boundary value problem, Computers and Mathematics with Applications, 44(2002)201-211.
[26] Liu, X, Qi, J and Guo, Y. Three positive solutions for second-order m-point boundary value problems, Applied Mathematics and Computation, 156(2004)733-742.
[27] Ma, R. Positive solutions of nonlocal three-point boundary value problem, EJODE, 34(1999)1-8.
[28] Ma, R. Multiplicity of positive solutions of second-order three-point boundary value problems, Computers and Mathematics with Applications, 40(2000)193-204.
[29] Ma, R. Positive solutions of second-order three-point boundary value problems, Applied Mathematics Letters, 14(2001)1-5.
[30] Ma, R. Existence of solutions of nonlinear m-point boundary value problems, J.Math.Anal. Appi, 256(2001)556-567.
[31] Ntouyas, S. K. Nonlocal initial and boundary value problems: A Survey. Hand book of differential equations Vol. II Edited by A. Canada, P. Drabek and A. Fonda Elsevier 2005.

Eman M. A. Hamd-Allah
Faculty of Science, Alexandria University, Alexandria, Egypt
E-mail address: eman_hr2003@yahoo.com


[^0]:    2010 Mathematics Subject Classification. 34A12, 34A30, 34D20.
    Key words and phrases. Differential equation; Positive nondecreasing solution; nonlocal conditions; Schauder fixed point theorem; maximal and minimal solutions.

    Submitted April.1, 2015.

